Blog

Local and Pseudo-distributed CDH5 Hadoop on your laptop

22 Apr, 2014
Xebia Background Header Wave

Installing CDH5 from the tarball distribution is not a really difficult, but getting the pseudo-distributed configuration right is all but straightforward. So it was well worth writing about it.

Getting the software

Getting the software was the easiest part. Just go to The Cloudera Download page and push the button below the text For Developers. This will get you to the download products page where you can select the version and the type. I chose CDH5.0.0 and clicked the Tarballs link.

Here you’ll get a long list of Hadoop components, each with its own package. I downloaded Hadoop and Spark as they’re what I need at the moment.

Unpacking

I created a new directory on my local file system called cdh5.0.0. I refer to that directory as /cdh5.0.0 from now on and unpacked the two downloaded packages:

$ mkdir /cdh5.0.0
$ cd /cdh5.0.0
$ tar -xvzf hadoop-2.3.0-cdh5.0.0.tar.gz
$ mkdir spark-0.9.0-cdh5.0.0 && cd spark-0.9.0-cdh5.0.0 && tar -xvzf ../spark-0.9.0-cdh5.0.0.tar.gz && cd ../

This unpacks the tarballs; see how I created the Spark directory myself as its tarball is packed differently than the Hadoop one.

Hadoop in local mode

Using Hadoop in local mode is pretty easy. All it takes are a few environment settings pointing to the correct directories and you are good to go.
In my .bash_profile I always use aliases to switch between environments easily.
For the hadoop local mode settings I use this one:

alias switch_local_cdh5='export JAVA_HOME=$(/usr/libexec/java_home -v 1.7);
    export HADOOP_PREFIX=/cdh5.0.0/hadoop-2.3.0-cdh5.0.0;
    export HADOOP_COMMON_HOME=${HADOOP_PREFIX};
    export HADOOP_HDFS_HOME=${HADOOP_PREFIX};
    export HADOOP_MAPRED_HOME=${HADOOP_PREFIX};
    export HADOOP_YARN_HOME=${HADOOP_PREFIX};
    export SPARK_HOME=/cdh5.0.0/spark-0.9.0-cdh5.0.0;
    export PATH=${HADOOP_PREFIX}/bin:${SPARK_HOME}/bin:$PATH;
    export HADOOP_CONF_DIR=/cdh5.0.0/hadoop-2.3.0-cdh5.0.0/etc/hadoop;'

When I start a new terminal session I can easily export the variables in one with:

$ switch_local_cdh5

Now all the familiar hadoop commands should work. There is no notion of HDFS other then your local filesystem so the hadoop fs -ls / command will show you the same output as ls /

$ hadoop fs -ls /

    drwxrwxr-x   - root admin       2686 2014-04-18 09:47 /Applications
    drwxr-xr-x   - root wheel       2210 2014-02-26 02:46 /Library
    drwxr-xr-x   - root wheel         68 2013-08-25 05:45 /Network
    drwxr-xr-x   - root wheel        136 2013-10-23 03:05 /System
    drwxr-xr-x   - root admin        204 2013-10-23 03:09 /Users
    drwxrwxrwt   - root admin        136 2014-04-18 12:34 /Volumes
    [...]

$ ls -l /

    drwxrwxr-x+ 79 root  admin   2.6K Apr 18 09:47 Applications
    drwxr-xr-x+ 65 root  wheel   2.2K Feb 26 02:46 Library
    drwxr-xr-x@  2 root  wheel    68B Aug 25  2013 Network
    drwxr-xr-x+  4 root  wheel   136B Oct 23 03:05 System
    drwxr-xr-x   6 root  admin   204B Oct 23 03:09 Users
    drwxrwxrwt@  4 root  admin   136B Apr 18 12:34 Volumes

Running a MapReduce job should also work out of the box.

$ cd ${HADOOP_PREFIX}

$ hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.3.0-cdh5.0.0.jar pi 10 100

    Number of Maps  = 10
    Samples per Map = 100
    2014-04-19 18:05:01.596 java[74281:1703] Unable to load realm info from SCDynamicStore 14/04/19 18:05:02 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
    Wrote input for Map #0
    Wrote input for Map #1
    Wrote input for Map #2
    Wrote input for Map #3
    Wrote input for Map #4
    Wrote input for Map #5
    Wrote input for Map #6
    Wrote input for Map #7
    Wrote input for Map #8
    Wrote input for Map #9
    Starting Job
    ....
    Job Finished in 1.587 seconds
    Estimated value of Pi is 3.14800000000000000000

Hadoop in pseudo-distributed mode

Pseudo-distributed mode is a bit more complicated. Pseudo-distributed mode means that all involved daemons that make Hadoop tick are running on your local machine.
You need a separate pair of configuration files for that; Let’s start by creating a new directory for them:

$ cd /cdh5.0.0
$ mkdir conf.pseudo

Now we have to populate this directory with the correct files and contents. Creating them manually is a long and tedious task. Being a lazy programmer I looked for the easy way out and I found a Linux package called hadoop-conf-pseudo.
But as mentioned above, I don’t have a Linux laptop. So I fired up a CentOS virtual machine and inside that virtual machine configured the CDH5 yum repository.

