
XPRT.

PROUDLY PART OF XEBIA GROUP

Taking Notes Like A Boss

DevOps for Data Science

Resilient Azure Service
Bus architecture

HTTP APIs and
event sourcing

 Full Cycle
 Developers
You build it, you run it.

Magazine N° 8/2019
XPRT.

XPRT. M
agazine N° 8/2019 Fu

ll C
yc

le D
e

ve
lo

p
e

rs

XPRT. Magazine N°

8/2019

Colofon

XPRT. Magazine No 8/2019
Editorial Office

Xpirit Netherlands BV

This magazine was made by
Vivian Andringa, Pascal Naber,

René van Osnabrugge,
Martijn van der Sijde, Loek Duys,

Alex Thissen, Kees Verhaar,
Geert van der Cruijsen,

Sofie Wisse, Chris van Sluijsveld,
Marcel de Vries, Pascal Greuter,
Alex de Groot, Roy Cornelissen,

Jesse Houwing, Marc Duiker,
Sander Aernouts, Jasper Gilhuis,

Rob Bos, Immanuel Kranendonk,
Michiel van Oudheusden,

Wendy van Veenendaal,
Manuel Riezebosch, Marc Bruins,
Reinier van Maanen, Maira Camu,

Gill Cleeren, Max Verhorst,
Pieter Gheysens, Jordi Borghers,

Albert Starreveld

Contact
Xpirit Netherlands BV &

Xpirit Belgium
Laapersveld 27

1213 VB Hilversum
The Netherlands

+31 (0)35 538 19 21
pgreuter@xpirit.com

www.xpirit.com

Layout and Design
Studio OOM

www.studio-oom.nl

Translations
TechText

© Xpirit, All Right Reserved
Xpirit recognizes knowledge
exchange as prerequisite for

innovation. When in need
of support for sharing,

please contact Xpirit.
All Trademarks are property of

their respective owners.

 004 Creating impact by
sharing knowledge;
people first

 005 Taking Notes Like
A Boss

 035 HTTP APIs and event
sourcing

 046 UnitTestingDotNetCore
UsingVSCodePartII

 050 Source Server Indexing
and Symbol Server
Management with Azure
DevOps

 041 Enterprise Xamarin Forms

MODERN CLOUD PLATFORMS & DEVOPS

INTRO

SKETCH NOTING

In this issue of XPRT. Magazine our experts
share their knowledge about Full Cycle
Development. You build it, you run it.

DESIGNING FOR FAILURE

SOFTWARE ARCHITECTURE PATTERNS

TESTING AND DEBUGGING

If you prefer the
digital version of

this magazine,
please scan the

qr-code.

014

024

035

046

 028 Resilient Azure Service
Bus architecture

 024 Chaos Engineering

 019 Serverless and
Kubernetes

 014 DevOps for Data Science

 008 Enabling DevOps teams
for Azure cloud solutions

004 INTRO

With each new edition of our magazine, we try to share as much knowledge as we can, enabling as many organizations as

we can to be more successful by using new Microsoft technology. Did you know that quite a large number of Data Science

projects are executed without a valid ALM strategy? The article “DevOps for Data Science” explains how you can infuse your

application with AI while still enjoying the benefits of DevOps. What are you waiting for?

Later this year, we will be celebrating our first five years of Xpirit. We would never have become what we are today without

putting our people first. The great thing about letting our XPRTs create their own magazine is that a variety of topics get

discussed, and this time these topics range from sketch noting, DevOps and resilience to Xamarin and other subjects.

Enjoy!

Pascal Greuter, Managing Director &

Max Verhorst, Commercial Director

Creating impact by
sharing knowledge;
people first
We are proud to present the eighth edition of our XPRT magazine, designed and written by
the same people who are the driving force behind the daily impact we create for and with our
customers. Our magazine represents that impact, ranging from helping organizations to adopt
DevOps in order to achieve digital transformation, to making architectures more resilient by
using robust patterns and unit testing. Are you in control when experiencing turbulence in your
production environment? Read our article about Chaos Engineering to find out.

XPRT. Magazine N°

8/2019

005

Taking Notes
Like A Boss
What is sketchnoting? Sketchnoting is all about capturing ideas, not about
creating art. It’s a way to think on paper using images and words. According to
the creator of sketchnoting, Mike Rohde, when you are taking carefully
hand-written notes and embellishing them with illustrations, you are sketchnoting.
This way of visual thinking results in rich visual notes, mixing handwriting and
drawing to create a more appealing set of notes.

Author Laurens Bonnema & Maira Camu

What is sketchnoting?
Sketchnoting is all about capturing

ideas, not about creating art. It’s a way

to think on paper using images and

words. According to the creator of

sketchnoting, Mike Rohde, when you

are taking carefully hand-written notes

and embellishing them with illustrations,

you are sketchnoting. This way of visual

thinking results in rich visual notes,

mixing handwriting and drawing to

create a more appealing set of notes.

Why is it useful?
If you create visuals while listening and

taking notes, the mind uses different

capacities to process data and allows

you to remember it up to 29% better.

The physical action of taking notes

combined with the creative action of

visualization allows you to focus more

and filter out the important bits.

For introverts like ourselves, creating

sketchnoting is a kind of magic,

especially at events. When people see

you drawing, they feel invited to come

over and have a chat about what you’re

doing.

When we work with clients, we have

noticed it is usually more effective to

show people what is happening rather

than tell them. It tends to come across

as less confrontational. This allows us

to be very direct about stuff. We can be

typically Dutch, without being overly

blunt!

How we became sketchnoters
(Maira) “As a DevOps and test-

auto mation consultant, I’m used to

visualizing processes, pipelines, and

other information, but I never

considered myself good enough to be

a real sketchnoter. I was going to attend

the Web Summit in Lisbon and felt this

was an opportunity to get started.

Five days of drawing all these talks!

My sister-in-law taught me the basics

of sketchnoting in one afternoon, and

I was off to the races! As the conference

progressed, I improved my craft, and

people noticed. They came over to

have a chat. Some asked me whether

I was hired by the conference to do

this. Others just complimented me,

then took a picture and shared my

work online. And then, the conference

organizers offered me a front-row seat

at the press table, because they had

seen my conference sketchnotes online

and loved them.”

 @mairacamu

(Laurens) “When I encountered sketch-

noting, it appealed to me, because as

it turned out I had been doing it for the

past decade, thinking I should really

structure my “mind maps” more like the

father of mind mapping Tony Buzan.

Then I saw an awesome TEDx video

by renowned graphic facilitator Rachel

Smith from The Grove Consultants and

encountered The Sketchnote Army.

It dawned on me that what I had been

doing had a name, it was not as strange

and uniquely “me” as I had previously

thought, and it was gaining momentum

as a cool thing to do at conferences

and meetings. I decided to get better

at sketchnoting and went looking for

ways to do so. I joined a Meetup group

by Petra Hegenbart and read The

Sketchnote Handbook by Mike Rohde.

And then, I just started sketchnoting

everywhere. At conferences of course,

but also in meetings, presentations,

and workshops.”

 @laurensbonnema

006 SKETCH NOTING

You are a sketchnoter too!
First, get some gear. Do not overthink sketchnoting, you most

likely have everything you need within reach. Grab a pen to

write with and take a marker to add some color and use a

sheet of paper.

Start adding doodles – tiny drawings or sketches – to your

notes. Use banners, headers, even draw the speaker using a

stick figure. If you use color, stick to one tone or use two

complementary colors*. This will immediately make your

work look more professional. Also try using different styles of

writing, a calligraphy font combined with basic capital letters

instantly looks good!

Favorite sketchnoter tools
If you are like us, you probably prefer to select “the best”

gear for everything, including your sketchnoting gear.

If that sounds like you, these are our suggestions:

 Pens: a black fine-liner, gel-pen, or ballpoint. We use

Artline drawing system fineliners size 0.3 to 0.7.

 Markers: a grey marker, and one or two complementary

colors. We use Neuland Markers for this and absolutely love

them. They are refillable, so not just good for you, but also

for the planet!

 Paper: Moleskine, 120g A4/A3, flip-chart, plotter paper.

We don’t have a very strong preference here, except that

the ink should not bleed on the paper, usually this means

getting slightly heavier paper such as 90 or 120 grams.

We suggest getting one or two books about sketchnoting

and visual thinking for inspiration and more guidelines.

Our recommendation would be Mike Rohde’s The Sketchnote

Handbook and The Sketchnote Workbook.

Basic Rules
 Everyone can do it, and no one draws like you.

 Embrace your mistakes, don’t correct grammar or

anything, just keep going and stay in the flow of drawing.

(Sorry for the perfectionists out there)

 Never start over, it’s about telling the story, so keep going.

Learn in public!
We have found that one of the best ways to get started is to

learn in public. So grab your favorite pen, some paper, and

create your first sketchnote! Then, just post it on Instagram or

Twitter with the hashtags @SketchnoteArmy #sketchnote and

#mairarocks to get instant feedback. You will be amazed of

the positive vibe in the online community.

Pro-tip: People tend to take photos while you are sketch-

noting, so make sure to sign your work before you start

drawing with your @Twitter/Instagram handle and a #hashtag.

Need more encouragement?
Once you get hooked to sketchnoting and you want to learn

more and get inspired, you can also advance your skills by

joining us in Agile Sketchnoting and Graphic Recording course

and we will do it together! In this training Laurens and Maira

will help you learn and develop your skills!

* https://en.wikipedia.org/wiki/Complementary_colors
QR code link https://hubs.ly/H0gQG8Y0

Skill up for full cycle
ownership
On your way to becoming a full cycle developer?
There isn’t just one route to full cycle ownership.
That’s why Xpirit proudly joins Xebia Academy, so you can
broaden your skill set from the best tools Microsoft has to
offer to design, testing, deployment, and operations.

For every training you need
training.xebia.com

008 MODERN CLOUD PLATFORMS & DEVOPS

Enabling DevOps
teams for Azure
cloud solutions

Digital transformation enables companies to realize innovations and deliver products and
services with higher quality in order to exceed customer expectations (better), reduce prices

(cheaper) and shorten the time-to-market (faster). However, this transformation requires
organizational as well as technological changes.

Authors Alex Thissen & Martijn van der Sijde

In this article we will explain an organizational and platform-

agnostic technology architecture that helps in realizing these

digital transformation goals. The second half of the article

contains an example of an implementation of this architecture

on Azure.

Adopting DevOps to enable digital transformation
The keywords for achieving better, cheaper, faster products

and services are flow and value, and this is what a DevOps way

of working aims to achieve. To help us focus on the creation of

flow and value in the delivery of products and services, we use

the DASA DevOps principles as guidance (see Figure 1).

These principles focus on organizations and the individuals in

those organizations. They describe what actions, behavior and

other aspects are required from these organizations in order

to migrate to, or adopt a DevOps way of working. It would take

too long to explain the principles in detail, but we will explain

them briefly to be able to understand the reasoning behind

the architectures described in this article. For more detailed

information, please refer to the DASA website and resources.

The principles have been listed in their order of priority.

The first one focuses on the creation of value for the

customer, because this is a fundamental value for an

Figure 1: DASA DevOps principles (source: https://www.devopsagileskills.org/dasa-devops-principles/)

Principle 1 Principle 2 Principle 3

Principle 4 Principle 5 Principle 6

Customer-centric action

(Courage to act, innovate)

Create with the end in mind

(Product & Service thinking,

Engineering mindset, Collaborate)

End-to-End responsibility

(Live your accountability, Concept

to Grave, performance support)

Cross-functional autonomous

teams (T-shaped profiles,

complementary skills)

Continuous Improvement

(if it hurts do it more often,

experiment, fall fast)

Automate everything you can

(Enhance quality, maximize flow)

XPRT. Magazine N°

8/2019

009

organization to be able to survive in this

digital age. The second principle means

breaking down siloes by structuring

an organization around products and

services instead of processes and

subject-matter expertise. The third

principle is saying: “You build it, you run

it” and means that you are responsible

for the products and services until they

cease to exist. Achieving flow in work

that needs to be done and decreasing

dependencies between teams and

individuals is what principle number

four aims to achieve. To be able to

change in incremental steps, a rigorous

continuous improvement process must

be adopted as stated in principle five.

And last but not least, improving

continually also means automating

everything that is repetitive when

possible. By doing this, principle six aims

to increase quality and maximize flow.

In order to allow teams and individuals

to apply these principles they must

have, or grow towards, an organization

that is geared towards increasing

the flow of value to the customer.

In addition, they also need the technical

resources to support them in this

mission. In the next two paragraphs we

will zoom in on the organizational and

technical architectures that enable this.

Organizationally enabling
DevOps teams
When looking at an organization before

a digital transformation, IT plays a

supporting role to the business (see the

left hand side of Figure 2). Business-

units have a cross-backlog demand in

order to get their required products and

services to production. Development

and operations are separated into a

change and run organization among

other siloed organization structures.

This way of organizing has a negative

impact on the optimal flow in the

software delivery value chain because

of organizational and technical

dependencies. In addition, the siloes

cause hand-over moments and

loopbacks in the delivery process,

which is also inefficient.

In the new situation (see right hand side

of Figure 2), the teams are organized

around autonomous business

capabilities, which means that they can

develop their products and services

without disturbing, or being disturbed,

by other developments. The teams are

cross-functional, making them

capable of developing and running their

products and services until they are no

longer required. Technically they are

supported by a self-service (cloud)

platform which enables them to

rigorously automate and quickly

innovate by incorporating new platform

services to their offering. This is done

in an incremental, continuous

improvement way of working.

Technically enabling DevOps
teams
In order to provide teams with the ability

to operate and act according to the

DevOps principles, a high and mature

level of autonomy and agility is required.

This poses requirements and constraints

on the technical architecture, but also

on the way governance and control is

achieved.

DevOps teams will need to be able to

have end-to-end responsibility for

their value proposition and the

corresponding implementation of

architecture and applications.

Nowadays most teams are very capable

of doing this for traditional software

development, focusing on delivering

the application.

A digital transformation that incorpo-

rates a cloud platform presents new

opportunities. The practices need to

embrace a similar approach for the

infrastructural part of the software

solutions as well. DevOps teams are

facilitated in this by a self-service cloud

platform (see Figure 3).

Figure 2: Organization architecture as-is and to-be

010 MODERN CLOUD PLATFORMS & DEVOPS

Achieving full autonomy through
infrastructure-as-code
Modern cloud platforms allow

complete automation for provisioning

the resources they offer. This auto-

mation enables a team to treat the

infrastructural aspects of a software

solution in the same way as the

implementation of business and

customer functionality. This practice

of “Infrastructure as Code” creates

scripts and templates in a cloud-

platform specific format that is

maintained, tested, and uses build and

release pipelines like conventional code.

This flow will allow a team to auto mate

all aspects of the application parts

they need to build and host on cloud

resources. It also allows the team to

continuously improve the infrastructure,

because it becomes trivial to remove

existing resources after changes and

to reprovision them, instead of having

to change and maintain previously

deployed resources. A team can

become completely autonomous when

it is able to achieve this level of auto-

mation in cloud solutions. The team

can provision and deprovision resources

for these solutions as value-stream

specific cloud resources (see the

Cloud resources value stream A-D

in Figure 3).

Maintaining governance and
control with full-autonomy
The biggest challenge in delivering

value after adopting the full automation

of infrastructure involves the

governance and control over the cloud

platform. A self-service cloud platform

should give autonomy and agility to

teams, and also provide the appropriate

level of governance and control to an

organization. While the team needs to

be able to be agile, move fast and be

independent, the organization needs

to be compliant and provide traceable

processes and be in control of costs and

security of the cloud platform hosting.

