
XPRT.

PROUDLY PART OF XEBIA GROUP

Hal9000, Skynet and the Samaritan

Property-based testing

Why Containers Will Take
Over the World

Back to the future of
the value stream

Future Tech,
 Test Adventures,
Cloud Strategy
 and DevOps

Magazine N° 7/2018
XPRT.

XPRT. M
agazine N° 7/2018 Fu

tu
re Te

c
h

, Te
st A

d
ve

n
tu

re
s, C

lo
u

d
 S

trate
g

y an
d

 D
e

vO
p

s

SPECIAL EDITION

We are crossing
the border.
xpirit.com

XPRT. Magazine N°

7/2018

Colofon

XPRT. Magazine No 7/2018

Editorial Office

Xpirit Netherlands BV

This magazine was made by

Vivian Andringa, Pascal Naber,

René van Osnabrugge,

Martijn van der Sijde, Loek Duys,

Alex Thissen, Kees Verhaar,

Geert van der Cruijsen,

Chris van Sluijsveld, Marco Mansi,

Marcel de Vries, Pascal Greuter,

Alex de Groot, Roy Cornelissen,

Jesse Houwing, Marc Duiker,

Sander Aernouts, Jasper Gilhuis,

Peter Groenewegen, Rob Bos,

Immanuel Kranendonk,

Michiel van Oudheusden,

Wendy van Veenendaal,

Manuel Riezebosch, Marc Bruins,

Reinier van Maanen, Maira Camu,

Contact

Xpirit Netherlands BV

Laapersveld 27

1213 VB Hilversum

The Netherlands

+31 (0)35 538 19 21

pgreuter@xpirit.com

www.xpirit.com

Layout and Design

Studio OOM

www.studio-oom.nl

Translations

TechText

© Xpirit, All Right Reserved

Xpirit recognizes knowledge

exchange as prerequisite for

innovation. When in need

of support for sharing,

please contact Xpirit.

All Trademarks are property of

their respective owners.

 004 How a passion for
sharing knowledge and
community work led to the
Techorama conference

 012 The Human Computer:
The Rise of the Bots Part II

 017 .NETCore.With(“VS Code”).
Should()Have. (“Unit Tests”)

 022 Property-based testing

 026 Why Containers Will Take
Over the World

 034 Back to the future
of the value stream

 039 Put teams in control with
Azure Security as Code

 030 Gathering metrics on
Kubernetes

FUTURE TECH

INTRO

In this issue of XPRT. Magazine our experts
share their knowledge about Future Tech,
Test Adventures, Cloud Strategy and DevOps.

TEST ADVENTURES

CLOUD STRATEGY

DEVOPS

If you prefer the
digital version of

this magazine,
please scan the

qr-code.

004

026

030

034

 007 Hal9000, Skynet and
the Samaritan

004 INTRO

The roots of Techorama lie in Belgium, where Gill Cleeren, Pieter Gheysens and Kevin DeRudder

started this conference five years ago after Techdays had ceased to exist. This team of community

leaders thought it would be a cool idea to organize an internationally recognized conference,

to replace Techdays. The conference was organized, and Microsoft helped spread the word that

Techorama would replace Techdays in Belgium. The team built up a great network of speakers

that loved to speak at the conference. Techorama has always been about the experience of both

the attendees as well as speakers and this seems to resonate very well given the success.

How a passion for
sharing knowledge
and community work
led to the Techorama
conference
Welcome to the special Techorama edition of our XPRT magazine! How did this
conference begin, and how did they find their amazing (international) speaker line-up
for a first conference year in the Netherlands? It all happened because of an amazing
group of people that have a passion for community work and sharing knowledge!

Author Marcel de Vries / CTO Xpirit

XPRT. Magazine N°

7/2018

005

006 INTRO

In its first year in Belgium Techorama attracted 600 attendees

and in subsequent years 800, 1000, 1500 and last year even

1600 people attended! Techorama is a conference that is run

mainly by the community. The crew of volunteers has become

an all-round team that runs the event smoothly.

As you probably know, we at Xpirit have always supported

knowledge sharing in many ways and have been involved in

supporting Techdays in the Netherlands since the beginning.

Last year it became clear that Techdays in the Netherlands

would also cease to exist. After over 15 years of existence,

Techdays would leave a ‘conference legacy’ behind and

there would be no really good conferences to take its place.

The major changes in the Microsoft organization, including

a reorganization of their team of developer evangelists, left

a vacuum, and it became apparent to us that we would not

have a great conference anymore.

Together with the help of the Dutch community we contacted

the Techorama Belgium team to see if we could do the same

thing as in Belgium. After a short conversation it was apparent

that we could try to make this happen in exactly the same way,

and this was the birth of Techorama in the Netherlands. To pull

it off we needed to move fast, since organizing a conference

of this size is not a simple task.

We started with finding a location that would create the same

experience that is the signature of Techorama: a cinema

location. Nothing is more impressive as a presentation that is

the size of a full-size movie. For speakers it is also an amazing

experience when you don’t have to scale up your fonts to

make them readable during your demos. We found Pathé in

Ede to be the perfect place for the first Dutch edition.

Together with communities such as SDN, Stichting DotNed,

.NET Zuid, .NET Noord, .NET Oost and meetup organizers in

the Microsoft community, we crafted the complete plan.

We sent out a Call for Papers and received an overwhelming

800 session submissions! Well-known international

speakers submitted awesome sessions and we selected

over 100 talks to be delivered over the course of two days.

So, we had a great mix of international and local established

speakers and thought leaders to educate our attendees on the

latest and greatest in technology.

We also sought a really awesome keynote speaker and this

made us reach out to Scott Guthrie, Executive Vice President

of the Cloud and Enterprise group in Microsoft. Scott is a

well-respected speaker and one of the few executives that will

still code on stage. We asked him if he would like to help us

in our efforts to create a new conference to train the Dutch

community on the latest Microsoft technology. You can

imagine how excited we were when we received the news

that he was willing to do so.

Early April we kicked off the sales of the conference tickets,

and at first things did not look that promising. We were

confronted with the fact that most people decide very late

to buy a ticket. Fortunately, we received a lot of support and

encouragement from many companies. We were contacted

by many partners who helped us establish the conference and

spread the word on what we were trying to achieve.

And now here we are. Techorama Netherlands is a fact.

We have an amazing speaker lineup, we have a big group of

wonderful supporting partners and best of all we have over

1000 attendees the first year!

We are looking forward to a great first edition and we hope

our effort to build this new learning experience is to your

liking. We are thrilled to welcome you and hope you have an

awesome experience!