$ echo -e "[cloudera-5-repo]nname=CDH 5 reponbaseurl=http://archive.cloudera.com/cdh5/redhat/6/x86_64/cdh/5/ngpgcheck=0n" > /etc/yum.repos.d/CDH5.repo
$ yum install hadoop-conf-psuedo

This creates a nicely filled directory in /etc/hadoop/conf.pseudo which we are going to copy over to my laptop

$ cp -r /etc/hadoop/conf.pseudo /mnt/hgfs/cdh5.0.0/conf.pseudo.linux

Let’s see what’s in there:

$ ll /cdh4.0.0/conf.pseudo.linux/
    total 80
    -rwxr-xr-x  1 user  staff   1.1K Apr 19 18:29 README
    -rwxr-xr-x  1 user  staff   2.1K Apr 19 18:29 core-site.xml
    -rwxr-xr-x  1 user  staff   1.3K Apr 19 18:29 hadoop-env.sh
    -rwxr-xr-x  1 user  staff   2.8K Apr 19 18:29 hadoop-metrics.properties
    -rwxr-xr-x  1 user  staff   1.8K Apr 19 18:29 hdfs-site.xml
    -rwxr-xr-x  1 user  staff    11K Apr 19 18:29 log4j.properties
    -rwxr-xr-x  1 user  staff   1.5K Apr 19 18:29 mapred-site.xml
    -rwxr-xr-x  1 user  staff   2.3K Apr 19 18:29 yarn-site.xml

We need to change a few things because the directory structure on our laptop is different than the on the Linux machine where these files came from. So let’s have a look at the contents and discover what configurations we need to adjust.

The main concepts that we need are HDFS and YARN so let’s focus on those. The other configuration files can be copied without changes.

$ cp /cdh5.0.0/conf.pseudo.linux/core-site.xml /cdh5.0.0/conf.pseudo/
$ cp /cdh5.0.0/conf.pseudo.linux/hadoop-env.sh /cdh5.0.0/conf.pseudo/
$ cp /cdh5.0.0/conf.pseudo.linux/hadoop-metrics.properties /cdh5.0.0/conf.pseudo/
$ cp /cdh5.0.0/conf.pseudo.linux/log4j.properties /cdh5.0.0/conf.pseudo/

First things first: HDFS

$ vi /cdh5.0.0/conf.pseudo.linux/hdfs-site.xml

In this file there are a few different configuration settings pointing to the locations of the namenode, secondary namenode and datanode data directories.

...

    hadoop.tmp.dir
    /var/lib/hadoop-hdfs/cache/${user.name}


    dfs.namenode.name.dir
    file:///var/lib/hadoop-hdfs/cache/${user.name}/dfs/name


    dfs.namenode.checkpoint.dir
    file:///var/lib/hadoop-hdfs/cache/${user.name}/dfs/namesecondary


     dfs.datanode.data.dir
     file:///var/lib/hadoop-hdfs/cache/${user.name}/dfs/data

...

Let’s copy this file over to our /cdh5.0.0/conf.pseudo directory and change the locations of these configuration parameters. Don’t forget to create the referenced directories.

$ cp /cdh5.0.0/conf.pseudo.linux/hdfs-site.xml /cdh5.0.0/conf.pseudo/
$ vi /cdh5.0.0/conf.pseudo/hdfs-site.xml


...
hadoop.tmp.dir/cdh5.0.0/var/lib/hadoop-hdfs/cache/${user.name}dfs.namenode.name.dirfile:///cdh5.0.0/var/lib/hadoop-hdfs/cache/${user.name}/dfs/namedfs.namenode.checkpoint.dirfile:///cdh5.0.0/var/lib/hadoop-hdfs/cache/${user.name}/dfs/namesecondarydfs.datanode.data.dirfile:///cdh5.0.0/var/lib/hadoop-hdfs/cache/${user.name}/dfs/data
...

And don’t forget to create the directories

$ cd /cdh5.0.0
$ mkdir -p var/lib/hadoop-hdfs/cache/${USER}/dfs/data
$ mkdir -p var/lib/hadoop-hdfs/cache/${USER}/dfs/namesecondary
$ mkdir -p var/lib/hadoop-hdfs/cache/${USER}/dfs/name

We also need the correct environment settings remember?
For the Hadoop pseudo distributed mode settings I use this one:

alias switch_pseudo_cdh5='export JAVA_HOME=$(/usr/libexec/java_home -v 1.7);
    export HADOOP_PREFIX=/cdh5.0.0/hadoop-2.3.0-cdh5.0.0;
    export HADOOP_COMMON_HOME=${HADOOP_PREFIX};
    export HADOOP_HDFS_HOME=${HADOOP_PREFIX};
    export HADOOP_MAPRED_HOME=${HADOOP_PREFIX};
    export HADOOP_YARN_HOME=${HADOOP_PREFIX};
    export SPARK_HOME=/cdh5.0.0/spark-0.9.0-cdh5.0.0;
    export PATH=${HADOOP_PREFIX}/sbin:${HADOOP_PREFIX}/bin:${SPARK_HOME}/bin:${PATH};
    export HADOOP_CONF_DIR=/cdh5.0.0/hadoop-2.3.0-cdh5.0.0/conf.pseudo;'

Watch the extra $HADOOP_PREFIX/sbin addition to the PATH variable. We’ll need that in a minute.