Fortunately, cloud platforms offer

various features to have this level of

control while still providing self-service

capabilities to the teams. The whole

purpose of this approach is to enable

the value stream teams to provision

their own cloud resources, within the

constraints offered and required by

the organization. The anti-pattern to

this is creating a single point in the

organization, such as a team, where

the teams have to request and acquire

the cloud resources they need.

However, having a single point of

administration will block and slow

down teams that want agility and

speed.

The self-service cloud platform

should offer cross-cutting functions

(see Cross-cutting functions in Figure 3)

by using the cloud intrinsic features

for monitoring, cost management,

and security. Each cloud platform

implements these features in a different

manner. From a cloud-agnostic point

of view, the monitoring features should

allow both teams and the organization

at an aggregate level to monitor the

health and security of the hosted

solutions. This includes resource

utilization, ownership of resources, and

active security status, to name a few.

Additionally, a shareable set of cloud

resources can provide a layer of

structure and boundaries for the teams,

on top of which they can build their

solutions (see the Shared Cloud

Resources in Figure 3). This can range

from shared security features to

networking topologies that make sure

that certain quality and safety standards

are being met automatically by the

teams.

Limiting access to resources
Another aspect to consider is the use

of authorization and role-based access

control. Using these security aspects,

it is possible to limit the rights of

principals to create cloud resources or

certain types thereof. In lieu of the full

automation, compliance and security,

one could go as far as removing all

rights from regular user accounts,

except read-only access. The rights to

create and manage resources is only

given to service principals (non-human

accounts) that are assigned as the

identities for build and release pipelines.

This forces the use of the pipelines for

resource management and disallows

direct manual intervention, increasing

compliancy and traceability of the cloud

solution as well as the level of security.

The strict authorization can be applied

to all environments or at least the

critical ones, for instance production.

Since no human can make changes

and everything is automated, approval

processes can be simplified to check

for the proper use of blessed templates

and scripts. In time it might become

Figure 3: Self-service (cloud) platform logical architecture

XPRT. Magazine N°

8/2019

011

apparent that approval is not even

required anymore. At that point

removing the approval altogether will

increase the agility and speed for the

value streams even further. The use of

strict authorization should be applied

with caution though, as it can severely

limit the teams when applied too

rigorously, and effectively take away the

necessary privileges for a team to be

able to self-service its cloud resources.

Transition to self-service with a
cloud platform team
A dedicated team can help during the

transition to the self-service cloud

platform. This “cloud platform team”

can accelerate the cross-team self-

service features and functionalities.

The purpose for this team is to

implement the cross-cutting functions

and the shared resources, as well as

guidance for the teams and help during

adoption and transitioning to the

self-service platform. The team can

create “blessed” templates and scripts

for the teams to use in provisioning

value stream-bound resources.

These automation artifacts have been

tested and security hardened to make

sure the security baseline for the teams

is met by default when they are utilized

in provisioning build and release

pipelines. The underlying shared

resources give the teams the harness

of enough freedom while maintaining a

secure and compliant implementation

for the cloud infrastructure.

The cloud platform team is a temporary

team and should dedicate itself to

delivering the cross-cutting and shared

features, onboarding the value stream

teams, and making themselves

redundant.

The value stream teams can take over

the responsibilities of the cloud platform

team as a community effort. Since all

provided features are treated like code,

the way community contributions are

made can work the same way for the

delivered infrastructural artifacts.

In addition, they lead by example in

showing the behavior and mindset that

is required for the new way of working.

Please note that the impact on cultural

change should not be underestimated.

To be successful, it can even be

beneficial to add a dedicated coach to

the platform team to accelerate this

change.

Alex Thissen & Martijn van der Sijde

012 MODERN CLOUD PLATFORMS & DEVOPS

Implementing a self-service cloud
platform on Azure
The first half of this article explained

what is required organizationally and

technically to maximize the creation

and increase of flow of value to the

customer. This second half contains an

example of an implementation of the

technical architecture in Azure.

The Microsoft Azure platform

accompanied by Azure DevOps

(previously known as Visual Studio Team

Services) is well suited to implement the

self-service cloud platform. Azure offers

advanced resource management and

monitoring capabilities. Its automation

engine is called Azure Resource

Manager (ARM), which can be auto-

mated by using ARM templates or the

Azure Command-Line Interface (CLI).

Either of these allow full automation

of provisioning and managing Azure

resources.

At the highest level, Azure uses the

 notion of an enterprise and

sub scriptions. The enterprise is a

representation of the organization

that uses Azure, and its subscriptions are

administrative units of ownership and

rights. The subscriptions align well with

the value streams, where each team

can be an owner or contributor,

depending on whether full or nearly

full management rights are allowed.

The resource management in Azure is

governed by security policies at various

levels. From data plane to control plane

you can define authorization at a

coarse and very fine grained level.

By giving the teams respective rights,

they can create all resources anywhere

within the subscription, or within

resource groups as contributors.

The latter is a way to allow teams to

create resources in a more controlled

way, because additional permissions

can be set at a resource group level.

It avoids giving the teams full

administrative rights to the subscription.

For the cross-cutting functions Azure

has several features offering the

monitoring, compliance, security and

cost management capabilities required.

Azure Monitor, Azure Security Centre,

and Azure Cost Management are

ready-to-use features that combine

information gathered from and across

the subscriptions for the value streams.

The governance and compliance can be

taken care of at this higher aggregation

level. Azure DevOps, even though not

part of the Azure cloud platform per se,

is the single point of arranging the build

and release pipelines for provisioning.

It can provide the full end-to-end

traceability for compliancy reasons,

from code to hosting environment.

Azure DevOps combines source code

management with work item tracking

and pipelines to environments after

approval and passing quality gates.

Leveraging these features allows teams

to stay compliant because every change

to code and environments is tracked

and audited in Azure DevOps.

The next example in Figure 5 illustrates

how shared cloud resources can

be used to provide a secure default

self-service cloud platform. The general

idea of the scenario in the example is

to allow the teams to provision web

resources, while still keeping control

over public availability and securing

their resources. The intent is to give

freedom and protect against unwanted

disclosure and exposure of internal

network-reachable resources.

Each value stream and team is given

their own subscription. Within these

subscriptions virtual private networks

are created to isolate value streams from

each other. Hosting plans are created

inside the subscriptions and the team

can provision web apps as they see fit.

The design of these web apps does not

allow any outbound connectivity.

This avoids exposing anything

immediately after creation and provides

a secure, default approach.

To be able to release web applications

for the first time, changes need to be

made at the shared resources level.

While this is blocking to some extent,

it does provide control in terms of

which web application is allowed

access to the public internet and when.

This provides an opportunity to make

sure that only approved and validated

web resources are disclosed. It only

has to happen once during the initial

release, so it should not be a big nor

lasting hurdle in the value stream flow.

The technical implementation for

retaining access over public facing

web applications is the Web Application

Firewall and Gateway. This Azure

resource has to be configured so that

it allows inbound and outbound HTTP

and HTTPS traffic, all by automated

scripts, and obviously after approval.

By keeping this resource at a shared

and governed level, the organization

retains its ability to have control over

web-exposed solutions, while giving

the teams freedom to create any

resources up to the point that they

need to be released externally.

One other security measure in the

example is the use of Application

Service Environments (ASE).

Figure 4: Cross-cutting functions in Azure

XPRT. Magazine N°

8/2019

013

The scenario shows connectivity to an

on-premise infrastructure via a Virtual

Private Network (VPN) Gateway. It is

non-trivial to create a VPN tunnel to

on-premises networks. Keeping the

connection at a shared resource level

makes it reusable over the various

value streams and teams, in addition

to providing a single point of entry into

the on-premises network. The VPN

Gateway provides another control

mechanism for securing access to the

on-premises resources by specifying

advanced access rules for allowed

network traffic to and from it.

Each value stream Virtual Network is

given a peering to the shared virtual

network that includes the VPN and

Web Application Gateways.

The shared resources are created by

the initial cloud platform team, which

behaves and operates like any of the

other value streams. While the team

still exists, it provides a different value

stream, consisting of the self-service

platform’s shared resources for the

other teams and value streams to utilize.

In a similar fashion, the underlying

VNETs and peerings are also not created

by the teams themselves, but by the

platform team instead.

Summary
Companies with the aim to deliver

better and cheaper products and

services in a faster way need to make

a digital transformation. They should

adopt or migrate to a DevOps way of

working to increase the flow of value

to the customer. To achieve this,

organizational and technical changes

are required to enable teams and

individuals. A temporary cloud

platform team can help to make the

transformation happen. The technical

resources can be implemented in Azure,

as shown in the example of a self-

service platform in Azure. When both

aspects (organization and technique)

are applied in coherence, a company’s

teams and individuals are lined up

to achieve the digital transformation

goals.

Figure 5: Example self-service platform hybrid-architecture implemented on Azure

013

014 MODERN CLOUD PLATFORMS & DEVOPS

DevOps for
Data Science

To make matters worse, modern applications include Machine

Learning or Artificial Intelligence components. These require

a particular skillset, typically embodied in a Data Scientist.

They use tools unfamiliar to the typical .NET developer and

follow a development cycle that differs from what a .NET

developer is used to.

In this article, we will explore the DevOps process for an

app that includes an Artificial Intelligence model. In the next

issue of XPRT magazine, we will implement this process in a

real-world example.

Build – Measure – Learn for Application Development
A typical DevOps process entails three significant parts: Build,

Measure & Learn, which comprises the typical DevOps cycle

as shown in Figure 1.

Figure 1: The DevOps cycle (source: https://innovationorigins.com/nl/

startups-op-zoek-naar-een-prototype-perfect-kan-de-vijand-zijn-

van-goed-genoeg/build-measure-learn/)

In “Build”, we develop our application: we gather requirements,

we translate them into code, we compile, deploy, test, and we

release it to production. Then, we “measure”: is our application

running? Is it performing the way we expect? How are our

users using the app? Finally, we evaluate our measurements

and extract “learnings” from it. How can we improve user

experience? What should be the next feature we work on?

Do we need to work on stability? We feed these learnings

back to the beginning of our loop (the “Build” part), and we

continuously repeat this cycle to improve steadily.

In a typical .NET world, the process to implement this cycle

looks similar to what is shown in Figure 2.

Now, what happens if we want to infuse a little Artificial

Intelligence (AI) into our application?

Build – Measure – Learn: The Data Science way
To understand what is required to incorporate AI into our

application, we must first understand the development cycle

of an AI model. In “traditional” application development,

you write code and an app comes out. In Data Science, this

works slightly different. The result of the work of a Data

Scientist is a model. This model has inputs and outputs,

depending on what the model was built for. The model could

be designed to detect anomalies in a continuous stream of

data (for example to detect impending server outages based

on operational metrics) or to recognize faces in a photograph.

It could be anything. Three factors are deterministic for a

model:

 Training Features: a set of variables that are generated

from the raw data and are used to train the model.

 Model structure: for instance a linear regression model,

a decision tree model, or a random forest model.

As a reader of this magazine, you’ll be familiar with the concept of DevOps: closing the gap
between all disciplines involved in software engineering, and enabling continuous delivery

of value to your end users. This sounds simple enough, yet it proves to be very hard in
practice. In a typical software delivery environment, there are many moving parts which

all need to work together – organizationally as well as technically – to be effective.

Authors Kees Verhaar & Rob Bos

XPRT. Magazine N°

8/2019

015

IDE

IDE

IDE

Version
control

Version
control

Model
Management

App
developer

App
developer

Data scientist

DevOps
Pipeline

DevOps
Pipeline

Telemetry

Telemetry

Hosting

Hosting

Working
app

Working
app

Figure 2: Implementation of the typical DevOps cycle for application development

Figure 4: Implementation of the typical DevOps cycle for application development combined with Data Science

 Hyperparameters of the model: for example, for a random

forest model, how many trees, the maximum depth of each

tree, and the minimum number of observations in each leaf

node. Or for an artificial neural network model: the number

of hidden layers, how many hidden nodes, the activation

function, learning rate, and random seed.

These three factors are determined and tuned until the model

satisfies its required performance. A typical Data Science

workflow is shown in Figure 3.

Figure 3: A typical Data Science workflow

Joining both worlds
When both workflows are combined, we arrive at a process

that is similar to the process shown in Figure 4.

The key component that ties the world of the app developer

and the Data Scientist together is a Model Management

Service, which helps track model versions, performance, and

deployments. Let’s go over three critical DevOps pillars to see

what should be considered there: Traceability, Automation,

and Feedback.

Traceability
As we have seen before, three factors are deterministic for

a model: training features, model structure, and the hyper-

parameters used. The first step is to determine these factors

and then tune them until the model has the performance

(high enough accuracy and low enough errors) to satisfy your

criteria.Prepare data Build & Train Deploy

Because the steps during the modeling phase have a profound

impact on the accuracy of the model, it becomes essential to

have traceability of design choices. If you can’t provide a clear

overview of the history of the model, it will become a black

box that makes some predictions without a way to validate its

choices. This can have real repercussions when the model’s

prediction is being used to make critical decisions. Think for

example of a healthcare situation, where you are predicting

the probability that a patient is suffering from a particular

disease, based on a set of symptoms. This could lead to a

life or death decision and makes it very clear why humans

still need to verify predictions and conclusions. To do so

effectively, they need the entire context.

Training features
As an example, say that you are predicting the necessity of a

hospital in a city and you decide to calculate that necessity

based on the average age of the population in the city and

the average traveling time they would have to the hospital.

You split the age data into 70% training data and 30% validation

data. By doing this for the entire set of residents, you didn’t

account for the fact that the necessity of a hospital is strongly

correlated to the average age of residents in a specific area.

The city in our example happens to have a very distinct set of

age groups living in a particular area. The city can be split into

three different areas:

 Area 1 has 10.000 residents, all in the age group of 30-40

 Area 2 has 20.000 residents, all in the age group of 20-30

 Area 3 has 30.000 residents, all in the age group of 40-50

You can see that by randomly splitting the full data set and

using that data for training a model, you will skew the

prediction, as half of the dataset actually has an age group

of 40-50.

This example shows how easy it is to get a bias into your

model by choosing to use the full dataset and forgetting

to check the grouping of the features in the dataset.

These decisions are usually made during a data discovery

phase where you search for the properties of the dataset that

are relevant for training the model. By making sure you have

the setup of the model in source control with descriptive

commit messages, you can keep track of the reasoning behind

the choices you had to make with that dataset. This also allows

you to set up checks for the dataset that you can later reuse to

reevaluate those choices when new data is available. By doing

so, you open up the black box, and you obtain visibility in the

decisions and underlying reasons for them.

Model structure
By having the code of the model available in source control,

you can also experiment with different algorithms and

document their accuracy on the dataset you are using.

You can record the outcomes and include them with the code

you use in the final model. If you set up this process in the

right way, you can use its documentation for “release notes”

that contain the full research steps and reasoning behind the

choices leading to this version of the model.

Hyperparameters of the model
Hyperparameters of a model are the settings you use during

the training phase of the model creation. Take a decision tree

algorithm for example. A regular tree will loop through the

data and decide how much a specific feature will impact the

desired outcome. See Figure 5 for a visualization of the steps

taken to determine the income of a person, based on the

features we fed to the algorithm.