I want to give a special thanks to the following amazing

community leaders who made Techorama possible:

Gill Cleeren, Pieter Gheysens, Kevin DeRudder,

Dennis Vroegop, Sjoukje Zaal, Marcel Meijer, Roland Guijt,

Andre Obelink, Barry Luijbregts, Gerald Versluis,

Andre Kamman and Albert Alberts. 

Marcel de Vries,

Chief Technical Officer &

Pascal Greuter,

Managing Director

XPRT. Magazine N°

7/2018

007

Hal9000,
Skynet and the
Samaritan
If pop culture has taught us anything, it would be that we can’t trust Artificial Intelligence (AI)
applications, because they will turn against us eventually. I think pop culture is wrong.
We are just training the machines wrong and feeding them biased material. Whether we want
to or not, we are all biased to some extent, which means that even if we try not to be and
train the machines, we are still adding a little bit of bias.

Author Jessica Engström

Artificial Intelligence, cognitive

computing or machine intelligence

involve computers that can perform

tasks previously thought to require

human intelligence (e.g. problem

solving and learning). AI is often used

as an umbrella term for artificial

intelligence, machine learning and

deep learning.

Before we look ahead, let’s take a step

back and see where these concepts

came from.

AI may seem like some something new,

but in reality the concept is quite old.

Artificial intelligence in the 50s
Artificial Intelligence was created as

a topic in computer science during a

two-month study1 that John McCarthy

pushed for in the summer of 1956.

Many of the attendees were to become

world leaders in AI for decades.

The goal of this study was to develop

a thinking machine.

The study also included other topics,

e.g. computers, natural language

processing, neural networks, and

other subjects that today are still highly

relevant to the field of AI.

They never got as far as a thinking

computer, but their brainstorming laid

the foundation for AI.

Machine learning in the 50s
Machine learning is a field in computer

science that gives the computer the

ability to learn without being explicitly

programmed.

The term was coined in the late 50s

by Arthur Samuel, a pioneer in the areas

of AI and computer games. It was

developed from a number of other

methods, including pattern recognition.

Machine learning has given us a lot of

cool applications, and some of them

are my favorites which I use on a daily

basis, for instance more effective web

searches, personal recommendations

given by Netflix, and spam filters for

email.

Deep learning in the 80s
In the mid-80s Rina Dechter introduced

the term Deep Learning, It’s the part of

machine learning where a model learns

to classify things directly from the data,

e.g. images, text or sound.

Deep learning is usually implemented

with the help of neural network

architecture. Deep refers to the

number of layers in the network.

The more layers, the deeper the

network.

Traditional neural networks have a few

layers while deep networks can have

hundreds and even thousands of layers.

Searching with AI in the 2010s
A couple of years ago Google built a

neural network consisting of sixteen

thousand processors with one billion

connections. The model was used to

analyze ten million random videos over

a period of three days, while no help

was given with things like characteristics

or what it was supposed to search for.

By the end of the three-day period, it

had learnt how to recognize the most

common things in videos, faces, body

parts and cats, in that order. It had

become so good that it found cats with

74.8% accuracy and faces with 81.7%.

1 The Dartmouth Summer Research Project on Artificial Intelligence

008 FUTURE TECH

One billion connections and sixteen

thousand processors can sound rather

unfeasible for us “regular” developers.

Do I need to be a data scientist or an

AI specialist to use AI in my apps and

solutions?

Fortunately not.

There are a lot of companies that offer

services to help us out, for instance

Amazon, IBM, Google, Microsoft, Apple

and more.

The cognitive or intelligent services that

they offer are surprisingly easy to use.

Most of them are just a rest-call away.

They all offer services that handle vision,

speech, text analytics, video, bots &

personal assistants, and even software

for deep learning, tools for prediction

and classifications.

If you want a taste of what you can use

these services for, check out Seeing AI.2.

It’s a smart camera app that is

extremely valuable for people with

visual impairment. It can read text out

loud, scan barcodes on products to tell

you what they are, recognize friends

and people around you and describe

them to you, including their emotions.

It can also describe the surroundings

and identify currency, all this thanks to

cognitive services.

There are ways to do these things

locally, for instance Microsoft’s

Windows ML. This is great for sensitive

data, small devices, and much more.

It’s all about the data
As I stated before, it all comes down to

how we train the machines. We are full

of bias, and this influences the way we

train the machine, whether we like it or

not.

Microsoft released an AI bot on twitter a

couple of years back. It was called Tay,

and it was designed to learn from the

conversations it had.

In less than 24 hours Microsoft had

to withdraw the bot because it had

become racist and used words that

were … let’s call them inappropriate.

However, we should not fear Machine

learning. Instead, we should fear the

data and the way humans use, and

abuse the opportunities offered by

Machine Learning.

Let’s take exploits and bias out of the

equation for now and look at the

possibilities of AI and Machine Learning.

Focus on the right thing
Replacing humans should never be the

goal of AI, the goal should be to remove

humans from tedious and repetitive

tasks such as analyzing spreadsheets,

analyzing large amounts of data, or as

a failsafe to catch human errors.

We should let the machines do what

they are best at, and let us humans

flourish in the areas in which we excel.

By adding AI to the mix, we can save

time, help more customers, and create

a better workplace for everyone.

Machines for our health
A machine3 was trained to look for

breast cancer in biological tissue

samples on a slide using machine l

earning, predictive analytics and

pattern recognition. Going through

thousands of hi-res images is of course

very time consuming for a person.

On average, human pathologists have

a 73% accuracy rate while the machine

attained 89%. Of course the result is far

from perfect, but we are well underway.

The same method has been tried with

other types of cancer, and in some

cases results were found two years

before medical staff could find the-

se results using traditional methods.

The machine can, therefore, make the

difference between life and death, and

imagine how many lives this could save!

Why not utilize our connected lives to

improve our health with the help of AI?

We can already keep track of what we

eat with the help of our phones today.

What if we take this a step further and

let AI keep track of everything we eat,

how much we work out etc. Who knows

the type of devices we will have in the

future. Perhaps it’s a pair of glasses with

a camera and built-in AI, or perhaps

our whole society will be connected to

cameras for us to utilize.

What AI could do is analyze what

nutrients you lack based on the

information collected on your phone,

and keep track of your pulse and blood

pressure, weight and so on. It can

even call the doctor for you, get a

prescription for iron or blood pressure

medication or whatever you are in need

of before it becomes a serious problem.