Does it work yet? Let’s try.

$ switch_psuedo_cdh5
$ hadoop fs -ls /

    2014-04-19 19:14:06.047 java[76056:1703] Unable to load realm info from SCDynamicStore
    14/04/19 19:14:06 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
    ls: Call From localdomain.local/111.11.11.1 to localhost:8020 failed on connection exception: java.net.ConnectException: Connection refused; For more details see:  http://wiki.apache.org/hadoop/ConnectionRefused

Guess not. The daemons are not running so need to start them. This can be done with the simple start-dfs.sh command since we added the HADOOP_PREFIX/sbin directory which contains the daemon start/stop scripts to our PATH variable.

$ start-dfs.sh

You may need to type in your password multiple times because the daemons are started through ssh connection to localhost.
Now we’ll check again to see if it works! We’re impatient programmers right?

$ hadoop fs -ls /

    2014-04-19 19:14:06.047 java[76056:1703] Unable to load realm info from SCDynamicStore
    14/04/19 19:14:06 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
    ls: Call From localdomain.local/111.11.11.1 to localhost:8020 failed on connection exception: java.net.ConnectException: Connection refused; For more details see:  http://wiki.apache.org/hadoop/ConnectionRefused

Still nothing. To understand what happens here we have to go back a bit and look at the output of the start-dfs.sh command:

$ start-dfs.sh
    2014-04-19 19:21:38.976 java[76172:1703] Unable to load realm info from SCDynamicStore
    14/04/19 19:21:39 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
    Starting namenodes on [localhost]
    Password:
    localhost: starting namenode, logging to /cdh5.0.0/hadoop-2.3.0-cdh5.0.0/logs/hadoop-user-namenode-localdomain.local.out
    localhost: 2014-04-19 19:21:45.992 java[76243:1b03] Unable to load realm info from SCDynamicStore
    cat: /cdh5.0.0/conf.pseudo/slaves: No such file or directory
    Starting secondary namenodes [0.0.0.0]
    Password:
    0.0.0.0: starting secondarynamenode, logging to /cdh5.0.0/hadoop-2.3.0-cdh5.0.0/logs/hadoop-user-secondarynamenode-localdomain.local.out
    0.0.0.0: 2014-04-19 19:21:53.619 java[76357:1b03] Unable to load realm info from SCDynamicStore
    2014-04-19 19:21:58.508 java[76405:1703] Unable to load realm info from SCDynamicStore
    14/04/19 19:21:58 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable

See the cat: /cdh5.0.0/conf.pseudo/slaves: No such file or directory message? We didn’t have that file in our conf.pseudo.linux directory, did we? Luckily the file is available in the local configuration directory: let’s copy it and stop the daemons that did not start correctly.

$ stop-dfs.sh
$ cp /cdh5.0.0/hadoop-2.3.0-cdh5.0.0/etc/hadoop/slaves /cdh5.0.0/conf.pseudo/
$ start-dfs.sh
$ hadoop fs -ls /
    2014-04-19 19:14:06.047 java[76056:1703] Unable to load realm info from SCDynamicStore
    14/04/19 19:14:06 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
    ls: Call From localdomain.local/111.11.11.1 to localhost:8020 failed on connection exception: java.net.ConnectException: Connection refused; For more details see:  http://wiki.apache.org/hadoop/ConnectionRefused

Nothing. We stop the HDFS daemons again and look at the logs:

$ stop-dfs.sh
    2014-04-19 19:33:02.835 java[77195:1703] Unable to load realm info from SCDynamicStore
    14/04/19 19:33:02 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
    Stopping namenodes on [localhost]
    Password:
    localhost: no namenode to stop
    Password:
    localhost: stopping datanode
    Stopping secondary namenodes [0.0.0.0]
    Password:
    0.0.0.0: stopping secondarynamenode
    2014-04-19 19:33:24.863 java[77400:1703] Unable to load realm info from SCDynamicStore
    14/04/19 19:33:24 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable

Hey! What’s that localhost: no namenode to stop message? Let’s look at the namenode logs first then.

$ vi /cdh5.0.0/hadoop-2.3.0-cdh5.0.0/logs/hadoop-user-namenode-localdomain.local.log

    

    2014-04-19 19:32:20,064 FATAL org.apache.hadoop.hdfs.server.namenode.NameNode: Exception in namenode join
    java.io.IOException: NameNode is not formatted.
        at org.apache.hadoop.hdfs.server.namenode.FSImage.recoverTransitionRead(FSImage.java:216)
        at org.apache.hadoop.hdfs.server.namenode.FSNamesystem.loadFSImage(FSNamesystem.java:879)
        at org.apache.hadoop.hdfs.server.namenode.FSNamesystem.loadFromDisk(FSNamesystem.java:638)
        at org.apache.hadoop.hdfs.server.namenode.NameNode.loadNamesystem(NameNode.java:440)
        at org.apache.hadoop.hdfs.server.namenode.NameNode.initialize(NameNode.java:496)
        at org.apache.hadoop.hdfs.server.namenode.NameNode.(NameNode.java:652)
        at org.apache.hadoop.hdfs.server.namenode.NameNode.(NameNode.java:637)
        at org.apache.hadoop.hdfs.server.namenode.NameNode.createNameNode(NameNode.java:1286)
        at org.apache.hadoop.hdfs.server.namenode.NameNode.main(NameNode.java:1352)
    2014-04-19 19:32:20,066 INFO org.apache.hadoop.util.ExitUtil: Exiting with status 1
    2014-04-19 19:32:20,067 INFO org.apache.hadoop.hdfs.server.namenode.NameNode: SHUTDOWN_MSG:

The log is telling us that we need to format HDFS first.