Figure 5: Example of a decision tree

For this algorithm, you can change the number of trees to use,

the maximum depth of each tree and the minimum number

of observations in each leaf node. Changing these settings

can have a significant impact on the model, and on the time

it will take to train the model. It is paramount to keep track

of the parameters that were used for training and the impact

they had on the resulting model. You need to store the values

and the outcome in a separate store, where you can link the

settings, the outcome, precision, loss values, etc. to the code

used to determine this.

Automation
Automation is critical when employing DevOps. It fosters

speed, greater accuracy, consistency, reliability, and increases

the number of deliveries. When thinking of automating steps

in building AI models, we should consider two principal

parts. The first part involves the automation of preparing

training data, training the model and evaluating the model’s

performance. The second part consists of the automation of

integrating the model into your application and deploying this.

The first part is implemented in a Machine Learning (ML)

pipeline, while the second part is performed in a DevOps

pipeline. The ML pipeline is the domain of the Data Scientist,

while the DevOps pipeline bridges the gap between the Data

Scientist and the app developers.

The nature of building an ML model sets some specific

requirements for automation tooling in this space.

 Compute: an ML pipeline consists of computational steps.

A lot of these steps (especially the steps of preparing data

and training the model) are very computationally intensive.

Automation tooling should, therefore, make it easy to

distribute execution of these steps across large clusters of

machines, so that execution time stays within acceptable

time constraints.

016 MODERN CLOUD PLATFORMS & DEVOPS

Time

≤21

Monetary

≤6000

Time

≤27

0

60%

0

100%

0

96%

0

100%

1

25%

0

86%

1

100%

Time

≤9

Monetary

≤6

Recency

≤6

XPRT. Magazine N°

8/2019

017

Kees Verhaar & Rob Bos

018 MODERN CLOUD PLATFORMS & DEVOPS

 Tools: building an ML model requires specific toolkits and

frameworks, most of which are very different from what

we are used to in .NET application development. Python,

TensorFlow and SciKit-learn are just a few examples of what

a Data Scientist uses daily, while a .NET developer might not

be so familiar with these. Automation tooling for ML models

should seamlessly work with these tools, to make it easy for

a Data Scientist to use without having to learn an entirely

different toolset.

 Traceability: when automating steps in the model

development process, you’ll most likely produce a lot more

model versions. Traceability will become more important

than ever, letting you know which inputs led to which

model output, and allowing you to decide (or automate)

which model version should be deployed to production.

Automation tools should offer seamless integration with

other tools used in your development process so that

traceability is guaranteed.

When selecting automation tools for automating your ML

pipeline, you should carefully consider the above-mentioned

three factors. When targeting the Azure platform, the Azure

Machine Learning Service is the obvious choice. In our next

magazine, we’ll show you how to create an ML pipeline using

this service.

For bridging the gap between the Data Scientist and the app

developer we need a DevOps pipeline. This will be very similar

to what we are used to from a .NET development world,

except for the fact that it will gain one extra responsibility:

integrating the correct ML model version into the application.

For this, the DevOps pipeline will need to interface with the

model store. The model store (part of the Model Management

Service in Figure 4) contains all model versions along with the

metadata describing (amongst others) model performance.

With defined criteria (e.g. “model with greatest accuracy”) the

DevOps pipeline can select the correct model from the model

store and integrate and deploy it.

Feedback
Implementing the feedback loop for Data Science looks a lot

like implementing that loop for application development:

you want to see how the model performs in the real world,

evaluate it with the prior assumption and adjust it when

necessary. Let’s consider three examples: operational

information, new training data, and reinforcement learning.

Operational information
Monitoring operational information answers questions like:

how well are the predictions you have made followed?

Or, how many times is that prediction correct? And thus,

how many times is that prediction not correct? You can

observe this by logging the prediction made with all of its con-

texts and linking this to the action that was taken based

on the prediction.

New training data

You also need to send new data that is available in the system

through the model training. Trends can always change over

time, especially if you have a prediction that immediately

influences decisions. If you tried to predict the demand for a

product on the Monday of a specific week and based on that

prediction your company delivers less of that product, it can

very well happen that you find that your prediction had an

impact on the number of sales for that product on that day.

Of course, this is a self-fulfilling prophecy, since you cannot

sell what you do not have.

To enable re-evaluation of your model you need to have a

way to send in more data through your model, with all the

necessary data preparation steps automatically executed.

From there you can measure how much better or worse

the performance of the model is compared to the previous

dataset. It could very well be that you need to verify whether

previously made assumptions and decisions are still valid.

Reinforcement training

With reinforcement training, you enable the end-users of

the prediction to give feedback about it. They can indicate

whether your prediction was correct or not, and how they

determined this. By sending the new and updated “label”

(the value that you are trying to predict) on that same

information back into the build-measure-learn loop, you

provide the algorithms with more information so it can adjust

if necessary.

OK, so now what?
By now, you should have an idea of what it takes to

incorporate Data Science model development into your

DevOps cycle. Data Science is different from application

development: it requires a specific skill set, model

development requires a different process, and Data Scientists

use different tools. However, the things that are important in

DevOps are just as applicable to Data Science as they are to

application development. We have shown the considerations

that come into play here as well as a general direction on how

to solve them.

The next step is to figure out how to implement this. What

tools and techniques do we need to create a DevOps setup for

an AI infused app? In the next issue of XPRT magazine, we will

show you exactly that, so stay tuned!

XPRT. Magazine N°

8/2019

019

In this article, I want to introduce you to the virtual kubelet

and what new capabilities this unlocks in a kubernetes cluster.

This allows us to create a serverless cluster with nodes that are

backed by ACI or Azure Batch.

What is a kubelet?
Let me start with a short explanation of the role of the kubelet

in a kubernetes cluster. The kubelet is the agent that runs on

a node to manage the lifecycle of pods. The kubelet runs as a

service on a node. A pod is the unit of scheduling in the cluster

and consists of one or more containers that are deployed

together on one node. Most of the time a pod contains one

container. The kubelet uses Docker to actually manage the

lifecycle of the containers that are in a pod.

When a kubelet service starts on a node, it will register itself

at the kubernetes API server as an available node to schedule

pods on. From that moment onwards, the scheduler in the

cluster can start assigning pods on that node. Scheduling a

pod on a node is nothing more than assigning that pod to a

node name which equals the name of the node. That name

was given the moment the kubelet registered the node on

the API server. In its turn, the kubelet service watches for

these pod assignments by querying the API server. When it

recognizes a pod with the assigned name of its node, it will

start the containers which are part of that pod, using the

container services running on that server. Often this is Docker.

What is a virtual kubelet?
Now that we know the role of the kubelet, let’s look at what

a virtual kubelet is. A virtual kubelet is a pod that contains a

container which will behave as a kubelet. When you schedule

this pod in the cluster it will register a node in the cluster.

This is not a real node in terms of a normal virtual machine

or physical server, but it serves as a virtual node on which

you can schedule pods. The virtual kubelet uses a provider

to do the actual scheduling of the containers that are part

of a pod. The virtual kubelet project on GitHub1 already

contains different implementations of providers that can

Serverless and
kubernetes,
introduction to
the virtual kubelet
If you talk about Kubernetes and serverless, there are two ways to look at this. First is the
serverless programming model that is often referred to as Functions as a Service (FaaS).
The second way to look at this is that we have a kubernetes cluster which has no servers that
service the cluster. In this latter situation, you could use a concept like Azure Container Instances
(ACI), Azure Batch, or AWS Lambda to serve the requests that come in on the Kubernetes cluster
to deploy a container in a POD on the cluster.

Author Marcel de Vries

Figure 1: Kubernetes high-level architectural diagram

1 https://github.com/virtual-kubelet/virtual-kubelet

020 MODERN CLOUD PLATFORMS & DEVOPS

be used by a virtual kubelet implementation. For instance,

providers are available for scheduling pods on AWS Fargate,

HashiCorp Nomad, Service Fabric Mesh, Azure Batch, and

Azure ACI. The virtual kubelet manages the lifecycle of the

pods, just as a normal kubelet on a “real” node would do.

The provider manages the actual lifecycle by working with

the underlying infrastructure that provides the real container

instances on the service it is built for.

So a virtual kubelet is a pod that you can schedule on your

kubernetes cluster, which registers as a node on which you

can schedule pods. The underlying provider used in the

specific implementation of that virtual kubelet then manages

the pods.

The following diagram shows how this all works together

when you use the virtual kubelet that uses the ACI provider

on Azure:

For the rest of this article, I will use the Microsoft Azure

ACI provider, where the pods will be scheduled on Azure

Container Instances.

How can I register the virtual kubelet with ACI
as the provider?
When you have a running Kubernetes cluster like Azure AKS,

it is rather easy to install the virtual kubelet. This is streamlined

with the azure command line interface. Before you can install

the virtual kubelet in the cluster, you need to install the tool

Helm.

Helm can be seen as the package management solution for

Kubernetes, just like NuGet is a package management solution

for .NET application development. Helm uses a so-called

Helm chart that contains the information on how the package

needs to be deployed in the cluster. This means you can install

a Helm Chart in a Kubernetes cluster. You can compare this

to doing a NuGet install, where you download the right data,

YAML files in this case, and then apply these to your project (in

this case the cluster).

Helm is used to install the virtual kubelet. Hence you need to

install this first. Next, you can run the command line to install

the kubelet with the following command:

az aks install-connector --connector-name mycon --os-type
Both --resource-group <ResourceGroup> --name <ClusterName>

One thing to note is that the virtual kubelet is named “install-

connector” in the Azure command line. This install-connector

command results in the virtual kubelet pods to be scheduled

on one of the available nodes in your cluster.

After running this command line you can ask the cluster which

nodes are available. This is done with the following command:

Kubectl get nodes

On my kubernetes cluster this resulted in the following

information:

Name Status Roles Age Version

aks-nodepool1-

34126871-0

Ready Agent 46d V1.9.11

virtual-kubelet-

mycon-linux-

westeurope

Ready Agent 1h v1.13.1-vk-v0.7.4-44-

g4f3bd20e-dev

virtual-kubelet-

mycon-windows-

westeurope

Ready Agent 1h v1.13.1-vk-v0.7.4-44-

g4f3bd20e-dev

Figure 2: Virtual kubelet that uses the ACI provider for Microsoft Azure

XPRT. Magazine N°

8/2019

021

You can see that I have three nodes: one is the default node

that is backed by a virtual machine and two nodes that are

the virtual kubelets. The first is the virtual kubelet that ties into

Linux containers on ACI; the second is the virtual kubelet that

uses Windows containers on Azure ACI.

Scheduling a pod on Windows
Based on the results of querying the available nodes, you now

have a Kubernetes cluster on which you can run Windows

containers. This is because ACI provides the ability to

schedule Windows containers. The restrictions on those

Windows containers are the restrictions currently imposed by

ACI. This means you can schedule containers that are based

on Windows Server 2016. In the future, Windows Server 2019

will be supported.

With this configuration, you can now run e.g. Internet

Information Server in the cluster. This can be done by

scheduling the following deployment definition:

apiVersion: apps/v1beta1
kind: Deployment
metadata:
 name: iis
spec:
 replicas: 1
 template:
 metadata:
 labels:
 app: iis
 spec:
 containers:
 - name: iis
 image: microsoft/iis
 ports:
 - containerPort: 80
 resources:
 requests:
 memory: 1G
 cpu: 1
 limits:
 memory: 1G
 cpu: 1
 nodeSelector:

 kubernetes.io/role: agent
 beta.kubernetes.io/os: windows
 type: virtual-kubelet
 tolerations:
 - key: virtual-kubelet.io/provider
 operator: Exists
 - key: azure.com/aci
 effect: NoSchedule

In the deployment definition you can see that we have defined

a node selector. This selector indicates that we want to

schedule the pod on an agent that has an OS of the type

“Windows” and that the node is of the type “virtual kubelet”.

This is the way we explicitly define that we want to run the pod

on the Windows virtual kubelet within the cluster. The other

part that is special to this deployment is the definition of the

tolerations. By default, the virtual kubelet nodes are what we

call tainted. Tainted means that we specify restrictions that

tell the node not to schedule pods by default. You can only

schedule the pods explicitly when you add a toleration to a

taint. This is done to avoid scheduling just any pod on the

virtual nodes. Normally you first want to fully utilize your

nodes in the cluster before you start leveraging the serverless

nature of ACI and scale out without creating new nodes.

You also don’t want to schedule a pod like the kube-proxy

or other virtual kubelet pods on the virtual node. In this

deployment we explicitly define that we accept the fact that

the node is marked as NoSchedule by default and we overrule

this by specifying the tolerations key ‘value pair’ that matches

the taint.

After running this deployment, we can expose the scheduled

IIS container in the pod via the Azure load balancer service.

We can do this by running the following command:

kubectl expose deployment iis --port=80
--type=LoadBalancer

This configures the external Azure load balancer in order to

make the IIS service reachable via an external IP address.

If you want to know which IP address was assigned to the IIS

deployment then you can query the cluster with the following

command:

Kubectl get services

On my cluster this resulted in the following information:

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

iis LoadBalancer 10.0.139.238 104.40.243.220 80:32652/TCP 4m

kubernetes ClusterIP 10.0.0.1 <none> 443/TCP 46d

“The advantage of running your
services in a Kubernetes cluster is
that you can define the desired state
of your service and the cluster
will try to get to this state.”

022 MODERN CLOUD PLATFORMS & DEVOPS

Marcel de Vries

XPRT. Magazine N°

8/2019

023

Scaling the deployment to use more replicas
The advantage of running your services in a Kubernetes cluster is that you can define

the desired state of your service and the cluster will try to get to this state. All we

need to do to schedule more IIS instances is to increase the number of replicas. The

scheduler will then start scheduling more pods on the virtual kubelet, which in turn

will delegate this to the ACI provider.

After increasing the replicas to 5 replicas with the command line:

kubectl scale deployment iis --replicas=5

you will see that 5 container instances will be scheduled on ACI, as shown below:

Scaling up instead of out
It is also possible to schedule the containers on a more powerful container instance.

ACI has the option to provide a container with 1 – 4 cpu’s and you can also specify

the amount of memory you want to make available for the container. This can be

specified in the deployment. By defining the resource requests and limits, you define

how the ACI provider will schedule the container. For example: increasing the CPU

request to 2 results in a container instance scheduled with 2 CPU’s.

When is a virtual kubelet useful?
The concept of a virtual node in a cluster with workloads scheduled by any type of

provider allows a series of interesting scenarios. For instance, take the following use

cases:

 Batch workloads

You don’t need to have VMs running in your cluster to support your batch

workloads. You only need to pay for your normal workloads, and batch jobs

can fan out as widely as needed to complete them in less time, while you pay

per second.

 Burst loads

If you use auto-scaling and your traffic comes in spikes, you only need to plan

enough capacity for your average workload. The moment you run out of capacity

in your cluster, the scheduler can start placing additional pods in something like

ACI or another provider.

Conclusion
With the new capability of the virtual kubelet you can use various implementations

that extend your Kubernetes cluster to be able to run your containers on a serverless

infra structure. The ACI and Azure Batch implementations allow you to leverage

those parts of Azure and only pay-per-use instead of paying for the physical nodes

your cluster would have otherwise. The virtual kubelet is a new way of implementing

the concept of serverless, while keeping the same semantics as you already were

using when running a Kubernetes cluster. It combines the best of both worlds: you

can define your desired state and have the cluster manage this with a pay-per-use

solution.

024 DESIGNING FOR FAILURE

Have you ever been called out of bed because the application you work on wasn’t working
anymore? Or have you spent time on a Saturday doing manual failover tests from

one datacenter to another? If you have, you probably are enthusiastic to learn how to avoid
this. If you haven’t, you’re either just lucky it hasn’t happened yet, or you made it

somebody else’s problem.