As we speak, remarkable advances in

research in the field of prosthetics are

being made. Machine learning already

enables us to control a robotic limb with

our minds, but researchers are working

on limbs that can feel with the help of

wires that link the limb and brain, telling

the sensory cortex when pressure is

applied.

Some researchers are working on a

hand that has a tiny camera built in.

Using AI it can analyze the object in

front of it and determine the action to

be taken, for instance, grab a can and

raise it to the mouth.

A recently published research paper

described prosthetic limbs packed

with electronics and sensors, which,

combined with a new control algorithm,

can help amputees to feel more realistic

sensory feedback. This is the start of

letting prosthetics feel like a part of the

body, not just a tool.

AI for added safety
What about the notion of using self-

flying planes in addition to self-driving

cars? The technology of autopilot

and landing assistant is nearly ready.

And why not take it a step further,

because machines can often

communicate better than humans

can, and they are definitely better at

analyzing data, in larger quantities

much faster, and they can adjust

accordingly.

On the streets we can have retractable

road barriers that only allow authorized

vehicles to pass. And we could use facial

recognition in office buildings, which

would avoid having to mess about with

entry cards, but still ensure that only

2 www.seeingai.com
3 According to mobile messaging report

XPRT. Magazine N°

7/2018

009

authorized people enter the building.

Of course, we can go full “Person of

interest” or “Minority Report” and

search for suspicious behavior or even

emotional states, but this would entail

that we do not train the machines with

our human bias. The machine could

use facial recognition to find known

perpetrators or even suspect behavior

common amongst thieves or shop-

lifters. Or look for depressed or suicidal

behavior and deploy help before it’s too

late.

Mass shootings like the one in Las

Vegas in 2017 might actually have been

prevented if we had had systems like

that. The perpetrator stockpiled an

arsenal of weapons and ammunition in

at least 21 bags and a couple of smaller

bags during six days running up to the

shooting. If the rifles had been visible it

would have been easy for a human to

see, but detecting behavioral anomalies

is not as easy, especially at a large and

busy resort. Anyway, it’s not regular

behavior for a single man to bring that

many bags.

Smart home then, now and in
the future
I remember when remote controls for

private homes came on the market,

allowing you to control your lights with

a remote control or even over the web.

This was in early 2000 and it didn’t

take long until we had integrated voice

control, so we could control our lights

by means of voice commands. Well, it

didn’t work as well as voice control does

today, but this was 18 years ago!

So, we went from a button to a remote,

remote to voice and voice to…? The

next logical step to making your home

smart, is to actually make it smart.

Most smartphones have digital

assistants and it’s getting more and

more common for us to invite them

into our homes with smart speakers

and the likes.

Our house and assistants know basically

everything about us, but they don’t act

on it yet.

I can manually set my washing machine

to be ready when I get back from work,

but if I come home early, it’s not done,

or even worse, if I get home very late,

I will have to re-wash the laundry.

Since our house and assistants already

know our schedule and they keep track

of our whereabouts, why should I have

to tell them when it should be done?

They already know!

If we just add a little machine learning

and combine all those things into one,

it could look a bit different.

When the last person has left the house,

the security alarm will automatically turn

on, and the lights and appliances will

be turned off. Our smart fridge will look

up a recipe based on the ingredients we

have in the house (or order groceries)

so we don’t have to nag about what’s

for dinner. It might even cook for us if

we use a sous vide or crockpot.

The house would be vacuumed and

mopped while we’re out and when

we return, it turns on the lights where

needed, and music starts to play.

Depending on who’s home it plays

different music, and if we’re all home it

will only play music genres we have in

common.

We should not have to open an app or

ask our assistants to turn the lights off at

night or pull the blinds.

It’s all about removing petty little tasks

and letting humans focus on what’s

important. Giving us more time to

spend with our families, giving us more

time to be creative, giving us more time

to relax and unwind. Something that

is much needed in our society today,

where we all live under constant stress

and where even school kids get burn

outs.

All these small things may help reduce

stress and anxiety.

Many people suffer from telephobia or

telephone apprehension or just don’t

want to talk on the phone. Google has

revealed that their assistant4 can take

away all this and make it easier.

The assistant can make phone calls for

you and make appointments and such.

It does so in a very humanlike way with

added filler words, a very natural way to

speak.

Being able to use a very natural way

of talking to a bot or assistant is very

important, so we should try our hardest

not to force language or syntax on

people. It will not feel natural.

The same goes for bots that are talking

to us: if it feels computerized, it’s not as

natural.

Customer service run by bots
Bots are more popular than ever:

49,4% prefer a chatbot5 over calling in.

By adding a bot to your home page,

you can let the bot answer the most

common questions, and let it connect

to a person when needed, making

your helpdesk available the whole day,

every day of the week. This will put the

helpdesk in a much better position for

answering questions than a situation

in which its staff would have to handle

all those regular questions. The waiting

time would also be reduced, and if you

are available 24/7, nobody will try to

find another similar service just because

they couldn’t find that simple question

on your page.

There are services available for feeding

all your documents, FAQs and even

recorded calls into a machine, extract

all your questions and answers, and put

them into an FAQ.

From that FAQ you can use a build-

a-bot-from-your-FAQ service which

means that you don’t even have to write

your own questions to have your bot up

and running.

Conclusion
Don’t be afraid of AI, don’t let pop

culture rule how we develop the future,

and don’t let our bias ruin what can be

a glorious future.

A lot of people are talking about the

risks of AI and everything that could go

wrong, but I wanted to show you that

AI can be a force for good. Machines

won’t use data for evil, whereas humans

might.

Let us use AI and create the best future

possible where we can focus on what

matters most. So I encourage you to

take advantage of all the services that

do the hard work for you, and see how

you can improve and optimize your

apps and solutions to make a better

future for us humans. 

010 FUTURE TECH

4 https://siliconangle.com/blog/2017/03/05/google-uses-machine-learning-better-detect-breast-cancer-pathologists/
5 https://youtu.be/ogfYd705cRs?t=2105

Being a geek shows in all parts of her life,

whether it be organizing hackathons,

running a user group and a podcast

with her husband, game nights (retro or

VR/MR) with friends, just catching the

latest superhero movie or speaking

internationally at conferences. Her favorite

topics are UX/UI, Mixed reality and

other futuristic tech. She’s a Windows

Development MVP. Together with her

husband she runs a company called

“AZM dev” which is focused on HoloLens,

Windows development, UX and teaching

the same.