$ hadoop namenode -format
$ start-dfs.sh
$ hadoop fs -ls /
$ hadoop fs -mkdir /bogus
$ hadoop fs -ls /
    2014-04-19 19:46:32.233 java[78176:1703] Unable to load realm info from SCDynamicStore
    14/04/19 19:46:32 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
    Found 1 items
    drwxr-xr-x   - user supergroup          0 2014-04-19 19:46 /bogus

Ok we’re in!

Now we focus on the YARN part

$ vi /cdh5.0.0/conf.pseudo.linux/yarn-site.xml

There we have a few different configuration settings pointing to the locations of the container logs and nodemanager local directory.

...

    List of directories to store localized files in.
    yarn.nodemanager.local-dirs
    /var/lib/hadoop-yarn/cache/${user.name}/nm-local-dir


    Where to store container logs.
    yarn.nodemanager.log-dirs
    /var/log/hadoop-yarn/containers


    Where to aggregate logs to.
    yarn.nodemanager.remote-app-log-dir
    /var/log/hadoop-yarn/apps


    Classpath for typical applications.
    yarn.application.classpath
    
        $HADOOP_CONF_DIR,
        $HADOOP_COMMON_HOME/*,$HADOOP_COMMON_HOME/lib/*,
        $HADOOP_HDFS_HOME/*,$HADOOP_HDFS_HOME/lib/*,
        $HADOOP_MAPRED_HOME/*,$HADOOP_MAPRED_HOME/lib/*,
        $HADOOP_YARN_HOME/*,$HADOOP_YARN_HOME/lib/*
    

...

Let’s copy this file over to our /cdh5.0.0/conf.pseudo directory and change the locations of these configuration parameters. And don’t forget to create the referenced directories.

$ cp /cdh5.0.0/conf.pseudo.linux/yarn-site.xml /cdh5.0.0/conf.pseudo/
$ vi /cdh5.0.0/conf.pseudo/yarn-site.xml
...

    List of directories to store localized files in.
    yarn.nodemanager.local-dirs
    /cdh5.0.0/var/lib/hadoop-yarn/cache/${user.name}/nm-local-dir


    Where to store container logs.
    yarn.nodemanager.log-dirs
    /cdh5.0.0/var/log/hadoop-yarn/containers


    Where to aggregate logs to.
    yarn.nodemanager.remote-app-log-dir
    /var/log/hadoop-yarn/apps


    Classpath for typical applications.
    yarn.application.classpath
    
        $HADOOP_CONF_DIR,
        $HADOOP_COMMON_HOME/share/hadoop/common/*,
        $HADOOP_COMMON_HOME/share/hadoop/common/lib/*,
        $HADOOP_HDFS_HOME/share/hadoop/hdfs/*,
        $HADOOP_HDFS_HOME/share/hadoop/hdfs/lib/*,
        $HADOOP_MAPRED_HOME/share/hadoop/mapreduce/*,
        $HADOOP_MAPRED_HOME/share/hadoop/mapreduce/lib/*,
        $HADOOP_YARN_HOME/share/hadoop/yarn/*,
        $HADOOP_YARN_HOME/share/hadoop/yarn/lib/*
    

...

And don’t forget to create these directories

$ cd /cdh5.0.0
$ mkdir -p var/lib/hadoop-yarn/cache/${USER}/nm-local-dir
$ mkdir -p var/log/hadoop-yarn/containers

The yarn.nodemanager.remote-app-log-dir property doesn’t need to change as that’s a variable referring to a path on HDFS.
Now let’s try and start the YARN daemons (make sure the HDFS daemons are still running)

$ start-yarn.sh
    starting yarn daemons
    starting resourcemanager, logging to /cdh5.0.0/hadoop-2.3.0-cdh5.0.0/logs/yarn-user-resourcemanager-localdomain.local.out
    Password:
    localhost: starting nodemanager, logging to /cdh5.0.0/hadoop-2.3.0-cdh5.0.0/logs/yarn-user-nodemanager-localdomain.local.out
$ cd ${HADOOP_PREFIX}
$ hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.3.0-cdh5.0.0.jar pi 10 100

Looks like it’s working. But wait, what is the output saying?