Author Geert van der Cruijsen

Chaos Engineering:
Why you should break
stuff in production on

purpose

Measuring Complex IT landscapes
Application landscapes have evolved

over the years and traditional

monitoring systems are not capable of

checking whether our systems are up

or not. How come?

Look at the following architectures

from large corporations like Amazon

and Netflix. They represent all instances

of microservices that run Amazon’s

web shop (So no AWS, this is only the

online store). Do you think they have a

dashboard that shows all servers and

instances, showing green or red? I’ll tell

you now, they don’t.

Microservice architectures and

cloud infrastructure have changed

our landscape a lot. We no longer have

big servers that we care for as our pets.

Instead, we have loads of smaller pieces

of infrastructure that are responsible

for specific parts of the application

workflow. Often these pieces of infra-

structure can scale horizontally running

multiple instances of the same service.

What we do need to check is whether

our application is operating normally?

If a microservice is scaled over multiple

instances, users might not even notice

one of them being down.

Looking at servers being up or not is not

the measurement anymore. We need to

measure whether users are still able to

do what they are supposed to do. Take

Netflix for example. They use a great

measurement for this, called “The pulse

of Netflix”. They use this to measure the

amount of play buttons pressed. Netflix

has a good understanding of the aver-

age streams started. If streams do not

start, people will repeatedly press the

play button to try again. As a result, the

number of clicks increases. If the page

with the play button does not even load,

the amount of play clicks will decrease.

In both cases, Netflix will get alerts of

this behavior (or problem).

XPRT. Magazine N°

8/2019

025

Monitoring user activity and success

rate is of key importance when building

high-availability applications. Without

this you’ll never know whether your

application is working or not. Even if you

have a small number of servers and all

monitoring screens show a green status,

this does not guarantee your users have

a great experience in your application.

A prerequisite for having a distributed,

highly available application is having

proper logging in place that enables you

to query what users are expecting.

How to test for failure?
In the past we’ve tested for infra-

structure failure by doing manual

failover tests. Enterprises often do full

datacenter failovers every 6 months or

so. Most of the times these failover tests

are executed during the weekend or at

other times when it least impacts users.

In the age of cloud computing this feels

old fashioned. We no longer have data

centers and infrastructure is used as

cattle instead of pets. If the infra-

structure is broken or is not functioning

properly, you just roll out a new one

instead of nursing it back to health.

We might think we’ve designed our sys-

tems to be highly available, self-healing,

auto scaling and doing fail overs, but is

that working as intended?

What is Chaos Engineering?
A lot of people have heard of the term

“Chaos Engineering”. But when you ask

them what they think it means, the most

frequently heard answer is: “Killing

servers randomly in production”.

While this certainly causes chaos, this

is not what Chaos Engineering is about.

This incorrect understanding comes

from one of the earliest practices at

Netflix. In 2010, before the term Chaos

Engineering was coined, Chaos Monkey

was born within Netflix. Chaos Monkey

did exactly what people nowadays

suspect: kill random servers at random

intervals. Teams used Chaos Monkey

to create applications that needed to

be highly available. Surviving Chaos

monkey was a great test. Later, Chaos

monkey and “Failure Injection Testing”

(FIT) turned into the new practice,

Chaos Engineering. In 2014 this name

was used for the first time for the

practice of injecting failure on purpose

in order to build better more highly

available software. Today there is a

website created by the Chaos

Community to describe the principles

of Chaos Engineering. You can find

it at1. This website also contains the

official description of what we currently

mean with Chaos Engineering:

“Chaos Engineering is the discipline of

experimenting on a distributed system

in order to build confidence in the

system’s capability to withstand

turbulent conditions in production.”

Chaos engineering is all about doing

controlled experiments and NOT about

breaking things in production that

would cause downtime or failures for

your end-users.

Chaos Engineering versus regular

testing

Chaos Engineering should be an

addition to all the tests you are already

doing. You’ll need to have confidence

in the quality of your application to use

Chaos Engineering as an extra set of

experiments to prove the resilience of

your application. These kinds of tests

can’t be simulated by unit tests or

integration tests.

But do we have to do this in production?

This is a misconception that people

have about Chaos Engineering.

Although Chaos Engineering is often

executed in production this is probably

not the place to start. If you want to

do your first experiments it might be

possible to do this in an acceptance or

test environment, depending on the

experiment. As you get more confident

over time, or want to test larger parts of

your application landscape, production

is the only place you can do this

because it is often impossible to

emulate a fully distributed application

landscape in a test or acceptance

environment.

This works well in cloud environments

where you have control over the infra-

structure and it is possible to create an

infrastructure on which to execute

your experiments while the experiment

takes place. If you can redirect a small

number of users or specific users

(maybe employees or beta testers) to

this experiment infrastructure, you can

run the experiments there without

exposing your entire population to the

risk of the experiment.

Is Chaos Engineering for me?

Who wouldn’t want to add “Chaos

engineer” as their job title? But is it

something you really need? If you are

building distributed applications (and

who isn’t nowadays) that need to have

a high availability or are business-

critical, Chaos Engineering is the only

way to build this confidence for your

application.

How to do your own Chaos
Engineering experiments
To know how to do your own experi-

ments, you need to know what to do

in these experiments. It all starts with

having a system that is in a steady state

and that has enough observability to

experiment on. No logs or monitors?

Normal Chaos Experiment Detect & Analysis

Improve

Fix

Learn

1 https://principlesofchaos.org

026 DESIGNING FOR FAILURE

No go! We can’t do experiments without monitoring what is

happening, so having proper logging within the application is

a prerequisite.

A good way to get started with chaos experiments is to start

organizing “Game Days”. It’s a time-boxed event where you get

everyone involved in building and running your application to

focus on resilience and failure by doing experiments together.

The together part here is important. You are responsible

together and want to avoid blaming people for things that are

going wrong. Organizing a game day will embed the impor-

tance of chaos engineering into your culture and you will

approve on it over time.

Steady State
The first thing we need to do to run a chaos experiment is to

define a steady state. This needs to be an indicator of your

application that should work as intended for your end-users.

As described earlier, Netflix uses “The pulse of Netflix” for this

and you should have something similar for your experiment.

This can be a lot simpler than what Netflix is using, depending

on the type of experiment and the type of application.

It’s important to measure a business metric instead of a purely

technical metric. What we care about is whether our users are

affected or not in what way they are affected. There might be

a graceful degradation when certain services are down.

We always want to design these changes with the end-user in

mind, focusing on giving them the best experiences possible.

Hypothesis
The next thing to have is a hypothesis of what failure your

application should be able to endure and what the out come

will be. The best way to create a hypothesis is by doing a

brainstorm with everyone involved in that part of the

application present. This should not only be the engineering

team, but anyone who has a part in running your application.

Most of the time, people will have an idea of what “should”

happen as part of the design, but having everyone there –

from developers, operations, networking, security, architects,

and of course the product owner – will allow a good

discussion of what the application is really going to do in case

of failure. Is there any graceful degradation, will something

else take over, or will the application just stop working?

A common way to brainstorm about what failures your

application should be able to endure is looking at your steady

state and come up with several “What if” questions. What if

the database is unavailable? What if the network latency is

increased by 100 milliseconds? What if the application node

restarts? Everyone can chip in with their own expertise and

come up with several scenarios that will affect your steady

state.

If you are unsure whether the failure will affect your steady

state, if you are unable to come to an agreement of what will

happen when failure is injected, or if you are not able to

monitor this behavior, stop your experiment here. It’s time to

go back to the drawing board and get more information of

how your application will respond to failure, or start adding

more logging and monitoring.

You might think this is a bad thing but actually it’s a good

thing. You’ve learned something about your system and you’re

acting before something bad happens, thus making your

application more resilient and ready for more experiments in

the future.

Design and execute the experiment
Once you’ve created a hypothesis it’s time to create an

experiment to test whether your hypothesis is correct.

There are several things to keep in mind when designing

the experiment. First of all: start as small as possible, thus

minimizing the impact when things go wrong. If you are not

that confident yet or this is one of your first experiments,

acceptance environments might be a good place to start,

but most of the times you want to do this in production

because that is the only place that really gives confidence

after successful experiments.

Start small so that you can minimize the blast radius.

Once this is successful, you can increase the blast radius by

adding more users or affecting a larger part of your landscape.

Keep monitoring and always have a fail-safe in place to abort

the experiment.

Cloud infrastructure is ideal for these experiments because

you can spin up a second environment with ease where

you do your experiments without affecting the rest of your

application landscape.

Learn
After executing the experiment it’s time to investigate the

results and see what you can learn from your observations.

It is important here to quantify your results. For example:

How soon after injecting the failure were you able to see it

on your monitors. How fast were you able to recover?

Fix
After quantifying the results it became easier to compare

them with your assumptions or goals. If the results don’t meet

your expectations you can start improving your application to

become more resilient to these kinds of failure. After you have

made your improvements, run the experiment again to see

whether the improvements are sufficient.

Steady State Define Hypothesis Learn Fix Embed

XPRT. Magazine N°

8/2019

027

Embed

If you get more familiar with these chaos experiments you

might want to embed them further in your engineering

culture. This can be done through continuous chaos like the

original chaos monkey that keeps rebooting VM’s at random

intervals. If you know that these experiments exist, and you

can opt-in to them, it becomes something that is at the top of

the minds of development teams right from the start.

Tools to get you started
Chaos Monkey is the original chaos engineering tool created

at Netflix. It’s still being maintained and is currently integrated

into Spinnaker which is Netflix’s CICD tool2.

Gremlin is a company started by some of Netflix’s and

Amazon’s Chaos Engineers who productized Chaos as a

Service (CaaS). Gremlin is a paid service that gives you a CLI,

agent and website that will help you set up chaos experiments.

Gremlin announced a free service a month ago that offers

free basic chaos experiments such as turning off machines or

simulating high cpu load3.

Chaos Toolkit is an open source initiative that tries to make

chaos experiments easier by creating an open API and

standard JSON format to expose experiments. They have

several drivers to execute these experiments on AWS, Azure,

Kubernetes, PCF and google cloud. They also offer

integrations with monitoring systems and chat such as

Prometheus and Slack4.

Conclusion
Making applications resilient is no longer something that is

relevant only for operations. With cloud infrastructure,

developers and engineering teams have become responsible

for their complete applications, both at the application level

and the infrastructure level. Cloud infrastructure has given us

the flexibility and the agility to adapt quickly to new business

requirements, but without taking care that you are fully

dependent on the resilience of the cloud infrastructure itself.

You’ll have to create an architecture that is resilient using these

components and the only way to find out whether it is as

resilient as you hoped it was is by doing controlled chaos

experiments. So start experimenting yourself by organizing

a game day in your own company! Are you still a bit scared

to take the leap? Let me finish by this great quote from Nora

Jones, Senior Chaos Engineer at Slack and co-author of the

Chaos Engineering book by O’Reilly.

“Chaos Engineering
doesn’t cause problems,
it just reveals them”
Nora Jones, Chaos Engineering Lead Slack

Geert van der Cruijsen

2 https://github.com/Netflix/chaosmonkey
3 https://gremlin.com
4 https://github.com/chaostoolkit/chaostoolkit

“In a complex
landscape your
application is
never fully up”

The goal of this article is to explain a number of architectural

patterns that we explored for Azure Service Bus.

These patterns will allow your system to cope with the fact

that Azure Service Bus may go down at some point in time.

None of the patterns in this article will guarantee that no

messages can be lost, but most of them will reduce the

chance of losing messages significantly.

We will not go into detail about queues, topics, and sub-

scriptions. Instead, we will explain how you can use multiple

Azure Service Bus namespaces in different regions to add

resiliency to your systems.

028 DESIGNING FOR FAILURE

Resilient Azure
Service Bus

architecture
During one of our innovation days at Xpirit, we looked at how we could make a system

that we are working on more resilient against outages. Our application should be able to
failover to a secondary region and failback to the primary region without much effort.

For our innovation day, we specifically focused on protecting the system against
Azure Service Bus outages. The messages passed to this system are critical, and we

wanted to narrow the chances that we missed a message due to an outage.
Another characteristic of the system is that the throughput of the total number of messages

that we receive can be considered low: we process about 1000 messages every 24 hours.
With these things in mind, we investigated the various approaches that we could

use and worked towards a solution.

Author Marc Bruins & Sander Aernouts

As an example, we will use a system that processes fines for

speeding cars. The system consists of an automatic speed

trap that sends the speed and license plate to a backend

service whenever it detects that a car is speeding. The fines

services receives these messages and processes the fine,

making sure the owner of the car receives the fine.

The messages between the automatic speed trap and the

fines service are sent using an Azure Service Bus namespace.

Communication is one-way; the fines service does not send

any confirmation or reply to the automatic speed trap.

For simplicity sake, there are also no other parts in this system

that communicate with either the automatic speed trap or the

fines service. In this example, the automatic speed trap relies

on the assumption that Azure Service Bus is available; it does

not buffer or store messages in any way. The following figure

illustrates the example system:

Figure 1: example system

Automatic

speed trap

Automatic

speed trap

send speed & license plate register fine
Namespace

West Europe

Azure Service Bus

XPRT. Magazine N°

8/2019

029

Now imagine a problem occurs, and Azure Service Bus goes

down in West Europe. The automatic speed trap can no longer

send messages to Azure Service Bus, and the fines service

cannot process any fines. Speeding cars are not reported to

the fines service, so the owner of the car will not get a fine.

Let’s investigate what patterns we can apply to make our

system resilient to such an outage.

Failover namespaces

The first pattern we will look at is “Failover namespaces”.

This pattern utilizes the “Azure Service Bus Geo-disaster

recovery” feature of Azure Service Bus, which is available as

part of the premium SKU. When you enable this feature, you

create a new namespace in a different Azure region. This new

namespace will be the secondary namespace, and the other

namespace will be the primary namespace. A namespace alias

can also be configured that points to the primary namespace.

The automatic speed trap sends messages to the namespace

alias, and the fines service receives the message from the

namespace alias. This way the primary and secondary name-

space can be swapped easily.

As shown in figure 1, the namespace alias will point to the

primary namespace until Azure Service Bus goes down in that

region. Both the automatic speed trap and the fines service

communicate with the namespace alias, which can be

compared to a CNAME DNS record.

When Azure Service Bus goes down in West Europe, we will

have to execute a failover either by pressing a button in the

Azure Portal or by invoking the Azure API. When this happens,

the namespace alias switches to our secondary namespace.

Once we’ve done this, the system will continue to send and

receive messages.

We can only execute this failover once, and we cannot switch

back to the primary namespace once Azure Service Bus

comes back up in West Europe. It is possible to switch back to

a namespace in West Europe, but this requires that you set up

and perform another failover to move back to this region.

The downside of this pattern is that only queues, topics,

subscriptions, and filters are automatically mirrored from

our primary namespace into your secondary namespace.

Messages are not mirrored, so the messages that the receiver

did not read from the primary namespace will stay in the

primary namespace. You will somehow have to extract them

from the primary namespace and move them into the

secondary namespace, otherwise they will not be processed.

Another downside is that we must initiate the failover explicitly,

either by pressing a button in the Azure Portal or by somehow

triggering the failover using the Azure API’s. Until the failover is

initiated, both the automatic speed trap and the fines service

will receive errors. It is up to the automatic speed trap and

the fines service to keep retrying so that communication can

continue once the failover is initiated. Messages that were

sent by the automatic speed trap but were not yet received by

the fines service are stuck in the primary namespace and may

be lost if the region does not fully recover from the outage.