Jessica Engström

Professional Scrum Training and Certification

 www.scrum.org/assessments www.scrum.org/courses

012 FUTURE TECH

The Human
Computer:

The Rise of the
Bots Part II

We hope you enjoyed Part 1 of this article, in which we discussed how to
create a Bot that can understand and process natural language. Now, imagine using your

Bot to order your family’s favorite pizzas. But instead of you having to type everything,
your Bot would listen to each of your family members and recognize them by their voice.

It would then look up what their favorite pizza is and place the order. Sounds difficult?
It isn’t! You can build this using Azure Cognitive Services. In this article we’ll show you

how to get started.

Authors Marc Bruins & Loek Duys

Marc Bruins

Loek Duys

XPRT. Magazine N°

7/2018

013

Azure Speaker Recognition API
Speaker verification

The Azure Speaker Recognition API is part of Azure’s Cognitive

Services. It is a cloud-based platform that helps you identify

people by their voices. You can use it to authenticate users,

instead of using usernames and passwords. Also, you can

use it as a factor inside a multi-factor authentication (MFA)

process. This feature is called ‘speaker verification’.

Speaker identification

The platform can also be used to identify the ‘current speaker’

during a conversation with multiple speakers, a feature that

is useful if you need to display information about speakers

during a conversation. For example, during a television

interview, you could use this API to display differently colored

subtitles based on who is talking. This feature is called ‘speaker

identification’, which we’ll discuss in this article.

Profiles, enrollment and recognition

The API works by creating speaker profiles and enrolling

them. This means training the recognizer by uploading audio

fragments containing a speaker’s voice. Once enrolled, the

speaker can be identified in a different audio fragment.

The identification process uses an asynchronous model; you

upload an audio stream and start periodically querying for

identification results. This way multiple speakers can be identi-

fied during a conversation.

Getting started

Figure 1: Speaker recognition resource

To help you get started building a Bot you’ll need to prepare

your development environment first. After installing the

required tools, we’ll show you how to set up your Bot project.

Next, we’ll introduce you to the various Cognitive Services

and how to interact with them from the Bot.

First, you will need to get access to the Speaker Recognition

API. Go to https://azure.microsoft.com/en-us/services/

cognitive-services/speaker-recognition/ and sign up.

You can opt for a free seven-day trial period or use your Azure

Subscription. Once the resource is deployed, navigate to the

resource on the Azure Portal to grab one of your account keys,

as displayed in Figure 1. You’ll need this key to access the APIs

later.

Bot Emulator

Also, please install the Bot Emulator v4, which can be found

here: https://github.com/Microsoft/BotFramework-Emulator/

releases. The Bot Emulator can be used to test your Bot during

development. It will allow you to connect to a Bot and interact

with it. The new ‘V4 preview’ version of the emulator (Figure 2)

looks a little nicer and will eventually offer more functionality

than the emulator we discussed in the previous article.

Figure 2: Bot emulator V4

Visual Studio 2017

The code used in this article was created by using the

Microsoft Bot project template, which you can find here:

https://marketplace.visualstudio.com/items?itemName=

BotBuilder.botbuilderv4

The SDK template allows you to get started quickly by

scaffolding a Visual Studio solution for you. After installing it,

restart Visual Studio, and create a new project of the type

‘Bot Builder Echo Bot’. You can use this project template as a

quick way to get started. There is a great GitHub repository

with loads of useful sample projects, explaining many Bot

features. You can find it here: https://github.com/Microsoft/

botbuilder-dotnet/tree/master/samples-final

At this time, both the SDK and the emulator are in preview,

which means you should not deploy this version into a

production environment yet.

To access the Speaker Recognition API in a simple manner,

add a NuGet package named “Microsoft.ProjectOxford.

SpeakerRecognition”. The class ‘SpeakerIdentification-

ServiceClient’ from this package helps you interact with the

Speaker Recognition speaker identification APIs in Azure.

Note that there is a different class named ‘SpeakerVerification-

ServiceClient’ that can be used for speaker verification.

It works in a very similar way.

Some of the code that uses the identification client was

inspired by the sample code from Microsoft in this GitHub

repository: https://github.com/Microsoft/Cognitive-Speaker-

Recognition-Windows

Code

Now it’s time to write some code. The dialogs we need to

make the Bot interact with users are contained in a DialogSet.

Our Bot has the following elements:

1. Main menu dialog

This is the entry point of the conversation. The Bot will ask the

user to choose between ‘managing profiles’ and ‘recognizing

speakers’.

2. Profile management dialog

This is the set of dialogs used to view, create, enrol or delete

speaker profiles. These options will be displayed in the same

way as the Main dialog, using buttons.

3. Speaker recognition dialog

In this dialog the user can upload an audio fragment to

be analyzed for speaker identification by the speaker

identification API.

Main menu

The main menu uses the code displayed in Figure 3.

The menu options are passed as a list of string.

Add(Inputs.ManageOrRecognize, new ChoicePrompt(Culture.
English));
Add(Dialogs.MainDialogName, new WaterfallStep[]
{
 async (dc, args, next) =>
 {
 // Prompt for action.
 var mainOptions = new List<string>
 {
 MainMenu.ManageProfiles,
 MainMenu.RecognizeSpeaker
 };

 await dc.Prompt(Inputs.ManageOrRecognize,

"What do you want to do?",
 new ChoicePromptOptions
 {
 Choices = ChoiceFactory.ToChoices

(mainOptions),
 RetryPromptActivity = MessageFactory.

SuggestedActions(
 mainOptions, "Please select an option.")

as Activity
 });
 },
 async (dc, args, next) =>
 {
 var action = (FoundChoice) args["Value"];
 switch (action.Value)
 {
 case MainMenu.ManageProfiles:
 await dc.Replace(Dialogs.ManageProfileDialogName);
 break;

 case MainMenu.RecognizeSpeaker:
 await dc.Replace(Dialogs.RecognizeSpeakerDialogName);
 break;
 }
 }

});

Figure 3: Main Dialog

A dialog with a Bot usually involves multiple steps: display

information, ask for input, and process input. This is modeled

by adding an array of WaterfallStep[].Every delegate in this

array represents a round-trip between the Bot and the user,

e.g. requesting user input and processing the response.

The first step of the dialog uses the ChoicePrompt to display

two buttons in the Bot Emulator. The user must choose one

of the options. The call to dc.Prompt is used to display the

information and buttons, and prompt for input. The second

step in the dialog will be invoked after the user clicks one of

the buttons. The user input is retrieved, and a new dialog is

started. This is done by calling dc.Replace and passing in the

new dialog’s identifier.

The profile management dialog in our Bot has a very similar

set-up.

Speaker Profiles

To recognize speakers, you must first create a speaker profile.