Number of Maps  = 10
Samples per Map = 100
2014-04-20 00:23:57.055 java[79203:1703] Unable to load realm info from SCDynamicStore
14/04/20 00:23:57 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Wrote input for Map #0
Wrote input for Map #1
Wrote input for Map #2
Wrote input for Map #3
Wrote input for Map #4
Wrote input for Map #5
Wrote input for Map #6
Wrote input for Map #7
Wrote input for Map #8
Wrote input for Map #9
Starting Job
...
14/04/20 00:23:59 INFO mapred.LocalJobRunner:
14/04/20 00:23:59 INFO mapred.MapTask: Starting flush of map output
14/04/20 00:23:59 INFO mapred.MapTask: Spilling map output
14/04/20 00:23:59 INFO mapred.MapTask: bufstart = 0; bufend = 18; bufvoid = 104857600
14/04/20 00:23:59 INFO mapred.MapTask: kvstart = 26214396(104857584); kvend = 26214392(104857568); length = 5/6553600
14/04/20 00:23:59 INFO mapred.MapTask: Finished spill 0
14/04/20 00:23:59 INFO mapred.Task: Task:attempt_local37475800_0001_m_000000_0 is done. And is in the process of committing
14/04/20 00:23:59 INFO mapred.LocalJobRunner: map
...

It still mentions the LocalJobRunner. Ah wait, there was this mapred-site.xml we didn’t copy yet. Let’s do that.

$ cd /cdh5.0.0
$ cp conf.pseudo.linux/mapred-site.xml conf.pseudo/
$ vi conf.pseudo/mapred-site.xml

There we have a configuration setting pointing to the location of the mapreduce tmp directory.

...

    To set the value of tmp directory for map and reduce tasks.
    mapreduce.task.tmp.dir
    /var/lib/hadoop-mapreduce/cache/${user.name}/tasks

...

Let’s change that one too

$ vi conf.pseudo/mapred-site.xml
...

    To set the value of tmp directory for map and reduce tasks.
    mapreduce.task.tmp.dir
    /cdh5.0.0/var/lib/hadoop-mapreduce/cache/${user.name}/tasks

...
$ cd /cdh5.0.0
$ mkdir -p var/lib/hadoop-mapreduce/cache/${USER}/tasks

And try again

$ cd ${HADOOP_PREFIX}
$ hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.3.0-cdh5.0.0.jar pi 10 100
    Number of Maps  = 10
    Samples per Map = 100
    2014-04-20 00:36:42.138 java[79538:1703] Unable to load realm info from SCDynamicStore
    14/04/20 00:36:42 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
    Wrote input for Map #0
    Wrote input for Map #1
    Wrote input for Map #2
    Wrote input for Map #3
    Wrote input for Map #4
    Wrote input for Map #5
    Wrote input for Map #6
    Wrote input for Map #7
    Wrote input for Map #8
    Wrote input for Map #9
    Starting Job
    14/04/20 00:36:43 INFO client.RMProxy: Connecting to ResourceManager at /0.0.0.0:8032
    14/04/20 00:36:43 INFO input.FileInputFormat: Total input paths to process : 10
    14/04/20 00:36:43 INFO mapreduce.JobSubmitter: number of splits:10
    14/04/20 00:36:43 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1397933444099_0001
    14/04/20 00:36:44 INFO impl.YarnClientImpl: Submitted application application_1397933444099_0001
    14/04/20 00:36:44 INFO mapreduce.Job: The url to track the job: http://localdomain.local:8088/proxy/application_1397933444099_0001/
    14/04/20 00:36:44 INFO mapreduce.Job: Running job: job_1397933444099_0001
    14/04/20 00:36:49 INFO mapreduce.Job: Job job_1397933444099_0001 running in uber mode : false
    14/04/20 00:36:49 INFO mapreduce.Job:  map 0% reduce 0%
    14/04/20 00:36:49 INFO mapreduce.Job: Job job_1397933444099_0001 failed with state FAILED due to: Application application_1397933444099_0001 failed 2 times due to AM Container for appattempt_1397933444099_0001_000002 exited with  exitCode: 127 due to: Exception from container-launch: org.apache.hadoop.util.Shell$ExitCodeException:
    org.apache.hadoop.util.Shell$ExitCodeException:
        at org.apache.hadoop.util.Shell.runCommand(Shell.java:505)
        at org.apache.hadoop.util.Shell.run(Shell.java:418)
        at org.apache.hadoop.util.Shell$ShellCommandExecutor.execute(Shell.java:650)
        at org.apache.hadoop.yarn.server.nodemanager.DefaultContainerExecutor.launchContainer(DefaultContainerExecutor.java:195)
        at org.apache.hadoop.yarn.server.nodemanager.containermanager.launcher.ContainerLaunch.call(ContainerLaunch.java:283)
        at org.apache.hadoop.yarn.server.nodemanager.containermanager.launcher.ContainerLaunch.call(ContainerLaunch.java:79)
        at java.util.concurrent.FutureTask$Sync.innerRun(FutureTask.java:334)
        at java.util.concurrent.FutureTask.run(FutureTask.java:166)
        at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
        at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
        at java.lang.Thread.run(Thread.java:722)

    Container exited with a non-zero exit code 127
    .Failing this attempt.. Failing the application.