Messages that are stuck in the primary namespace need to be

transferred to the secondary namespace either by a manual

or automatic process, in case the region hosting the primary

namespace fully recovers.

Automatic

speed trap

Automatic

speed trap

Namespace

alias

send speed & license plate register fine

Primary

namespace

Secondary

namespace

West Europe North Europe

Figure 2: failover namespaces no outage

Automatic

speed trap

Automatic

speed trap

Namespace

alias

send speed & license plate register fine

Primary

namespace

Secondary

namespace

West Europe North Europe

Figure 3: failover namespaces outage

030 DESIGNING FOR FAILURE

The benefit is that both the automatic speed trap and fines

services are unchanged. From that perspective, there is no

difference between using a namespace and using a name-

space alias in your application. All you have to do is configure

a different connection string. So, if we do not have control

over the source code of the applications that use Azure

Service Bus, this pattern allows us to add a failover option

without changing any code. If required, we can even replace

an existing namespace by a namespace alias, which means

that you don’t even have to change your configuration.

Paired namespaces

The second pattern is “paired namespaces”. With this pattern,

we will use one or more “backlog queues” in a secondary

namespace that will receive and hold the messages while the

primary namespace is down. This functionality is built into

the Azure Service Bus client and can be enabled by calling the

“PairNamespaceAsync” method on the “MessagingFactory” in

your code.

When we pair two namespaces, the client will create one or

more backlog queues in a secondary namespace. We can

configure the number of backlog queues that are created.

As long as the primary namespace is available, messages are

sent to the primary namespace. When the primary namespace

goes down, new messages are sent to one of the backlog

queues in the secondary namespace. Messages that were

already delivered to the primary namespace will not be resent

to the backlog queues. The backlog queue is chosen randomly

from the available backlog queues. The client will also

continuously ping the primary namespace to check whether

it is available again. As soon as the primary namespace is

available again, the client will restart sending messages to the

primary namespace. Messages that are in the backlog queues

still need to be transferred back to the primary namespace.

This process is called siphoning and is also part of the Azure

Service Bus client. In this example, we have configured a s

eparate process that is responsible for the siphoning process.

Figure 4 describes the normal operation: the primary name-

space is reachable, the automatic speed trap sends all

messages to the primary namespace, and there are no

messages for the siphoning process to forward.

At some, point the primary namespace goes down.

The automatic speed trap automatically sends messages to

one of the four backlog queues. Also the primary namespace

will be pinged at regular intervals until it becomes available

again as shown in figure 6.

When the primary namespace becomes available, the

automatic speed trap will start sending the messages to the

primary namespace again. The messages that are in the

backlog queues are read (received) by the siphon process and

are forwarded to the primary namespace, as shown in

figure 5. When the siphon process has read and forwarded all

the messages from the backlog queues, normal operation can

continue as was shown in figure 3.

Automatic

speed trap

Siphon process Backlog queue 1 Backlog queue 2 Backlog queue 3 Backlog queue 3

Fines service
Primary

namespace

West Europe

Secondary namespace

North Europe

Figure 4: paired namespaces no outage

Automatic

speed trap

Siphon process Backlog queue 1 Backlog queue 2 Backlog queue 3 Backlog queue 3

Fines service

ping
Primary

namespace

West Europe

Secondary namespace

North Europe

Figure 5: paired namespaces outage

031

In contrast to the failover namespace pattern, using the paired

namespace pattern does require that we modify the code of

the automatic speed trap application. Paired namespaces is a

feature that is available in the Azure Service Bus client, so we

only have to configure it, not write it ourselves. There is no

need to change the fines services, but the downside is that no

messages are delivered while the primary namespace is down.

Our system will not break, and we will not lose messages, but

communication between the automatic speed trap and fines

service will stop until the primary namespace is available again.

The failover situation, when the automatic speed trap sends

messages to backlog queues, is triggered automatically

when the primary namespace goes down, and no manual

intervention is required. Communication to the primary

namespace will also restore on its own when the Azure Service

Bus client detects the primary namespace is available again.

A downside is that communication between the automatic

speed trap and fines service will stop until the primary name-

space is available again. Another downside is the order in

which messages are delivered. If we use multiple backlog

queues, the messages are randomly delivered to one of the

available queues. When the messages are then received by

the siphon process and forwarded to the primary namespace,

the order of messages cannot be guaranteed.

Passive-Active replication

Another option that we might want to consider is passive

replication. This pattern uses two namespaces, one of which

we call our primary namespace and the other is called our

secondary namespace. The idea is that there is only one

active namespace at any time which handles our messages.

The automatic speed trap will send messages to the active

namespace, which will be the primary namespace when there

are no outages.

The fines service listens to both namespaces and receives

all the messages it can find. When our system is running

smoothly, the primary namespace is the active namespace so

messages are sent through our primary namespace and our

fines service handles those messages. Now imagine an outage

where the primary namespace goes down. In this case we

make our secondary namespace the new active namespace.

The automatic speed trap will now send messages through the

secondary namespace. Messages will continue to flow, so we

won’t experience any downtime.

To make this work, we need to build two pieces that support

this pattern, one of these is the sender, and the other is the

receiver. The sender is straightforward in this scenario, and

it should send a message to the primary namespace and if

that fails, it should send that same message to the secondary

namespace. We could implement a circuit breaker here that

breaks after a few attempts and checks the primary name-

space after a specific amount of time has passed.

The receiver side is a bit trickier. It needs to know how to

receive messages from both the primary and the secondary

namespace. If the logical order in which we receive the

messages is important, we need to make sure that the order in

which messages are read from the namespaces is as follows:

if the primary namespace is down, read from the secondary

namespace, but when the primary namespace gets back up

again, first drain the secondary namespace and then continue

to read from the primary namespace, instead of immediately

XPRT. Magazine N°

8/2019

Automatic

speed trap

Siphon process Backlog queue 1 Backlog queue 2 Backlog queue 3 Backlog queue 3

Fines service
Primary

namespace

West Europe

Secondary namespace

North Europe

Figure 6: paired namespaces outage

Automatic

speed trap
Fines service

Primary namespace

Secondary namespace

West Europe

North Europe

Figure 7: active-passive no outage

Passive

Active

032 DESIGNING FOR FAILURE

switching back to the primary namespace. If the order is

unimportant, then we don’t care, and our receiver can just

listen to both namespaces.

This setup gives us high availability and automatic failover

without having to touch a single button. However you have

to build this yourself; this pattern is not implemented by the

service bus client. There is still a (very small) chance that a

message gets lost. Imagine that the speed trap sends a ticket

to our primary namespace. In this case, there are no issues

and the ticket is received by the primary namespace. But at

that moment our primary namespace could go down before

it had a chance to deliver the message to our fines service.

If that happens, that message may be lost if the region does

not fully recover, and there would be one lucky speeder that

doesn’t receive a fine.

Active-Active replication

With the active replication pattern, we make sure that the

chances of losing a message are even smaller than with

passive replication. Whenever an Active-Passive namespace

holds a message that the namespace received and if this

namespace goes down, we lose the message. To prevent

losing those messages we could use the Active-Active

pattern.

To set up the active replication pattern we need to have two

namespaces, a primary namespace and a secondary name-

space. The automatic speed trap actively sends all messages

to both namespaces. In case the primary namespace goes

down, we still have the secondary namespace that has

received all the messages. If there is no outage, the fines

service will receive the same message from both the primary

and secondary namespace. To make sure our system doesn’t

have duplicate entries, we must create a deduplication layer at

the receiving side (fines service).

In case the primary namespace goes down, we still receive all

the messages from the secondary namespace. In this case,

the deduplicator just passes our messages through to the fines

service. You can even add a third namespace in a different

region to protect against a simultaneous outage of both the

primary and secondary namespace, although this is likely to

be overkill.

To make this setup work we need to modify the automatic

speed trap to send all messages to both the primary and

secondary namespace. If it can’t deliver to one of the name-

spaces it doesn’t matter, as long it can still deliver the message

to the other namespace.

Automatic

speed trap

Automatic

speed trap

Fines service

Fines service

Deduplicator

Deduplicator

Primary namespace

Primary namespace

Secondary namespace

Secondary namespace

West Europe

West Europe

North Europe

North Europe

Figure 9: active-active no outage

Figure 10: active-active outage

Active

Active

Automatic

speed trap
Fines service

Primary namespace

Secondary namespace

West Europe

North Europe

Figure 8: active-passive outage

Passive

Active

033

XPRT. Magazine N°

8/2019

Marc Bruins & Sander Aernouts

034 DESIGNING FOR FAILURE

Our fines service must be a bit more advanced. It processes

duplicate messages if we don’t filter the received messages

in some way. Some systems don’t care if they process

duplicate messages, but for our system we only want one

message to be processed in the fines service. To do this,

we need to implement a deduplication layer that ignores

messages that have already been received from another

namespace. We can do this by storing the unique id of each

received message in a cache. If your receiver is idempotent,

you can choose to limit the number of cache items and

automatically evict the oldest items (FIFO). You can be fairly

certain that duplicate messages are delivered shortly after one

another. If the message id already exists in the cache, we know

that we can ignore the message. If the message id does not

exist in the cache, we know the message can be delivered

to the fines service. If your receiver is not idempotent, you

must persist your processed message id’s, for example in a

SQL database, which means you need to protect against

SQL outages as well.

This setup gives us high availability and we don’t have to do

anything in order to failover. The system will just continue

to work. However, this setup adds complexity by having a

deduplication layer that holds a record of all the messages to

find out whether there are duplicates. If we choose to persist

the message id’s, we must think about high availability for

our caching layer, and this can be a nuisance. And this is even

more complex when there are multiple instances of the same

receiver. The benefit of this approach compared to passive

replication is that there is an even smaller chance that we lose

a message. However, the costs may outweigh the benefits

depending on your solution. This solution would also require

you to have control over the source code from the sender and

the receiver.

The pattern we chose ourselves
As stated at the beginning of this article, we explored these

patterns because we wanted to protect a real system we are

working on against outages of Azure Service Bus. We wanted

an automatic failover and we didn’t only want an Azure Service

Bus failover, but instead an entire region failover, independent

of the resources that are running. This narrowed our choices

to Active-Passive and Active-Active.

To make this decision we looked at the value of a message.

For our system, the value of a message doesn’t outweigh the

cost of implementing the Active-Active pattern. The system

does not receive many messages, so if a region goes down,

there is a small chance that we lose that message. Considering

all of this we’ve chosen for the Active-Passive pattern.

“Whatever can go
wrong will go wrong,
at the wrong time.”
Matt Mika

XPRT. Magazine N°

8/2019

035

About CQRS and Event Sourcing
The acronym CQRS stands for Command Query Responsibility Segregation.

This design pattern effectively separates read operations from write operations.

This allows you to use two different models, a read model and a write model.

Applications often read data more often than they write. Continuing the segregation

all the way up to the data store allows you to optimize the design for both situations.

For example, you can store denormalized data in a SQL database read model so it

can be queried efficiently, and use a document database for the write model to get

the best write performance. People often combine CQRS with Event Sourcing (ES).

The easiest way to explain what Event Sourcing means is by comparing it with a bank

account. Instead of storing only the latest value of the state of an object, you persist

all changes. It is likely that you made your first deposit when you opened your bank

account. Since then, the bank has stored all deposits and withdrawals. To know how

much money is in your account, you calculate all changes. It’s easy to see that this

design pattern will help you create an audit trail inside your application. You can trace

back all changes to a domain model. It also enables you to perform what-if scenarios

by adding ‘fake’ events to the calculation and see how they influence the outcome.

You can imagine that calculating bank statements for thousands of customers can

soon become a burden for any server. In this situation, Event Sourcing and CQRS

become a great combination. You store changes (events) only by adding records to

a data store (the write model). But after storing the change, you can also update a

read model with the current account balance. This way, your application can also

respond to more complicated queries in a very efficient way.

HTTP APIs
APIs are often based on REST; REST stands for REpresentational State Transfer.

An API of this type is called a RESTful API, which means an Application Program

Interface (API) that uses standard HTTP requests to GET, PUT, POST and DELETE

data. This enables you to expose data as resources, identified by URLs, and perform

operations on these resources.

HTTP APIs and
event sourcing
Problem Imagine you are working on a project to build a web application. In doing so,
you want to use the latest and greatest in technology and implement an HTTP API.
You have done this before, and based on your experience, you use the GET verb to
retrieve data, either a list or a single item. In addition, you use POST to store new data
and PUT for updates. Finally, you’re using DELETE to remove a resource. As a result,
clients can connect to your API and interact with the data. While this approach sounds
simple, it can become complicated when your application uses the ‘CQRS’ and
‘Event Sourcing’ design patterns. These patterns ensure great power, but they also
increase complexity.

Authors Michiel van Oudheusden & Loek Duys

Now imagine a domain in which we

interact with a customer resource.

You start in a simple way by including

a GET request at the endpoint /api/

customers that will return a list of

customers from your read-model.

To create a new customer, you perform

a POST web request to the same

endpoint. Updating of data is handled

by using PUT; i.e. you send the new

state to the endpoint /api/customers/

{customerId}. The last part of the URL

identifies a unique customer.

In your API Controller, you handle the

intent of changes to a Customer by

converting them to commands, e.g.

a CreateCustomerCommand or an

UpdateCustomerCommand.

A command queue and command

handlers will do the rest. Eventually,

the new customer representation will

appear in the read-model.

Although this looks simple, you can

quickly run into a more complex

situation. What if your customer entity

contains related items? A customer

might have one or more addresses

or legal entities. Are those addresses

036 SOFTWARE ARCHITECTURE PATTERNS

different resources, or will you consider

them part of the customer graph?

Besides that; a customer can go

through different stages in his life cycle.

Approval might be needed before a

change to a customer is applied. Are

these changes mere updates on the

customer with a ‘State’ property? If so,

how would you capture user comments

for that specific state change or a

reassignment of approval to another

user?

Deleting a customer is another

interesting scenario. Are you removing

a customer, or do you require soft

(reversible) deletes? Again, somebody

might need to approve the operation

before the system deletes the data.

Although some of the issues we

mentioned above can be present while

not using CQRS or ES, there are specific

problems that pop up when using

CQRS. For example, a write operation

results in the creation of a command.

The command will most likely be

processed in the background.

Although asynchronous processing is

great for scalability and performance

reasons, it also means that the resulting

state of a resource is not yet determined

during the POST or PUT web request.

Also, the API consumer does not know

when or how the system will process

the command. In these scenarios, it

is common to deliver feedback about

processing back to the client via another

mechanism, for instance a push channel

by using technology such as Signalr.

A similar issue happens during the

validation of the customer state.

The command created by the HTTP

action is put on a queue and handled at

a later time. While you can validate the

state of the resource before you create

the command, the situation may have

changed before the command is ready

to be processed. For example, your

application is used to change a

customer address, while somebody

else just deleted it. The HTTP request

has already been returned, the client

thinks all is well, but the processing of

the last command will fail.

In short, does the creation of an

asynchronous application also imply

that we should not use a standard

HTTP API? On the contrary; we believe

you can do this, and we’ll show you

some solutions!

Possible solutions
As with every problem, there are also

various solutions. If we do want to stick

with HTTP verbs, then the options are

as follows.

Option 1. Use PUT

Follow the REST guidelines, and

perform updates by using a PUT verb.

This option has all the drawbacks as

mentioned before, but it is very intuitive

to update resources using this verb.

In this case, you would update a

customer by sending the complete

resource representation to the

endpoint.