After creating the profile, you can enrol the profile by

uploading some audio fragments that contain the speaker’s

voice. The speaker recognition service will learn to

recognize the speaker based on the audio fragments. In our

Azure environment, we have created two speaker profiles.

We have uploaded two audio fragments for each profile

to enrol them, so we can test speaker recognition later.

You can find these audio fragments in the ‘samples’ folder.

Note that in your environment, the speaker profile identifiers

will be different.

The speaker profile management dialog will use the Speaker-

IdentificationServiceClient to call the speaker identification

APIs. Once this dialog is in place, we can start using the

enrolled profiles for speaker identification.

Speaker recognition

The speaker recognition dialog will request the user to upload

an attachment. The simplified code is displayed in Figure 4.

The user is requested to upload an audio file as an attachment.

You do this by using the type AttachmentPrompt.

Add(Inputs.RecognizeThisPrompt, new AttachmentPrompt());
Add(Dialogs.RecognizeSpeakerDialogName, new WaterfallStep[]
{
 async (dc, args, next) =>
 {
 await dc.Prompt(Inputs.RecognizeThisPrompt,

"Please upload a .wav file",
 new PromptOptions());
 },
 async (dc, args, next) =>
 {
 //Get attachment details
 var attachment = ((List<Attachment>) args["Attachments"])

 .FirstOrDefault();
 [..validate..]
 var state = dc.Context.GetConversationState<ProfileState>();
 string attachmentContentUrl = attachment.ContentUrl;
 [..load enrolled profiles..]
 await dc.Context.SendActivity("Analyzing your voice...");
 await AnalyzeWavFile(attachmentContentUrl, dc, state);
 await dc.Context.SendActivity("Analysis complete.");
 //we’re done
 await dc.Replace(Dialogs.MainDialogName);
 }
});

Figure 4: Request audio

014 FUTURE TECH

XPRT. Magazine N°

7/2018

015

To identify speakers, we can use the Bot emulator. You can

send an attachment containing a .wav file. The Bot will forward

the audio file to the speaker identification API for analysis.

During analysis, whenever a speaker is recognized, the Bot will

notify the user. You can see an example of this in Figure 5.

An audio fragment used by the recognition API must conform to
some strict rules in order to work.

It must be a .wav file, with a single audio channel using a 16KHz
sample rate with 16 bits per sample.

A great way to convert almost any input audio format into a valid
.wav file is by using FFMpeg, which can be run on Linux or in Bash
on Windows.

For example, to convert a file ‘both.m4a’ use the following command
line: ffmpeg -i both.m4a -acodec pcm_s16le -ac 1 -ar 16000 both.wav

Figure 5: Speaker recognition

After profile enrolment, your Bot can recognize you and your

family members by their voice. Now let’s bring it up one level

and see how your Bot can detect what you are saying, to make

an even better determination about what your favorite pizza is,

based on your mood!

Making your Bot understand what’s being said
Now that your bot recognizes your voice, the next step would

be to let it understand what is being said. When combined

with the speaker recognition, we can tell our bot to “Order my

favorite pizza”. Your bot will know who is speaking and what’s

being said! To convert speech to text (STT) we will use the

Bing Speech recognition API.

Bing Speech recognition
The Bing speech recognition service allows us to convert

audio to text. It is a cloud-based service that extracts

text from an audio file. It works well, but there are few

configuration options. If you would like more advanced

features, such as custom speaker style recognition, then you

should have a look at the “Custom Speech API” which is part

of Cognitive Services. Note that this service is currently in

preview. For our purposes, the Bing Speech recognition works

fine though.

Rest API and streaming audio

The speech recognition API offers a choice between using a

REST API and streaming the audio in real-time by using web

sockets. Using the REST API enables us to send our .wav file

to the service and get the result back in text format.

Recognition modes

When using the API, we have different recognition modes that

we can use. Each of them serves a different use-case.

1. Interactive mode

This is a short request to a computer. The user expects the

computer to do something as a result of what’s being said.

2. Conversation mode

This mode allows you to recognize two or more people that

are in conversation. It can translate all that’s being said, and

can also recognize slang and informal speech.

3. Dictation mode

A human citing to a computer. Typically, long utterances,

like taking notes.

In our case we would like to order pizza. We know that we are

talking to a bot, so our utterance will probably be something

like “Hey Jarvis, can you order a pizza Tonno for me?”. This is a

perfect match with ‘interactive mode’, so we will go with that.

An educated guess

When the Speech API is not entirely sure what’s being said on

the audio that we are sending, it will make an educated guess

and returns a list of “N-Best” values in different formats. When

you think about this, it is not very different then what humans do.

We also often make assumptions when we do not fully under-

stand something. The most likely meaning will have the highest

confidence level. You can see an example in Figure 6.

{
 "RecognitionStatus": "Success",
 "Offset": "1236645672289",
 "Duration": "1236645672289",
 "NBest": [
 {
 "Confidence" : "0.87",
 "Lexical" : "remind me to buy five pencils",
 "ITN" : "remind me to buy 5 pencils",
 "MaskedITN" : "remind me to buy 5 pencils",
 "Display" : "Remind me to buy 5 pencils.",
 },
 {
 "Confidence" : "0.54",
 "Lexical" : "rewind me to buy five pencils",
 "ITN" : "rewind me to buy 5 pencils",
 "MaskedITN" : "rewind me to buy 5 pencils",
 "Display" : "Rewind me to buy 5 pencils.",
 }
]
}

Figure 6: Speech recognition API result

016 FUTURE TECH

Code

Before we start, make sure you register a new Bing Speech

service on Azure, install the Microsoft Bing speech Nuget

package (https://www.nuget.org/packages/Microsoft.Bing.

Speech) and get the key as you did earlier in this article.

The steps that we now need to take are as follows:

1. Create a new STT dialog mode

2. Upload a .wav file

3. Send the file to the API and return the text

Now that we have explained the basic concepts and every-

thing is in place, let’s start coding! First let’s add a new dialog

to our bot.

Speech to text dialog

We can re-use the earlier steps and adjust it a bit since we

don’t need to know now who is speaking. We just want to

know what the text is, and we want the selected .wav file to

analyze (Figure 7).