Ok, no local job runner anymore. Something is definitely not right yet. Let’s examine the logs on HDFS:

    $ hadoop fs -ls /var/log/hadoop-yarn/apps/user/logs/application_1397933444099_0001/
        2014-04-20 00:42:26.267 java[79865:1703] Unable to load realm info from SCDynamicStore
        14/04/20 00:42:26 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
        Found 1 items
        -rw-r-----   1 user supergroup        516 2014-04-20 00:36 /var/log/hadoop-yarn/apps/user/logs/application_1397933444099_0001/10.115.86.114_59329
    $ hadoop fs -cat /var/log/hadoop-yarn/apps/user/logs/application_1397933444099_0001/10.115.86.114_59329
        2014-04-20 00:45:44.565 java[79923:1703] Unable to load realm info from SCDynamicStore
        14/04/20 00:45:44 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
        ??h??׶9?A@???P  VERSIONAPPLICATION_ACL
        MODIFY_APPVIEW_APP APPLICATION_OWNER
        user(&container_1397933444099_0001_01_000001Gstderr48/bin/bash: /bin/java: No such file or directory
        stdout0(&container_1397933444099_0001_02_000001Gstderr48/bin/bash: /bin/java: No such file or directory
        stdout0
            VERSION*(&container_1397933444099_0001_02_000001none?B?Bdata:BCFile.indexnone͎
            data:TFile.indexnone?X66data:TFile.metanone?R???h??׶9?A@???P

Strange format, but we can clearly see the error message in between the garbage /bin/bash: /bin/java: No such file or directory.
Looking on the internet I found this workaround and the issue HADOOP-8717 describing the problem including a solution. Since I’m more into fixing the problem instead of using a workaround I went for the patch of the start up scripts. The patch in the HADOOP-8717 issue is changing a bit more then needed. We only need to change the hadoop-config.sh. Let’s find out where to find this script and change it.

$ cd /cdh5.0.0
$ find . -name hadoop-config.sh
    ./hadoop-2.3.0-cdh5.0.0/bin-mapreduce1/hadoop-config.sh
    ./hadoop-2.3.0-cdh5.0.0/libexec/hadoop-config.sh
    ./hadoop-2.3.0-cdh5.0.0/src/hadoop-common-project/hadoop-common/src/main/bin/hadoop-config.sh
    ./hadoop-2.3.0-cdh5.0.0/src/hadoop-mapreduce1-project/bin/hadoop-config.sh
$ vi ./hadoop-2.3.0-cdh5.0.0/libexec/hadoop-config.sh

The script is

# On OSX use java_home (or /Library for older versions)
if [ "Darwin" == "$(uname -s)" ]; then
   if [ -x /usr/libexec/java_home ]; then
       export JAVA_HOME=($(/usr/libexec/java_home))
   else
       export JAVA_HOME=(/Library/Java/Home)
   fi
fi
...

but we need to change it into

...
# On OSX use java_home (or /Library for older versions)
if [ "Darwin" == "$(uname -s)" ]; then
    if [ -x /usr/libexec/java_home ]; then
        export JAVA_HOME=$(/usr/libexec/java_home)
    else
        export JAVA_HOME=/Library/Java/Home
    fi
fi
...

Now let’s restart YARN again

$ stop-yarn.sh && start-yarn.sh
$ cd ${HADOOP_PREFIX}
$ hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.3.0-cdh5.0.0.jar pi 10 100
    Number of Maps  = 10
    Samples per Map = 100
    2014-04-20 10:21:56.696 java[80777:1703] Unable to load realm info from SCDynamicStore
    14/04/20 10:22:11 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
    Wrote input for Map #0
    Wrote input for Map #1
    Wrote input for Map #2
    Wrote input for Map #3
    Wrote input for Map #4
    Wrote input for Map #5
    Wrote input for Map #6
    Wrote input for Map #7
    Wrote input for Map #8
    Wrote input for Map #9
    Starting Job
    14/04/20 10:22:12 INFO client.RMProxy: Connecting to ResourceManager at /0.0.0.0:8032
    14/04/20 10:22:12 INFO input.FileInputFormat: Total input paths to process : 10
    14/04/20 10:22:12 INFO mapreduce.JobSubmitter: number of splits:10
    14/04/20 10:22:13 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1397969462544_0001
    14/04/20 10:22:13 INFO impl.YarnClientImpl: Submitted application application_1397969462544_0001
    14/04/20 10:22:13 INFO mapreduce.Job: The url to track the job: http://localdomain.local:8088/proxy/application_1397969462544_0001/
    14/04/20 10:22:13 INFO mapreduce.Job: Running job: job_1397969462544_0001
    14/04/20 10:22:34 INFO mapreduce.Job: Job job_1397969462544_0001 running in uber mode : false
    14/04/20 10:22:34 INFO mapreduce.Job:  map 0% reduce 0%
    14/04/20 10:22:53 INFO mapreduce.Job:  map 10% reduce 0%
    14/04/20 10:22:54 INFO mapreduce.Job:  map 20% reduce 0%
    14/04/20 10:22:55 INFO mapreduce.Job:  map 30% reduce 0%
    14/04/20 10:22:56 INFO mapreduce.Job:  map 40% reduce 0%
    14/04/20 10:22:57 INFO mapreduce.Job:  map 50% reduce 0%
    14/04/20 10:22:58 INFO mapreduce.Job:  map 60% reduce 0%
    14/04/20 10:23:12 INFO mapreduce.Job:  map 70% reduce 0%
    14/04/20 10:23:13 INFO mapreduce.Job:  map 80% reduce 0%
    14/04/20 10:23:15 INFO mapreduce.Job:  map 90% reduce 0%
    14/04/20 10:23:16 INFO mapreduce.Job:  map 100% reduce 100%
    14/04/20 10:23:16 INFO mapreduce.Job: Job job_1397969462544_0001 completed successfully
    ...
    Job Finished in 64.352 seconds
    Estimated value of Pi is 3.14800000000000000000

Wow, we got it to work, didn’t we?