PUT /api/customers/{id}
Content-Type: application/json

{
 “name”: “customername”,
 “industry” : “name of industry”,
 “telephone” : “123 456 789”,
 “active”: true,
 etc
 “addresses”: [
 {
 “street”: “value”
 },
 {
 etc
 }
]

}

XPRT. Magazine N°

8/2019

037

Not only can this lead to large payloads

as you send the whole representation

of the customer, but it also adds

complexity at the server side. The server

needs to discover the intent of the PUT

request in order to convert it into the

correct command. It all depends on

how fine-grained you want it to be:

building a ChangeCustomerCommand

might be simple, but detecting and

using state changes to trigger multiple

workflows (like change approval) will

be more complicated. Combine this

situation with hierarchical resources,

e.g. customers with addresses and you’ll

soon have a huge block of complex

code…

Option 2. Use PATCH

You can optimize the change process

by using the PATCH verb. Using PATCH

indicates a partial update and allows

you to update only specific fields of the

resource. Instead of sending the whole

resource, you only send the changes.

PATCH /api/customers/{id}
Content-Type: application/json

{
 “active”: false

}

Although this makes the payload

lighter, it does not solve all size-related

problems. For example; adding a new

address is only possible by providing

the entire new set of addresses.

As a workaround for this, you can use

“ json-patch (RFC 6902)”. This approach

allows you to make very specific

changes on your resource and as such,

it can help reduce the payload.

PATCH /api/customers/{id}
Content-Type: application/json-pat-
ch+json

{
 { “op”: “add”, “path”: “/addresses”,
“value”: [{ “street”: “second street”
] },
}

The JSON-PATCH standard allows the

use of operations to make targeted

modifications to a resource. Adding,

removing, but also replacing, copying or

moving are valid operations that can be

accompanied by a test condition.

Similar to the PUT method, you still

need to extract and generate the

command out of the data that is

submitted.

Option 3. The miniput pattern

A possible shortcut is the use of the

“miniput pattern”, which allows partial

updates to a resource by exposing child

resources so we can do a complete

update.

PUT /api/customers/{id}/telephone
Content-Type: application/json

{
 “telephone” : “123 456 789”
}

Note that the customer attribute

named ‘telephone’ is now part of the

URL. The server replies with the full

representation of the resource, as a

result of setting the content-location

header value referencing the customer

resource.

HTTP/1.1 200 OK
Content-Location: http://example.org/
api/customers/{id}
Content-Type: application/json
Content-Length: ...

{
 “name”: “customername”,
 “industry” : “name of industry”,
 “telephone” : “123 456 789”,
 “active”: true,
 etc
 “addresses”: [
 {
 “street”: “value”
 },
 {
 etc
 }
]
}

The miniput does not target the parent

resource URL, and this makes cache-

invalidation of this customer resource

difficult.

The above options provide some

alternatives to perform updates on

resources, but they still don’t fit very

well with the more complex scenarios

like eventual consistency and complex

resource graphs. However, there is a

way in which we can interact with the

system using a more “command-

driven” approach. (Don’t worry, we

won’t encourage SOAP web services…)

Option 4. Command endpoints

In this scenario, we make it very explicit

to the caller that we expect abstract

commands by exposing a single

command endpoint. The consumer will

send a POST request to this endpoint,

and the resulting command ends up on

a command queue and gets processed.

You need to specify the type of

command inside the body of the web

request.

POST /api/commands
Content-Type: application/json

{
 “Name”: “ChangeAddressCommand”,
 “Payload”: {
 “Address”: { “Street”: “new
street”}
 }
}

After we enqueue the command, we

return a 202 response code. The web

response also includes a location

header that points to the endpoint

where the status of the command

processing can be retrieved. Note that

it does not point to the resource itself,

but to a new resource that describes

the status of the command processing.

HTTP/1.1 202 OK
Location: http://example.org/api/com-
mand-progress/32453

By performing a GET on the command-

progress resource, the client can see

whether the command has been

processed or rejected. It could also

contain additional details like a

webhook location, or a web-socket link

for push notifications over Signalr.

This approach makes it very explicit

that commands are needed, as they are

the only way to make changes to the

system. All other calls to resources only

support the GET verb, and will query

the read-model. The caller needs to

be aware of the command structure

available, while at the same time the

types of supported commands are not

easily discoverable.

Option 5. Content type

Similar to the previous solution, we

need the caller to pass on the intent

in the form of commands, using the

038 SOFTWARE ARCHITECTURE PATTERNS

content type header while operating

on the resource. Queries naturally map

to GET methods, while commands are

mapped to POST, PUT, DELETE and

PATCH. The command type is part of

the content type header. For example,

changing the name of a customer can

be expressed as follows:

PUT /api/customers/242
Content-Type: application/json;
domain-model=RenameLegalEntityCommand

{
 “Name”: “New Name”
}

Changing the name is an idempotent

operation, which means that executing

the same action multiple times

produces the same result. The standard

dictates that we must use the PUT

verb in this situation. However, other

commands, e.g. adding a new address,

need to be expressed with a POST

verb because they are not idempotent

operations.

Removing a customer would be

implemented using the DELETE

method:

DELETE /api/customers/242
Content-Type: application/json;
domain-model=DeactivateCustomer
Command

The clear downside of this approach is

that the internal domain is now partially

visible on the outside. Callers need to

be aware of the resources, the various

operations and even different

commands that can be used. However,

this solution does map well to the REST

principles, as it provides operations on

resources and uses HTTP semantics

correctly.

Option 6. POST instead of PUT

The final solution we’ll discuss is to

model all commands as POST actions

to specific resources. As we saw in the

above examples, it is very hard to map

a business model to explicit resources.

At the same time it moves the business

logic to the client and as such creates a

tight coupling, which is undesirable

and can lead to errors.

XPRT. Magazine N°

8/2019

039

Michiel van Oudheusden & Loek Duys

“Where to PUT
your POST”

040 SOFTWARE ARCHITECTURE PATTERNS

When you regard the workflow as a

separate resource, it becomes easy to

manage the workflow by using GET,

POST, PUT and DELETE. For instance,

you would use GET to retrieve a

workflow, and approve the change

with a PUT request, or reject it by using

DELETE. You probably noticed that this

re-introduces the troubles we discussed

earlier, but there is a major difference…

Instead of having one PUT endpoint

for all workflows (and changes, and

commands), we have narrowed the

scope down to manage just one

workflow.

Conclusion
When building a Web API, there are

a lot of strategies to choose from.

In our project we combined HTTP APIs

with CQRS and Event Sourcing, and in

that situation our choice was Option

6, the ‘POST instead of PUT’-pattern.

This option is particularly suitable for

resources where the GET maps nicely to

your data structures, but poorly to your

business domain for mutations. It solves

the problems introduced by applying

the CQRS/ES architecture and offers

the benefits of a RESTful HTTP design;

it is discoverable, and it uses the correct

verbs and endpoints. The fact that

we return a status endpoint (instead

of the new resource state) allows

for asynchronous processing of

commands.

We can solve the low level CRUD APIs by introducing business process resources

which express the intent of the operation. Consider the creation of a customer. Most

likely this is not a simple process as it might require sub processes to go along, emails

to be sent out, records to be created etc. The business intent is to enroll the custo-

mer, so a CustomerEnrollment endpoint can be used to actually create the customer

itself.

POST /api/customers/CustomerEnrollment
Content-Type: application/json

{
 body
}
HTTP/1.1 202 OK
Location: http://example.org/api/customers/CustomerEnrollment/32453
Retry-After: 3

The resource returned is a CustomerEnrollment entity and tells the caller the state of

the actual enrollment instead of the customer itself. You can also add an additional

header named Retry-After that specifies the amount of seconds it will likely take to

change the resource state at the server side.

Removing an address can be expressed as follows:

POST /api/customers/421/AddressRemoval
Content-Type: application/json

{
 “id”: “3”,
 “reason”: “reason for removal”,
 “onBehalfOf”: “user name”
}
The response would look like this:
HTTP/1.1 202 OK
Location: http://example.org/api/customers/421/AddressRemoval/631
Retry-After: 3

Until the Address Removal command is completed, the address is still present in the

customer resource. When completed, this specific instance of AddressRemoval is no

longer available. As you can see, the payload is also tailored to the specific command

and not to the actual entity it should alter.

This is similar to the command endpoint solution, but it is much easier to discover as

it can be advertised in an API definition file like OpenAPI.

By introducing a slight variation on this solution, you can also model workflows,

like the change-approval we mentioned earlier. Instead of using a command-based

endpoint, you would use one based on a workflow. For example, to start an approval

process you would send this web request:

POST /api/customers/421/CustomerChangeApproval
Content-Type: application/json

{
 “id”: “3”,
 “telephone”: “new number”,
 “onBehalfOf”: “user name”
}

“Too bad the post office
isn’t as efficient as the

weather service.”
Dr. Emmett Brown

041

XPRT. Magazine N°

8/2019

Running in an enterprise environment

means that they’ll often be subject to

changing requirements (yes, it does

seem that sometimes customers have

changing demands…). Dealing with this

changing environment means that we’ll

need to harness the apps with a decent

set of unit tests so we can be confident

about the changes we’ll need to make.

And this in turn requires that we set up

an architecture for these mobile apps

that lends itself to being tested easily.

If we come back to the result of File –›

New Project, well, it’s safe to say that

this is not the ideal starting point. In

this article, we’ll talk about some of the

architectural considerations we need to

make when building mobile apps that

are ready for the enterprise.

Layers in mobile apps
Since we were kids (OK, maybe now

I’m exaggerating…), we’ve been taught

that we should layer our software.

That paradigm hasn’t really changed

when building mobile apps with

Xamarin.Forms. The big plus of Xamarin.

Forms is the huge amount of shared

code we typically will get (easily up to

80% for real apps). That code is what we

should focus on since this is where the

action will take place. The following

diagram shows a proposed approach

which is definitely nothing really special

if you’ve been using a layered

architecture in other types of projects.

At the bottom of the stack we have a

repository layer that will typically

handle all interactions with regard to

data and webservice access, so that

the rest of the code doesn’t get littered

with these low-level details. The Service

layer will typically be used for the

business functionality and will interact

with several repositories to combine

their responses. A very important third

layer in this approach is the view model

layer.

Introducing a view model and thus also

the MVVM pattern will be key in creating

testable apps. From an MVVM point of

view, the services (and the repositories

that they use) act as the model.

Finally, the top-most layer will be plain

views, consisting of data-bound XAML

that will use the view models as their

Enterprise-ready
Xamarin.Forms
Building mobile applications has become much easier for .NET developers
since the dawn of Xamarin.Forms. Although the framework is capable of
building graphically rich mobile experiences, it is often the go-to platform for
line-of-business or enterprise applications. While we can all start coding our
way using File –› New Project, it might not be the best approach for these
types of apps.

Author Gill Cleeren

Android app head

.NET Standard project – shared code

API (backend)

Models

DI container

iOS app head

Views

Services

Views Models

Repositories

UWP app head

binding source. The magic of data binding and change notifications will ensure that

the views will be loosely coupled to the view models. Again, while this structure is far

from unique, it will introduce loose coupling in this application, thus increasing the

ability to test and maintain it, which is what we set out to achieve in the first place.

Now that we have an overall view of the structure of a typical Xamarin.Forms ap-

plication, let’s zoom in on some of these layers in more detail and see some typical

approaches used in the respective layers.

Accessing data
It’s pretty hard to imagine any enterprise application that won’t be working with data.

Most of the data used in mobile apps will reside on the server and services will make

sure that they are accessible from the app. Most apps will probably use REST services

for this purpose, but other options such as WCF will work from Xamarin, albeit not

always in full force. Talking with these services will typically be done using HttpClient

while again other options exist. Today’s REST services will most commonly exchange

JSON, and in Xamarin.Forms apps this JSON can be parsed using JSON.NET.

The following code snippet shows some code that will be used to access a service.

var httpClient = new HttpClient();
var response = await httpClient.GetAsync
 (new Uri(“https://api.github.com/events”));
if (!response.IsSuccessStatusCode)
 throw new HttpRequestException(response.ReasonPhrase);
string jsonResponse = await response.Content.ReadAsStringAsync();
var json = JsonConvert.DeserializeObject<T>(jsonResponse);
return json;

Mobile apps for the enterprise, and in fact all mobile apps, will be used in

unpredictable circumstances. People use the app while on the road, inside a

concrete building, in and out of a wifi-covered area and so on. Reliable network and

therefore a reliable way to communicate with a backend service is often a luxury.

However, apps need to be resilient to these possible network interruptions and

preferably retry the service communication if possible. To solve the latter problem,

we can try to code a retry-mechanism that will attempt to restore the connection

after it has failed. While that’s not impossible to do, it’s easier if someone has already

done this work for us. Polly (https://github.com/App-vNext/Polly) is a resiliency

library that’s commonly used in (mobile) apps to tackle possible failures in

communicating with web services. Low-level stuff such as retrying the connection

belongs in the repository classes. In the next snippet, you can see how we have

wrapped the call to the backend using Polly, and have applied a retry-mechanism

that will retry the call if the backend was unavailable for some reason. The setup

of the retry mechanism is such that it uses an exponential value between different

attempts.

var responseMessage = await Policy
 .Handle<WebException>(ex =>
 {
 Debug.WriteLine($”{ex.GetType().Name + “ : “ + ex.Message}”);
 return true;
 })
 .WaitAndRetryAsync
 (
 5,
 retryAttempt => TimeSpan.FromSeconds(Math.Pow(2, retryAttempt))
)
 .ExecuteAsync(async () => await httpClient.GetAsync(uri));

In addition to retrying, another

optimization that can be done in this

area is caching. Mobile apps shouldn’t

put load on the server to retrieve data

that they may already have. Through

caching, we can quite simply store data

on the device. There are of course a

number of options to do this. One way

that I particularly like is using Akavache

here. Akavache1 is a key-value store

that has many usages. The way I use it

here is simply for throwing some data

at it that I want to cache. The data will

be stored with an expiration date and

so when the data is retrieved from the

cache, Akavache will check whether the

locally-stored version is still valid. If so,

it will be returned, if not, a new version

can be fetched from the underlying

data source and cached in Akavache

automatically. While caching can be a

lifesaver in many situations, it can also

cause problems in your application.

Before applying it, think whether it

makes sense on that data to actually

cache it. In the snippet below, you can

see that we’re checking whether we can

find data in the Akavache cache and

return it if found.

public async Task<Observable
Collection<Event>> GetAllEventsAsync()
{
 List<Event> eventsFromCache =

await GetFromCache<List<Event>>
(CacheNameConstants.AllEvents);

 if (eventsFromCache != null)//
loaded from cache

 {
 return eventsFromCache.

ToObservableCollection();
 }
 else
 {
 UriBuilder builder = new

UriBuilder(ApiConstants.
BaseApiUrl)

 {
 Path = ApiConstants.

CatalogEndpoint
 };

 var events = await _generic
Repository.GetAsync<List
<Event>>(builder.ToString());

 await _cache.InsertObject
(CacheNameConstants.AllEvents,
events, DateTimeOffset.Now.
AddSeconds(20));

 return events.ToObservable
Collection();

 }
}

042 SOFTWARE ARCHITECTURE PATTERNS

1 https://github.com/reactiveui/Akavache)

XPRT. Magazine N°

8/2019

043

Gill Cleeren

“In my opinion,
the future of
mobile is the
future of
everything.”
Matt Galligan, Co-founder of Circa

044 SOFTWARE ARCHITECTURE PATTERNS

MVVM to rule them all
In the quest to achieve loose coupling

and a high(er) level of testability, we

will undeniably run into UI code.