Add(Inputs.RecognizeThisSTTPrompt, new AttachmentPrompt());
Add(Dialogs.SpeechToTextDialogName, new WaterfallStep[]
{
 async (dc, args, next) =>
 {
 await dc.Prompt(Inputs.RecognizeThisSTTPrompt,

"Please upload a .wav file", new PromptOptions());
 },
 async (dc, args, next) =>
 {
 //Get attachment details
 var attachment = ((List<Attachment>) args

["Attachments"]).FirstOrDefault();
 string attachmentContentUrl = attachment.ContentUrl;
 //send attachment in chunks to be analyzed
 await dc.Context.SendActivity("Analyzing text...");
 await AnalyzeSpeechFile(attachmentContentUrl, dc);
 await dc.Context.SendActivity("Analysis complete.");
 //we’re done
 await dc.Replace(Dialogs.MainDialogName);
 }
});

Figure 7: Bot dialog for STT

Sending the request

Now that we have the file we can analyze it and upload it to

the Bing Speech API. We will use the ‘SpeechClient’ for this.

The SpeechClient can optimize the result for the collector of

the audio by using metadata. The code in Figure 8 shows you

how to do this.

speechClient.SubscribeToRecognitionResult
(this.OnRecognitionResult);
var deviceMetadata = new DeviceMetadata(DeviceType.Near,
DeviceFamily.Desktop,
 NetworkType.Ethernet, OsName.Windows, "1607", "Dell", "T3600");
var applicationMetadata = new ApplicationMetadata
("PizzaBot", "1.0.0");
var requestMetadata = new RequestMetadata(Guid.NewGuid(),
deviceMetadata,
 applicationMetadata, "PizzaBotService");

await speechClient.RecognizeAsync(new SpeechInput(audio,
requestMetadata),
 this.cts.Token).ConfigureAwait(false);

Figure 8: Speech client metadata

Getting the response

Once the request is completed we will get a response in the

method that we defined when setting up the response.

Remember that we get an N-Best result list, sorted on

confidence. For our bot it is enough to get the first result from

the list and get the pretty “DisplayText”, as you can see in 9.

public Task OnRecognitionResult(RecognitionResult response)
{
 var bestResult = response.Phrases?.First().DisplayText;

//yay, a result!
 return Task.CompletedTask;
}

Figure 9: Speech client result

Adding sentiment analysis
Our bot is getting smarter and smarter! We now have a bot

that recognizes your voice and we can convert the audio

fragments to text. Obviously, we are not there yet. We don’t

understand the emotions of speech yet. Based on your mood,

your choice of pizza may vary!

To add this, you can use yet another one of Azure’s Cognitive

services: the Text Analytics service. You can find out how it

works here: https://azure.microsoft.com/en-us/services/

cognitive-services/text-analytics. This service can be used

for a multitude of things, including sentiment analysis.

The API takes text as input and returns either a score

between zero and one as a result. Scores close to one mean

positive sentiments (like happiness), scores close to zero

indicate negative sentiments (like anger). Calling this API

is easiest when using the Nuget package found here:

https://www.nuget.org/packages/Microsoft.Azure.Cognitive-

Services.Language.TextAnalytics/2.1.0-preview. Note that at

the time of writing, this package is in preview. You can use

the method ‘SentimentAsync’ on class ‘TextAnalyticsClient’

to upload text for analysis.

Final thoughts
We hope this article inspired you to build your own bot and

that it showed the power of the Azure services that we’ve

used. The source code of the bot is available on GitHub:

https://github.com/XpiritBV/HaBot so you can take a peek

and build on what we have built. Feel free to submit a PR if you

found an issue, or if you created functionality that extends the

existing bot! 

017

XPRT. Magazine N°

7/2018

Benefits of unit testing
Bugs can never be prevented by just

using unit tests alone, but by writing

unit tests, or even better, applying Test

Driven Development (TDD), you ensure

that your application is designed in

such a way that it is easily testable and

maintainable. So when bugs are found

(and they will be found) you can fix

and refactor code with confidence and

within time.

Another benefit of having unit tests

(if they are well-written) is that they

provide a clear explanation of how the

application works. This helps you and

future developers to understand the

code base and to make changes to it

much more easily than without unit

tests.

So, what if you’re a hip developer who

prefers to hang around in VS Code

instead of Visual Studio IDE and is just

starting with .NET Core? How well are

the unit testing frameworks and related

tools supported? Let’s find out…

.NET Core and VS Code
In this article we (Reinier van Maanen

& Marc Duiker) will focus on how unit

testing is done these days using the

.NET Core framework and the VS Code2

editor. We assume you have a basic

understanding of unit testing and

mocking in .NET full framework and

Visual Studio IDE.

The .NET Core framework is very

popular since it runs cross-platform

and it performs better than the full .NET

framework. VS Code has been adopted

quickly by all kinds of developers thanks

to the great number of extensions. VS

Code is also a lightweight editor when

compared to the Visual Studio IDE,

so it’s an ideal editor to write .NET Core

applications. But it’s not just C#! –

support for Python, JavaScript, Java,

Go, Ruby, PHP and other languages is

also available. And did we mention it’s

free for everyone to use?

Installation
First things first, you’re going to need

VS Code and the .NET Core SDK3.

Installation is straightforward and differs

per platform, so we won’t go into that,

just follow the instructions! When you

first start VS Code, it doesn’t contain

a lot of features, so you’re going to

need some extensions. Install these

extensions from the marketplace4 to

improve the unit testing experience

in VS Code:

 C#

 .NET Core Test Explorer

 Coverage Gutters.

Reload VS Code to activate the plugins

and you’re good to go.

.NETCore.
With("VS Code").
Should()Have .
("Unit Tests")
Although unit testing has been a known practice for decades among software developers,
it is still not being applied on a daily basis everywhere. The value of unit testing has been
explained in the literature, showing that fixing bugs early in the software development lifecycle
is orders of magnitudes cheaper than fixing bugs in production1.

Authors Marc Duiker & Reinier van Maanen

1 Code Complete, 2nd Edition,
Steve McConnell Error Cost Escalation
Through the Project Life Cycle, NASA

2 https://code.visualstudio.com
3 https://microsoft.com/net/download
4 https://marketplace.visualstudio.com

018 TEST ADVENTURES

Frameworks
When you’re going to write unit tests you to need to make

some choices, such as which test framework and which

mocking framework to use. They all have their pros and cons

and it really doesn’t matter much, as most popular frameworks

are now supported in .NET Core.

In our example code, we’ll be using xUnit5 and NSubstitute6,

but this is merely our personal preference in this case. In our

opinion, you should use the frameworks your team is the

most familiar with. If you have little experience with test

frameworks, stick with xUnit as it is well documented, very

popular, extensible and supported by the dotnet CLI, as

we’ll see in a moment. For mocking, NSubstitute is a good

start because it’s easy to learn. If you feel like it, throw

FluentAssertions7 in the mix for more readable assertions,

or AutoFixture8 to run different scenarios against one test.