On to Spark

To experiment with the spark-shell, we return to the local Hadoop configuration:

$ switch_local_cdh5
$ spark-shell
  ls: /cdh5.0.0/spark-0.9.0-cdh5.0.0/assembly/target/scala-2.10/: No such file or directory
  ls: /cdh5.0.0/spark-0.9.0-cdh5.0.0/assembly/target/scala-2.10/: No such file or directory
  Failed to find Spark assembly in /cdh5.0.0/spark-0.9.0-cdh5.0.0/assembly/target/scala-2.10/
  You need to build Spark with 'sbt/sbt assembly' before running this program.

The spark shell is assuming that I am running it from the source build or something. But I’m not. Let’s see how to fix it.

$ vi /cdh5.0.0/spark-0.9.0-cdh5.0.0/bin/spark-shell
#here we see it's calling spark-class
else
    $FWDIR/bin/spark-class $OPTIONS org.apache.spark.repl.Main "$@"
fi
$ vi /cdh5.0.0/spark-0.9.0-cdh5.0.0/bin/spark-class
...
if [ ! -f "$FWDIR/RELEASE" ]; then
    # Exit if the user hasn't compiled Spark
    num_jars=$(ls "$FWDIR"/assembly/target/scala-$SCALA_VERSION/ | grep "spark-assembly.*hadoop.*.jar" | wc -l)
    jars_list=$(ls "$FWDIR"/assembly/target/scala-$SCALA_VERSION/ | grep "spark-assembly.*hadoop.*.jar")
    if [ "$num_jars" -eq "0" ]; then
        echo "Failed to find Spark assembly in $FWDIR/assembly/target/scala-$SCALA_VERSION/" >&2
        echo "You need to build Spark with 'sbt/sbt assembly' before running this program." >&2
        exit 1
    fi
    if [ "$num_jars" -gt "1" ]; then
        echo "Found multiple Spark assembly jars in $FWDIR/assembly/target/scala-$SCALA_VERSION:" >&2
        echo "$jars_list"
        echo "Please remove all but one jar."
        exit 1
    fi
fi
...

The bash scripts are looking for evidence that we’re running a release version (by looking at the RELEASE file); it then searches for some jar with assembly in the name. Let’s see if we have such a jar file.

$ find /cdh5.0.0 -name "*assembly*jar"
    /cdh5.0.0/spark-0.9.0-cdh5.0.0/spark-assembly_2.10-0.9.0-cdh5.0.0-hadoop2.3.0-cdh5.0.0.jar

It is there, but not in the place the spark-class script is searching; we only need to change the spark-class script to look in the right place and add the RELEASE file.

$ touch /cdh5.0.0/spark-0.9.0-cdh5.0.0/RELEASE
$ vi /cdh5.0.0/spark-0.9.0-cdh5.0.0/bin/spark-class
...
if [ ! -f "$FWDIR/RELEASE" ]; then
    # Exit if the user hasn't compiled Spark
    num_jars=$(ls "$FWDIR"/assembly/target/scala-$SCALA_VERSION/ | grep "spark-assembly.*hadoop.*.jar" | wc -l)
    jars_list=$(ls "$FWDIR"/assembly/target/scala-$SCALA_VERSION/ | grep "spark-assembly.*hadoop.*.jar")
    if [ "$num_jars" -eq "0" ]; then
        num_jars=$(ls "$FWDIR"/ | grep "spark-assembly.*hadoop.*.jar" | wc -l)
        jars_list=$(ls "$FWDIR"/ | grep "spark-assembly.*hadoop.*.jar")
        if [ "$num_jars" -eq "0" ]; then
            echo "Failed to find Spark assembly in $FWDIR/assembly/target/scala-$SCALA_VERSION/" >&2
            echo "You need to build Spark with 'sbt/sbt assembly' before running this program." >&2
            exit 1
        fi
    fi
    if [ "$num_jars" -gt "1" ]; then
        echo "Found multiple Spark assembly jars in $FWDIR/assembly/target/scala-$SCALA_VERSION:" >&2
        echo "$jars_list"
        echo "Please remove all but one jar."
        exit 1
    fi
fi
...

Try again.

$ spark-shell
    ls: /cdh5.0.0-blog/spark-0.9.0-cdh5.0.0/jars/spark-assembly*.jar: No such file or directory
    Error: Could not find or load main class org.apache.spark.repl.Main

It’s right again. Somewhere else we are making the wrong assumption on the structure of our directory tree. But where?