This code is rather hard to test so the

only option we have here is launching

on an emulator and clicking/tapping

through the screens. However, this is

not what we intended in the first place,

isn’t it? The pattern that will help us here

is MVVM, the Model-View-View-Model

pattern. I’m sure you’ve already heard of

it, it’s a pattern that became popular at

the time of WPF and (yes!) Silverlight.

It’s built on the foundations of XAML,

data binding and commanding, and

those are indeed available in Xamarin.

Forms as well. The following diagram

shows the structure of the involved

classes. The View code is still XAML

but now it contains data bound to the

view model. The view model is basically

an abstraction of what is presented in

the view and doesn’t contain actual UI

elements. It will also implement the

behavior, such as the interaction with

the model for us. The view model will

expose state (=data) and operations

(=commands) to the view. Data binding

and the built-in change notification

system based on the INotifyProperty-

Changed interface will ensure that the

view is updated automatically when the

data changes in the view model.

A view model is typically just a class which, as mentioned, exposes state and

operations for the view to bind to. Here you can see a simple view model for a login

screen, which requires a user name and password. Essentially, this is the data for that

screen. Next, interactions such as clicking on a login button, which would typically

be handled using an event handler in the view’s code-behind, will now be wrapped

inside a command in the view model instead. Commands are used to wrap

functionality which can be called from other places in the application. In this case,

they will wrap the behavior to handle a UI event.

public class LoginViewModel : ViewModelBase
{
 private ICommand _loginCommand;

 public string UserName
 {
 get { return _userName; }
 set
 {
 _userName = value;
 OnPropertyChanged(nameof(UserName));
 }
 }

 public string Password
 {
 get { return _password; }
 set
 {
 _password = value;
 OnPropertyChanged(nameof(Password));
 }
 }

 public ICommand LoginCommand => _loginCommand ?? (_loginCommand =
new Command(OnLogin));

}

Simple view models
You may get the idea that a view model will simply contain all the code that

originally was located inside the code-behind and that we’ve essentially just been

moving some boxes around. That wouldn’t be of much help, now would it? One of

the key aspects is that view models should be as simple as possible. They are like

the controller in MVC applications, and those too should remain simple. They know

about the flow of the applications but they don’t know how to perform navigation.

They know that because of a certain event in the application, a dialog should be

shown, but they don’t know HOW to display that dialog.

Keeping all this knowledge outside of the view model is essential to keeping them

easy to test later on. All this “external” knowledge about how to navigate, how to

show a dialog, how to check whether we are connected with the internet and so on

should be pushed into a separate service class, which in essence is nothing more

than a simple class that is capable of just one single piece of functionality. It’s a good

example of using the Single Responsibility Principle. Think of a navigation service, a

dialog service, a connection service, and many others. In a real-life application, you’ll

end up with quite a few of these. Below, you can see (part of) a dialog service.

To display dialogs, we use another library called ACR Dialogs and that’s wrapped

inside this simple service.

public class DialogService : IDialogService
{
 public Task ShowDialog(string message, string title, string buttonLabel)
 {
 return UserDialogs.Instance.AlertAsync(message, title, buttonLabel);
 }

 public void ShowToast(string message)
 {
 UserDialogs.Instance.Toast(message);
 }
}

View Model

Model

View

Data

Binding

Change

Notifications

View code

Code-behind

XPRT. Magazine N°

8/2019

045

Services are commonly registered in the application by means of a dependency

injection container such as Autofac or TinyIOC. These containers work perfectly

fine in Xamarin.Forms apps and allow us to register service classes during the

bootstrapping of the application. In the following snippet you will see that we’re

using the container and registering some of the classes we’ll typically have in this

type of applications, such as a view model and a service class.

public class AppContainer
{
 private static IContainer _container;

 public static void RegisterDependencies()
 {
 var builder = new ContainerBuilder();

 //ViewModels

 builder.RegisterType<LoginViewModel>();
 builder.RegisterType<DialogService>().As<IDialogService>();

 _container = builder.Build();
 }
}

Once registered, view models will get an instance of these services injected through

dependency injection. These instances are then invoked to perform the actual

functionality such as showing the actual dialog. Note that indeed it’s the view model

that will know that a dialog needs to be shown, but it doesn’t know how to do this.

That’s the responsibility of the DialogService class.

“Hello, is this View Model? Yes, this is View Model”
Remember that at the beginning of this article we set out to create a loosely coupled

architecture that’s easy to test? Well, we have another problem to solve. Very often,

view models will need to interact with other view models. Think of a Settings View

Model that needs to let other view models know that the user has switched the

currency. Our first thought might be that we would have a direct reference from

this Settings View Model to all interested view models. While that would work, we

would end up with references from one view model to the next, and this brings tight

coupling with it, which is not what we were aiming for! This means that the view

models need another way of communicating, and the preferred way of doing so is

through a messenger using a pub-sub model. In this model, a view model will

register to send messages to the messenger, and other view models will register to

receive updates from that messenger. Xamarin.Forms comes with support for this

pattern, built-in through the Messaging-

Center class. You can see an example of

this below.

Registering to receive the message:

public async override Task Initialize
Async(object data)
{
 MessagingCenter.Subscribe

<Currency>(this, Messaging
Constants.
CurrencyChanged, OnCurrency
Changed);

}
Sending the message:
private async void OnChangeCurrency()
{
 MessagingCenter.Send(this,

MessagingConstants.Currency
Changed, SelectedCurrency);

}

Putting things to the test
Now that we have separated everything

nicely, can we actually test the view

models and thus create a more robust

code base? Well, the answer is a definite

YES! Take a look at the following snippet

in which we are creating a unit test

for one of the view models in the

application.

[Fact]
public void LoginCommandIsNot
NullTest()
{
 var authenticationService = new

AuthenticationMockService();
 var loginViewModel = new Login

ViewModel(authenticationService);
 Assert.NotNull(loginViewModel.

LoginCommand);
}

Summary
Creating loose coupling and testable applications is definitely applicable for mobile

applications with Xamarin.Forms. The patterns we’ve described here definitely put

us on the right track to create Xamarin.Forms apps that will be easier to test and

maintain in the long run. And that’s exactly what enterprises are looking for right now

for their mobile endeavors.

Setting view model

Message

Message

Message

XF Messaging Center

View model

View model

.NETCore.With
(“vsCode”).Should().
Have(“Unit Tests”).
Part(“II”).
In our previous article1, in XPRT Magazine #7, we showed how to get started with unit testing
.NET Core projects using VS Code (an excellent code editor, in our opinion). In this follow-up
article we’ll continue with:
 What is new in the latest releases of .NET Core and VS Code related to unit testing?
 How to run unit tests across multiple projects.
 How to collect test coverage results across multiple projects.

Authors Reinier van Maanen & Marc Duiker

What’s new?
.NET Core / ASP.NET Core

Among the many updates of .NET Core 2.x and ASP.NET Core,

the most notable change of the last few months related to

testing is the Microsoft.AspNetCore.Mvc.Testing2 package in

ASP.NET Core 2.1.

This package streamlines integration test creation and

execution and handles the following tasks:

 Copies the dependency file (*.deps) from the tested app

into the test project’s bin folder.

 Sets the content root to the tested app’s project root so

that static files and pages/views are found when the tests

are executed.

 Provides the WebApplicationFactory class to streamline

bootstrapping the tested app with TestServer.

Example usage of the WebApplicationFactory in an integration

test:

public class BasicTests
 : IClassFixture<WebApplicationFactory<RazorPages

Project.Startup>>
{
 private readonly HttpClient _client;

 public BasicTests(WebApplicationFactory<RazorPages
Project.Startup> factory)

 {
 _client = factory.CreateClient();
 }

 [Fact]
 public async Task GetHomePage()
 {
 // Act
 var response = await _client.GetAsync(“/”);

 // Assert
 response.EnsureSuccessStatusCode();

// Status Code 200-299
 Assert.Equal(“text/html; charset=utf-8”,
 response.Content.Headers.ContentType.

ToString());
 }
}

So while the above isn’t about ‘pure’ unit testing, it’s still a

valuable addition to your testing arsenal, which enables you to

write integration tests for Razor Pages with minimal effort.

If you want to write end-to-end tests for web apps, then use a

tool such as Selenium4. Do not use Coded UI tests for this, as

this is deprecated3.

1 https://xpirit.com/netcore-withvscode-should-haveunit-tests/
2 https://docs.microsoft.com/en-us/aspnet/core/release-notes/aspnetcore-2.1?view=aspnetcore-2.2#integration-tests
3 https://www.seleniumhq.org/
4 https://docs.microsoft.com/en-us/visualstudio/test/use-ui-automation-to-test-your-code?view=vs-2017

046 TESTING AND DEBUGGING

047

XPRT. Magazine N°

08/2019

Unit testing Libraries & Frameworks

The mocking framework NSubstitute

had a major release to version 4.0.0.

The breaking change is related to ar-

gument matchers, Arg.Is, Arg.Any etc.,

which now use ref returns, a C# 7.0 fea-

ture. This change allows proper support

for working with ref and out arguments.

VS Code extensions

The .NET Core Test Explorer extension

had six new releases5 since the previous

article and is currently at version 0.6.3.

It has been improved to support multi-

ple workspaces and includes numerous

bug fixes.

The Coverage Gutters extension had

four new releases6 and is now at version

2.3.1. It contains dozens of bug fixes and

performance improvements by making

better use of async operations.

Coverlet, the cross platform code

coverage tool for .NET Core has had

eight new releases7, including two

major versions, and is now at version

4.1. The changes include several

performance enhancements and a

feature to compute cyclomatic

complexity.

Running tests across multiple projects

In the previous article, we showed a

simplified situation of one .NET Core

console project with one corresponding

XUnit test project. In real life however,

you will have dozens of projects, with

many of them having test projects as

well. This requires a different set up of

your VS code files in order to run tests

across multiple projects. A couple of

examples are shown below, and you’ll

probably end up combining a few of

them.

Tasks.json

An easy way to build multiple projects is

by extending the tasks.json file, making

use of the dependsOn property of a

task:

 {
 “label”: “build Project.A”,
 “command”: “dotnet build

Project.A /property:Generate
FullPaths=true”,

 “dependsOn”: “clean Project.A”,
 “problemMatcher”: “$msCompile”,
 “type”: “shell”,
 “group”: {
 “isDefault”: true,
 “kind”: “build”
 },
 },
 {

 “label”: “clean Project.A”,
 “command”: “dotnet clean

Project.A”,
 “dependsOn”: “build Project.B.

UnitTests”,
 “problemMatcher”: “$msCompile”,
 “type”: “shell”
 },
 {
 “label”: “build Project.B.

UnitTests”,
 “command”: “dotnet build

Project.B.UnitTests /property:-
GenerateFullPaths=true”,

 “dependsOn”: “clean Project.B”,
 “problemMatcher”: “$msCompile”,
 “type”: “shell”
 },
 {
 “label”: “clean Project.B”,
 “command”: “dotnet clean

Project.B”,
 “dependsOn”: “clean Project.B.

UnitTests”,
 “problemMatcher”: “$msCompile”,
 “type”: “shell”
 }

When you execute tasks ‘build

Project.A’, it will first try to execute

‘clean Project.A’ because it depends on

that step. ‘clean Project.A’ has a

dependency on ‘build Project.B’,

which depends on ‘clean Project.B’.

This means that the tasks will be

executed in the following order:

 Clean Project.B

 Build Project.B

 Clean Project.A

 Build Project.A

5 https://github.com/formulahendry/vscode-dotnet-test-explorer/releases
6 https://github.com/ryanluker/vscode-coverage-gutters/releases
7 https://github.com/tonerdo/coverlet/releases

Reinier van Maanen & Marc Duiker

Of course, this only cleans and builds.

You can add dotnet test as well, but in

our experience running all unit tests on

each build isn’t very effective. Create a

separate task for that, or use the Test

Explorer. Another way to do this, is

described in a blog post by Scott

Hanselman8. He uses dotnet watch9

to trigger tests whenever source code

changes. This still runs all tests, and

while it isn’t like Visual Studio’s

awesome Live Unit Testing, it’s a step.

The downside to this approach is that

the tasks.json can become quite big and

uneasy to maintain. Read on for some

ways around this.

A last interesting bit is the ‘Generate-

FullPaths’ property. This doesn’t have

anything to do with building multiple

projects, but without this, any compiler

errors in VSCode aren’t clickable in the

error window which degrades usability.

PowerShell Script

Another way to build multiple projects is

by combining PowerShell and the tasks.

json. Create a buildsolution.ps1 file and

add the following and anything else you

require:

dotnet clean Project.B
dotnet build Project.B
/p:GenerateFullPaths=true
dotnet clean Project.A
dotnet build Project.A
/p:GenerateFullPaths=true

You can then call this script from the

tasks.json file in a custom task:

 {
 “label”: “build”,
 “command”: “powershell”,
 “args”: [
 “-ExecutionPolicy”,
 “Unrestricted”,
 “-NoProfile”,
 “-File”,
 “${cwd}/buildsolution.ps1”
],
 “type”: “shell”,
 “problemMatcher”: “$msCompile”,
 “group”: {
 “isDefault”: true,
 “kind”: “build”
 }
 }

The advantage here is that this results

in an easier to maintain tasks.json file,

you can do anything you want in the

PowerShell script, and you can even

use that same scripts in a build pipeline,

making sure the build on a buildserver

runs the same way it’s run locally. It will

require you to use a PowerShell task in

your build. As with the tasks.json, the

same remarks and suggestions about

running tests apply here.

Solution file

You can create a solution file with

dotnet new sln and refer to the solution

file with the dotnet CLI: dotnet build

ProjectsAplusB.sln. Ofcourse, this helps

clean up the tasks.json as well as you

can see below. Using a solution file also

has the added benefit that if you have

Visual Studio IDE and need one of its

features, a switch can be made easily.

Also, just as with referencing a Power-

Shell script, this gives you the option to

create a build pipeline on Azure DevOps

which behaves more like a local build.

Unlike the PowerShell solution, you can

just use the standard dotnet task for

that.

Running dotnet new sln will just create

an empty solution. Adding and

removing projects can be done with

dotnet sln add ProjectA and dotnet sln

remove ProjectB. You can list all

projects in the solution with dotnet sln

list.

The tasks.json will end up looking like

this:

 {
 “label”: “build”,
 “command”: “dotnet build

ProjectsAplusB.sln /property:
GenerateFullPaths=true”,

 “dependsOn”: “clean”,
 “problemMatcher”: “$msCompile”,
 “type”: “shell”,
 “group”: {
 “isDefault”: true,
 “kind”: “build”
 },
 },
 {
 “label”: “clean”,
 “command”: “dotnet clean

ProjectsAplusB.sln”,
 “problemMatcher”: “$msCompile”,
 “type”: “shell”
 }

Test Explorer

In the previous article, we mentioned

the Test Explorer extension, which gives

you a GUI for running all your unit tests.

Making sure the Test Explorer picks up

tests from all projects is very easy.

Just change the value of dotnet-test-

explorer.testProjectPath, making use

of wildcards: Change “/ProjectA.Tests”

to “/*.Tests” and you’re done. There is

a problem with this if you also use Test

Explorer to generate coverage files with

Coverlet as we showed you in the

previous article. Read on to learn more!

Collecting test coverage results
across multiple projects
Configuring Test Explorer to run tests

from multiple projects and also

configuring it so that Coverlet writes

its output to disk results in an issue:

for every unit test project a separate

coverage file is written, and Coverage

Gutters won’t merge the results.