We won’t go into any of this in detail in this article.

Set up your projects
We use the dotnet CLI for creating projects with dotnet new.

There are many templates available:

Figure 1: File templates when using dotnet new

Here’s how to set up a new project with a corresponding unit

test project:

 .Launch VS Code if you haven’t done so already.

 .Control-K + Control-O9: Open (or create) a new empty

directory for your projects. VS Code doesn’t work with

solution files, so just open a directory and work from there.

 .Control-Shift-Tilde: Open a new terminal so we can use the

dotnet CLI.

 .Execute the commands listed below:

  .dotnet new console --name TicTacToe

  .dotnet new xunit --name TicTacToe.Tests

  .cd TicTacToe.Tests

  .dotnet add reference ../TicTacToe/TicTacToe.csproj

  .dotnet add package NSubstitute

You just created a new console application called TicTacToe

and a new test project called TicTacToe.Tests. Then you added

a reference between them and added the NSubstitute NuGet

package to the test project.

As we assume basic knowledge of how to write unit tests, we

won’t go into that right now. A reference project containing

the TicTacToe project including its unit tests can be found on

GitHub10. The next section will describe that codebase.

.NET Core Projects Overview
We’ve created a repository11 for you to clone that contains

two .NET Core projects: TicTacToe and TicTacToe.Tests.

The test project contains ten unit tests in two classes.

Test Project

The tests in the EndGameStrategyTests class verify the

functionality of the EndGameStrategy class, i.e. when is a

game of TicTacToe complete and who has won. The tests are

quite straightforward, and nothing is .NET Core specific here.

The tests are based on xUnit and use FluentAssertions in order

to use the fluent result.Should().Be() syntax. The unit

tests use various instances of the TicTacToe board which are

created in the BoardFactory class.

The tests in the AvailablePositionsTests class verify the

available number of positions on the TicTacToe board when

moves are made. The system under test is the GameEngine

class. It requires an instance of IEndGameStrategy which is

injected into the constructor. Since we want to test the Game-

Engine class in isolation, we create a fake implementation

of IEndGameStrategy by using NSubstitute, see the Create-

GameEngine method.

.vscode Folder

Note that the repository contains a folder called .vscode, as

you might expect this contains some specific files that define

how VS Code handles the projects. There are three files

present in the .vscode folder:

 launch.json: Specifies what happens when you launch a

debug session for the TicTacToe project.

 settings.json: Contains the VS Code workspace settings.

This is the place for settings you want to share with everyone

in your development team since they are in version control.

In this case it contains a setting specific for the .NET Core

Test Explorer extension (more on that later in this article).

 tasks.json: Contains a list of tasks which can be executed

using the VS Code Command Palette or shortcuts. For .NET

Core it always contains a build task (which can be selected

with CTRL+SHIFT+B) and in this case it also contains a test

task, so we can run the unit tests (more on that in the next

section). The tasks that can be specified here are not limited

to building or testing projects. Any tool that has a command

line interface can be configured here.

 extensions.json: Contains a list of recommended extensions.

You receive a nice suggestion to install these when opening

the directory in VS Code.

Running Unit Tests
Unit tests in VS Code can be executed from the terminal,

the Command palette, or from the .NET Core Test Explorer

extension.

5 https://xunit.github.io/
6 https://nsubstitute.github.io/
7 https://fluentassertions.com/
8 https://github.com/AutoFixture/AutoFixture
9 If your shortcuts aren’t behaving as expected, they might have been

overwritten by global Windows 10 shortcuts. This seems to happen
often with “control-tilde”. As this can be done by any app, we can’t
provide any advice on how to fix this, other than removing the
application that triggers when you press the shortcut.

10 https://github.com/XpiritBV/unit testing-dotnetcore-vscode
11 https://github.com/XpiritBV/unit testing-dotnetcore-vscode

XPRT. Magazine N°

7/2018

019

Let’s have a look at each of these.

VS Code Terminal

The most basic way to execute unit tests is to use the dotnet

CLI directly through the terminal as follows:

 .Open the VS Code Terminal (CTRL+̀).

 .Navigate to the TicTacToe.Tests folder.

 .Type dotnet test.

The following response appears:

Build started, please wait...Build completed.
Test run for <LOCAL_REPO_PATH> \TicTacToe.Tests\bin\Debug\
netcoreapp2.1\TicTacToe.Tests.dll(.NETCoreApp,Version=v2
..csproj’.1)
Microsoft (R) Test Execution Command Line Tool Version 15.8.0
Copyright (c) Microsoft Corporation. All rights reserved.
Starting test execution, please wait...

Total tests: 9. Passed: 9. Failed: 0. Skipped: 0.
Test Run Successful.
Test execution time: 1.7864 Seconds

Note that you only get the summary information for successful

tests and nothing about individual tests that have been

executed. To get more information, you can run the following:
dotnet test -v n

where -v is the verbosity switch and n is the normal verbosity

level.

After execution of the verbose command you will see a list of

the unit tests and the indication whether they have passed or

failed.

VS Code Command Palette

Instead of typing dotnet test all the time and making sure

you’re in the right folder, you can also utilize the Run Test Task

in the Command Palette. This task will run the dotnet test

command for you, so you don’t need to type it repeatedly.

Before you can run the task, you will need to add it to the

tasks.json file located in the .vscode folder.

Editing tasks.json

The following JSON snippet shows a task with the label test.

This instructs VS Code to run the dotnet CLI command and

passes test and the csproj file location as arguments.

{
 "version": "2.0.0",
 "tasks": [
 {
 "label": "build",
 "group”: {
 "isDefault": true,
 "kind": "build"
 },
 "command": "dotnet",
 "type": "shell",
 "args": [
 "build",
 "${workspaceFolder}/TicTacToe.Tests/TicTacToe.

Tests.csproj"
],
 "problemMatcher’: ‘$msCompile"
 },
 {
 "label": "test",

 "command”: "dotnet",
 "type": "shell”,
 "group": {
 "isDefault": true,
 "kind": "test"
 },
 "args": [
 "test",
 "${workspaceFolder}/TicTacToe.Tests/TicTacToe.

Tests.csproj"
],
 "presentation": {
 "reveal": ‘always",
 },
 "problemMatcher": “$msCompile"
 }
]
}

Make sure you save the tasks.json file after editing.

Running the test task

Once you have defined the test task you can run it from the

Command Palette as follows:

 Open the Command Palette (CTRL+SHIFT+P).

 Type test and select Tasks: Run Test Task in the list of

matches.

 Hit Enter to run the task.