$ cd spark-0.9.0-cdh5.0.0/bin
$ grep 'jars/spark-assembly' *
    compute-classpath.sh:    ASSEMBLY_JAR=</span>ls <span class="s2">"</span><span class="nv">$F</span><span class="s2">WDIR"</span>/jars/spark-assembly*.jar<span class="sb"> $ vi compute-classpath.sh
# remove the /jars in the ASSEMBLY_JAR variable, and try again
$ cd ../../
$ spark-shell
    Exception in thread "main" java.lang.NoClassDefFoundError: org/apache/hadoop/fs/FSDataInputStream
        at org.apache.spark.repl.SparkIMain.(SparkIMain.scala:93)
        at org.apache.spark.repl.SparkILoop$SparkILoopInterpreter.(SparkILoop.scala:174)
        at org.apache.spark.repl.SparkILoop.createInterpreter(SparkILoop.scala:193)
        at org.apache.spark.repl.SparkILoop$$anonfun$process$1.apply$mcZ$sp(SparkILoop.scala:887)
        at org.apache.spark.repl.SparkILoop$$anonfun$process$1.apply(SparkILoop.scala:883)
        at org.apache.spark.repl.SparkILoop$$anonfun$process$1.apply(SparkILoop.scala:883)
        at scala.tools.nsc.util.ScalaClassLoader$.savingContextLoader(ScalaClassLoader.scala:135)
        at org.apache.spark.repl.SparkILoop.process(SparkILoop.scala:883)
        at org.apache.spark.repl.SparkILoop.process(SparkILoop.scala:981)
        at org.apache.spark.repl.Main$.main(Main.scala:31)
        at org.apache.spark.repl.Main.main(Main.scala)
    Caused by: java.lang.ClassNotFoundException: org.apache.hadoop.fs.FSDataInputStream
        at java.net.URLClassLoader$1.run(URLClassLoader.java:366)
        at java.net.URLClassLoader$1.run(URLClassLoader.java:355)
        at java.security.AccessController.doPrivileged(Native Method)
        at java.net.URLClassLoader.findClass(URLClassLoader.java:354)
        at java.lang.ClassLoader.loadClass(ClassLoader.java:423)
        at sun.misc.Launcher$AppClassLoader.loadClass(Launcher.java:308)
        at java.lang.ClassLoader.loadClass(ClassLoader.java:356)
        ... 11 more

We’re getting close. Spark can’t find our Hadoop jars. To fix that we add some classpath setting to the compute-classpath.sh script:

$ vi spark-0.9.0-cdh5.0.0/bin/compute-classpath.sh
...
ASSEMBLY_JAR=</span>ls <span class="s2">"</span><span class="nv">$F</span><span class="s2">WDIR"</span>/spark-assembly*.jar<span class="sb"> # Adding hadoop classpath references here CLASSPATH="$CLASSPATH:$HADOOP_PREFIX/share/hadoop/common/*:$HADOOP_PREFIX/share/hadoop/common/lib/*" CLASSPATH="$CLASSPATH:$HADOOP_PREFIX/share/hadoop/mapreduce/*" CLASSPATH="$CLASSPATH:$HADOOP_PREFIX/share/hadoop/mapreduce/lib/*" CLASSPATH="$CLASSPATH:$HADOOP_PREFIX/share/hadoop/yarn/*" CLASSPATH="$CLASSPATH:$HADOOP_PREFIX/share/hadoop/yarn/lib/*" CLASSPATH="$CLASSPATH:$HADOOP_PREFIX/share/hadoop/hdfs/*" CLASSPATH="$CLASSPATH:$HADOOP_PREFIX/share/hadoop/hdfs/lib/*" CLASSPATH="$CLASSPATH:$SPARK_HOME/lib/*"
$ spark-shell
    SLF4J: Class path contains multiple SLF4J bindings.
    ...
    2014-04-20 09:48:25,238 INFO  [main] spark.HttpServer (Logging.scala:logInfo(49)) - Starting HTTP Server
    2014-04-20 09:48:25,302 INFO  [main] server.Server (Server.java:doStart(266)) - jetty-7.6.8.v20121106
    2014-04-20 09:48:25,333 INFO  [main] server.AbstractConnector (AbstractConnector.java:doStart(338)) - Started SocketConnector@0.0.0.0:62951
    Welcome to
          ____              __
         / __/__  ___ _____/ /__
        _ / _ / _ `/ __/  '_/
       /___/ .__/_,_/_/ /_/_   version 0.9.0
          /_/

    Using Scala version 2.10.3 (Java HotSpot(TM) 64-Bit Server VM, Java 1.7.0_15)
    Type in expressions to have them evaluated.
    Type :help for more information.
    ...
    Created spark context..
    Spark context available as sc.

    scala>

And we’re in!!

Now as a final test we check if spark will work on our pseudo distributed Hadoop config

$ switch_pseudo_cdh5
$ start-dfs.sh
$ start-yarn.sh
$ hadoop fs -mkdir /sourcedata
$ hadoop fs -put somelocal-textfile.txt /sourcedata/sometext.txt
$ spark-shell
    scala> val file = sc.textFile("/sourcedata/sometext.txt")
           file.take(5)

           res1: Array[String] = Array("First", "five lines", "of", "the", "textfile" )

Works like a charm. I hope this was a useful exercise. It was for me at least.

Questions?

Get in touch with us to learn more about the subject and related solutions

Explore related posts