Simply configuring Coverlet to write the

results to 1 file also doesn’t work, the file

is overridden for every project so, after

the entire run, only the coverage of the

last project is visualized by Coverage

Gutters. Luckily, there is a way to

configure Coverlet to merge the results

but, it’s not easy:

Supply these arguments as value for

dotnet-test-explorer.testArguments:

“dotnet-test-explorer.testArguments”:
“--filter Category!=Integration
/p:CollectCoverage=true \”/p:Coverlet
OutputFormat=\\\”json,lcov\\\”\”
/p:CoverletOutput=..\\lcov /p:Merge
With=..\\lcov.json” (yes including
all the escaping and extra quotes)

When running the tests, this will create

a lcov.json and lcov.info in the root of

the workspace. The json file is in an

coverlet specific format and is just

a simple JSON file, which has some

benefits like being able to use it in the

MergeWith parameter. The lcov file is

still needed, because this is used by

Coverage Gutters. What happens with

the above configuration is that the

lcov.json is merged for each unit test

project and then a new lcov.info is

generated, based on the merged file.

048 TESTING AND DEBUGGING

8 https://www.hanselman.com/blog/AutomaticUnitTestingInNETCorePlusCodeCoverageInVisualStudioCode.aspx
9 https://docs.microsoft.com/en-us/aspnet/core/tutorials/dotnet-watch?view=aspnetcore-2.2

049

XPRT. Magazine N°

8/2019

The end result is one big lcov.info file

with coverage from all test projects.

It’s not in any project directory, so

Coverage Gutters won’t detect it, and a

workaround is needed to enable proper

detection.

There is another issue here, because

running the tests will merge any existing

lcov.json file, also those from a previous

run. So there’s still some work to do at

the Coverlet plugin. Other issues are

that this will not update the merged

file properly when tests are removed

(it seems only to add coverage lines and

not remove lines which aren’t covered

anymore) and last but not least, running

the tests with these arguments will

crash if there isn’t a file to merge with

(which is troublesome with the first

project you’ll run tests on). Read on for

some workarounds!

Workaround for Coverage Gutters
not picking up the coverage file
At the moment Coverage Gutters only

looks for lcov files in project directories.

As mentioned before, it won’t merge

results if it finds multiple lcov files in

multiple project directories, so we used

Coverlet to merge. The workaround is

quite trivial, just write the merged lcov

file to one of your project directories:

“dotnet-test-explorer.testArguments”:
 “--filter Category!=Integration
/p:CollectCoverage=true \”/p:Coverlet
OutputFormat=\\\”json,lcov\\\”\”
/p:CoverletOutput=..\\Project\\lcov
/p:MergeWith=..\\Project\\lcov.json”,

There is a GitHub issue10 here about

being able to direct Coverage Gutters to

a specific coverage file. As soon as this

has been implemented this workaround

shouldn’t be needed anymore.

Workaround for resetting the
coverage for each run and
preventing a crash when running
for the first time
This workaround is a bit dirty (as work-

arounds always tend to be). You can

alter the csproj of one of your test-

projects. Don’t pick a project that

contains the implementation,

depending on your build configuration

that one is built more than once:

one time by itself and one time as a

dependency of your testproject.

Include this:

 <Target Name=”ResetCoverageFile”
AfterTargets=”Build”>
 <Copy SourceFiles=”..\Project\

lcov.empty” DestinationFiles=”..\
Project\lcov.json” />

 </Target>

lcov.empty is an empty json file, so

this results in a clean slate each time

Coverage Gutters runs, builds all

projects and executes all tests, resulting

in up-to-date coverage and fixing the

problem with the first test run.

Of course all of the above: from running

the tests with coverage to clearing

previous results can also be added to a

powershell or any other script and then

bound to a build task. You can then

check coverage without the Test

Explorer in a fairly easy way.

A small issue that remains is that cover-

age won’t be updated when executing

a single test, but that’s fine for most

people.

Debugging / viewing total
coverage percentage
If you’re someone who likes to measure

code quality by total test coverage, the

easiest way to see the coverage

percentage is by viewing the log of the

Test Explorer. Of course, we don’t have

to tell you that coverage by itself doesn’t

mean much!

An interesting alternative, which is

still very much under development, is

Stryker12. It alters your code right before

tests run, and checks whether at least

one unit test fails. Read more on their

website. For now, to check the coverage

percentage:

Show log button

The output will be something like this:

Show log output

These logs can also be very useful when

debugging issues, so if things aren’t

working have a look here.

Conclusion
As shown by the large number of VS

Code extension releases the tooling

landscape related to unit testing is

evolving and improving at a rapid pace.

For running tests across multiple test

projects, it appears that using a sln file

would still be the easiest way and this

also allows developers to use both VS

Code and Visual Studio IDE.

We hope this article has given you a

better understanding of how to

configure unit testing for .NET Core

projects in VS Code. If you have any

further questions or comments, don’t

hesitate to contact us.

10 https://github.com/ryanluker/vscode-coverage-gutters/issues/178
11 https://twitter.com/KentBeck/status/812703192437981184?s=09
12 https://github.com/stryker-mutator/stryker-net

“Being proud of 100% test coverage
is like being proud of reading every
word in the newspaper. Some are
more important than others.”
Kent Beck on Twitter11

There are two main reasons why you should embrace the

concept of Source Server Indexing and Symbol Server

Management:

1. Live Debugging

 During development, it will help anyone who is referencing

assemblies that are built with a source-server-enabled build,

to debug those assemblies with the original source code.

Think of NuGet packages for example. How annoying can

it be when you are using a NuGet package and you cannot

step into the original source code?

2. Debugging Crash Dump Files or Snapshots

 Every application which is pushed to production should

allow easy troubleshooting and easy debugging when

something bad happens. This can simply not be done when

you cannot rely on source server indexing and a central

symbol server. Rest assured, something bad will eventually

happen and you want to be ready for this when users are

sending you crash data, Snapshots, or IntelliTrace log files.

Why are pdb files so important?
Let’s get to the basics first and start with the importance of

pdb files (also known as symbol files). Every developer in the

Source Server Indexing
and Symbol Server
Management with
Azure DevOps
Developers debug their applications on a daily basis and everyone must have experienced
the power of debugging. But what if you want to debug a crash dump or what if you want
to debug a NuGet package in your application? The concept of Source Server Indexing and
Symbol Server Management is still not a widely known practice in the field, but setting up a
Source Server and Symbol Server in an enterprise development environment can be extremely
valuable. If you see how easy it is to set things up with Azure DevOps, it should be mandatory
for every software application you are working on. It can make your life so much easier, and
not only yours, but also the lives of many other developers.

Authors Pieter Gheysens

050 TESTING AND DEBUGGING

Microsoft ecosystem probably has already seen these files,

but to my surprise not a lot of developers actually know how

important these files can be and how they work.

Program database (PDB) is a proprietary file format

(developed by Microsoft) for storing debugging information

about a program (.dll / .exe) and is created from source files

during compilation. It stores a list of all symbols in a module

with their addresses, together with the name of the source file

and the line on which the symbol was declared. These files

are only created once during the compilation process and are

uniquely matched with the binaries. This process cannot be

forged afterwards.

In essence, the pdb files help developers to load all debugging

information (variables, function names, source line numbers)

in the development environment (Visual Studio) while

“debugging”. In addition, they provide the capability to step

into the original source code files via breakpoints, watch

variables, and perform many other useful tasks related to the

art of debugging. WinDbg (The Windows Debugger) can also

be used to debug application code and analyze crash dumps.

1 https://en.wikipedia.org/wiki/Program_database

XPRT. Magazine N°

8/2019

051

In both scenarios, you always must obtain the proper symbols

for the code you wish to debug, and load these symbols into

the debugger. In short: no debugging without a matching pdb

file. With .NET Core we can now do similar things on Linux

(LLDB Debugger, ProcDump or SOS plugin), but this will be out

of scope for this article.

Creating a simple Console Application in Visual Studio and

compiling/building the project will drop this pdb file next to

the assembly file (exe/dll).

Looking more closely at the content of the pdb file, you will

notice that somewhere the file path to the Program.cs source

file can be found.

So, when debugging the MyConsole application in Visual

Studio you will notice that the symbols are loaded from the

pdb file and this allows the editor to dive into the source code

while running the application.

The editor can find a valid pdb file by means of the file name

and the location of the pdb file (probing). What’s also key is

that it must be the exact pdb file that was composed during

the compilation process, and the handshake is done through

a GUID that is embedded in the assembly file (.dll) and the

pdb file. If the GUID of the assembly and the pdb file do not

match, the editor won’t be able to debug the module at the

source code level, and there’s no way to override this.

This emphasizes the importance of storing your pdb files

because without these files, you are losing control over the

entire debugging process.

Of course, this always automatically works for local

development (private builds), and there won’t be a mismatch

between the local running application and the underlying

pdb files. But what about public builds where the sources

are compiled on an independent build server, and where the

output assemblies are stored as artifacts?

Pieter Gheysens

052 TESTING AND DEBUGGING

Consuming NuGet packages from Azure DevOps
Artifacts
A good example to show the need for Source Server Indexing

and a Symbol Server is the use of (internal) NuGet packages.

I have created a new Git repository in Azure DevOps and

added a .NET Core Class Library with a Calculator class that

provides two basic methods (Add and Subtract).

I also have created a Build Pipeline in Azure DevOps to create

a NuGet package from this assembly and to publish the NuGet

package to a feed in Azure Artifacts. This NuGet package now

becomes available for consumption by all teams with access

to this feed.

Adding the package feed url in Visual Studio (NuGet Package

Manager > Package Sources) offers developers the option to

select the appropriate NuGet package and add it to the current

application. No big deal and business as usual, but imagine

the functionality inside the NuGet package is a bit more

complex and you want to understand how the logic has been

implemented while debugging.

Setting a breakpoint at one of the Calculator methods won’t

allow you by default to step into the code and see what hap-

pens under the hood. This is because Visual Studio doesn’t

have access to the exact pdb file that was created during the

Azure DevOps build process on the build server.

The NuGet package used in Visual Studio delivers the binary

file (.dll) but the matching .pdb file is nowhere to be found on

the local machine where I’m trying to debug the Add method

of the Calculator class. And even worse, the pdb file can’t be

recovered because the build process didn’t take care of storing

the file into a shared location (Symbol Server), and a new build

will potentially override the old version of the build output in

case the same private build agent was used.

However, there’s another problem that must be solved in order

to provide seamless support for debugging. Let’s look at the

content of the latest pdb file I could retrieve in the workspace

of the private build agent.

If I were able to use the matching version of the pdb file in my

debugging session, Visual Studio would be redirected to fetch

the exact source file (Calculator.cs) from the hardcoded file

path that was used in the build process on the build server.

However, it is not our goal to define a similar file structure on

your local machine to fake the retrieval of source files, and it

can never guarantee that you are providing the exact same

source files that were used during the build process.

Let’s zoom into the solution to solve the issues above.

Source Server Indexing
When compiling sources on the build agent and producing

the pdb files, we must find a way to avoid pointing to a fixed

file path of the source files being used in the build process.

And that’s exactly what Source Server Indexing will do. It’s a

simple and efficient process to embed a version-control path

(including the version identifier) into the pdb file, and ensure

that it is readable by Visual Studio or Windbg. This technique

allows the editor to retrieve the exact source file directly from

the version control system instead of the fixed file path on the

build agent.

XPRT. Magazine N°

8/2019

053

Since TFS 2010, the build system provides an out-of-the-box

solution for embedding this information into the pdb file.

I remember using a Perl script in the past to accomplish this

manually for TFS 2008, but luckily this has become a simple

build task in Azure DevOps and TFS.

The above image shows the required “Index Sources & Publish

Symbols” build task that will scan for pdb files, and this task

will eventually inject extra information into the pdb file to

link towards the exact versioned source files being used at

compilation time.

Running this build and looking for the content inside the pdb

files reveals the magic that was being done inside the build

process.

A big chunk of extra data has been injected into the pdb file

and it now contains a tf.exe command to dynamically extract

the source file from a Git repository (via the commit id) inside

a Team Project from Azure DevOps or TFS. Note that the

variables can still be overridden via a srcsrv.ini file in case the

collection url changes for TFS or Azure DevOps.

Another method to enable a similar debugging experience

is to use Source Link2, which is a language-control and

source-control agnostic system. Microsoft libraries such as

.NET Core and Roslyn have enabled Source Link. For this

article I have chosen to explain Source Server Indexing, which

doesn’t require extra properties in the .NET project.

2 https://github.com/dotnet/sourcelink/blob/master/README.md

054 TESTING AND DEBUGGING

Symbol Server Management
Source Server Indexing is only one part of the solution,

because storing this pdb file only in the workspace on the

build server does not make any sense. We need this particular

pdb file in a central location that can be easily searched when

starting a debugging session.

This is where Symbol Server Management can play a valuable

role. A symbol server enables a debugger to automatically

retrieve the correct symbol file (pdb). This is based on the

unique GUID that was used in the compilation process on

the build server to mark the assembly file and the pdb file.

Remember that this linking is a one-time operation and

cannot be reproduced after the facts. Losing the pdb file

means that you lose the opportunity to debug the output

assembly. For ever!

Support for Symbol Server Management is now provided by

the same “Index Sources & Publish Symbols” build task. Until

now it is only possible to publish the pdb files to Azure De-

vOps, which is a full-blown Symbol Server. Older versions of

TFS or Azure DevOps Server only allows you to push the pdb

files to a network share.

Back to Visual Studio to activate debugging with
symbols
In my TestConsole application in Visual Studio I already picked

up the latest NuGet package from the Azure Artifacts feed,

which was made available via the latest build that included

Source Server Indexing and the publication of the symbols to

Azure DevOps.

To get the full debugging experience with symbols, you must

verify a number of settings that are not turned on by default in

Visual Studio.

 Connect/Register the Azure DevOps Symbol Server

 Your Azure DevOps organization will be just another symbol

server next to the Microsoft Symbol Servers and you can

choose to enable/disable it at any time.

 Disable “Just My Code” and enable “Source Server Support”

 The first toggle is important to not only debug the sources

you manage inside your solution, and the second option is

required to fetch the original source files from the pdb file

when the debugging process needs the source code.

When trying to step into (F11) the Add method of the

Calculator class, Visual Studio will now help to search for the

matching pdb file in the Azure DevOps Symbol Server, and the

content of the pdb file will instruct Visual Studio to download

the Calculator.cs file from the Git repository inside Azure

Repos. The pdb file and the Calculator.cs file are now locally

available in the cache folder of your computer, ready for live

debugging actions.

Conclusion
This article will help you solve the issue of not being able to

attach the debugger in certain scenarios and step into the

original source code, It should provide you with enough

information to assess why it’s so important to treat your pdb

files in the same way as you treat your assembly files that

might go to production. Source Server Indexing and the

publication of the symbols (pdb files) go hand-in-hand and

should always be enabled in your automated build processes

that produce output for production. Azure Pipelines provides

the right build task to accomplish this for cross-platform

applications and the rest of the magic is done inside your

favorite debugging tool.

XPRT. Magazine N°

8/2019

TECHORAMA 2019
SPACE EDITION

WORKSHOPS: SEP 30
CONFERENCE: OCT 1-2

WWW.TECHORAMA.NL
TICKETS ON SALE STARTING MAY 6

Think ahead.
Act now.

www.xpirit.com

If you prefer the digital
version of this magazine,
please scan the qr-code.