The output is the same as when you run dotnet test manually.

Creating a Shortcut for the Run Test Task

If even typing the task in the Command Palette is too much

work for you, you can add a custom keyboard shortcut to

select the Run Test Task:

- Open the Keyboard Shortcuts preferences (CTRL+K, CTR-

L+S).

 Type run test task in the Search keybindings field. Run Test

Task appears, and it should not have any key bindings set yet.

 Edit the key binding (CTRL+K, CTRL+K or double-click) and

enter a key binding which will activate the Run Test Task.

You will be notified when you specify a key binding that is

already in use. We’ve chosen CTRL+ALT+T.

 Save the key bindings file.

 Now type the new key binding (CTRL+ALT+T) and you’ll see

the Run Test Task appear in the Command Palette. Note that

it doesn’t execute the task, so you need to hit Enter to run it.

Figure 2: Functionality, provided by the C# extension, to run and

debug unit tests

020 TEST ADVENTURES

All tests can be run by selecting the Run All Tests and Debug

All Tests links above the class declaration. Individual tests can

be run by selecting the Run Test and Debug Test links above

the unit test method signatures (see Figure 2).

Test Explorer

The final method to run unit tests that we’ll cover in this article

uses a VS Code extension named .NET Core Test Explorer.

Figure 3: .NET Core Test Explorer Extension

As you can see in Figure 3 we have version 0.5.2 installed.

There have been three releases in this month alone (August

2018) so there is a lot of active development going on. That is

one of the reasons this extension is growing in popularity.

As with any 0.x release there are some minor shortcomings to

this extension. One of these things is that the UI only updates

if you start the tests from the extension. If you run dotnet test

manually, or by pressing “Run Test” above your test method

signature, it will still display a green check in the UI even if

the test failed. Also, the detection of (new) unit tests isn’t as

fancy as in Visual Studio, you have to press the refresh button

manually.

Unit test discovery

Once this extension is installed and you have opened the

TicTacToe repository you need to build the test project for the

tests to be discovered by the Test Explorer.

 Click the flask icon to open the Test Explorer (see Figure 4).

 Click the Refresh button in the top right of this window.

 If you don’t see any tests yet, ensure that the dotnet-test-

explorer.testProjectPath setting is set to the correct value

to locathe outputte the unit test project.

 Go to Settings (CTRL+,) to verify this value. For the TicTacToe

tests this workspace setting is defined as follows:

 dotnet-test-explorer.testProjectPath": "**/*.
Tests.csproj"

 The unit tests should now be visible in the Test Explorer.

Figure 4: Test Explorer showing unit tests

Running the Tests

Click the play icon in the top right corner (see Figure 4 above)

to run all unit tests, or use shortcut ALT+R, ALT+A.

If you need to run a selection of unit tests, based on trait

values or project names, you can use the dotnet-test-explorer.

testArguments setting. For instance, if you only want to run

tests with a specific Trait, e.g. [Trait("Category",
"Strategy")], specify the following setting in either the user

or workspace settings:

“dotnet-test-explorer.testArguments”:
“--filter Category=Strategy”

Of course, this argument can also be passed to the CLI. For

more information on how to use the --filter switch see the

Microsoft documentation12.

The output of the Test Explorer (visible under the .NET Test log

in the output window) is similar to the plain dotnet test output,

but it also contains logging to a test results file (trx), which the

Test Explorer uses:

Executing dotnet test --logger
"trx;LogFileName=<USER_PATH>\AppData\Local\Temp\test-explorer\
0.trx" in <LOCAL_REPO_PATH>/TicTacToe.Tests
Build started, please wait...
Build completed.

Test run for <LOCAL_REPO_PATH>\TicTacToe.Tests\bin\Debug\netco-
reapp2.1\TicTacToe.Tests.dll(.NETCoreApp,Version=v2.1)
Microsoft (R) Test Execution Command Line Tool Version 15.8.0
Copyright (c) Microsoft Corporation. All rights reserved.

Starting test execution, please wait...
WARNING: Overwriting results file: <USER_PATH>\AppData\Local\
Temp\test-explorer\0.trx
Results File: <USER_PATH>\AppData\Local\Temp\test-explorer\0.trx

Total tests: 9. Passed: 9. Failed: 0. Skipped: 0.
Test Run Successful.
Test execution time: 1.8404 Seconds

Test Coverage
The ability to see how much of your code is being covered

by tests is useful. You can use this to check if you missed any

testing scenarios. It’s also a common metric to review against:

“new code should have at least X% code coverage”.

Code coverage percentage as a metric

Just checking for at least X% code coverage is not recom-

mended – it says very little about the quality of your code and

your tests. Also make sure your unit tests are being reviewed

and that they are useful: check whether assertions are in place,

make sure only one scenario at a time is being tested, and if

dependencies are mocked or stubbed; also check whether

tests follow the Arrange-Act-Assert pattern and that the test

names are self-explanatory, etc.

Viewing unit test coverage in .NET Core has been a bit tricky in

the past, but with a few libraries and add-ons this has beco-

me a lot easier. We’re going to use Coverlet13 and Coverage

Gutters14 for this.

12 https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-test?tabs=netcore21#filter-option-details
13 https://github.com/tonerdo/coverlet
14 https://marketplace.visualstudio.com/items?itemName=ryanluker.vscode-coverage-gutters

XPRT. Magazine N°

7/2018

021

Installing Coverlet can be done in two ways: as a global tool or

as a NuGet package in your test projects:

 dotnet tool install --global coverlet.console

 dotnet add TicTacToe.Tests package coverlet.msbuild

As we don’t want to force every developer to install the global

tool, we recommend the NuGet package. After installing

Coverlet and Coverage Gutters, it’s easy to get code coverage

going. Just specify some extra arguments when executing

“dotnet test”:

 dotnet test /p:CollectCoverage=true /p:CoverletOutput -

Format=lcov /p:CoverletOutput=./lcov.info”

This generates a “lcov.info” file in the root of your unit test

directory that corresponds with the default settings for

Coverage Gutters, so when you activate that extension the

coverage should be visible immediately.

Of course, it’s possible and recommended to add these

parameters to your tasks.json file too. We recommend adding

it to the “--filter Category=Strategy” parameter as well so

you’ll always have the code coverage within reach:

just press the “watch” button in your VS Code taskbar15.

This will visualize the code coverage and even update it when

you rerun your tests and new coverage data is available.

It should look like this by default:

Figure 5: Default visualization of code coverage by Code Gutters

However, as you can see, the indication for code coverage

is in the same place as where you would normally set your

breakpoints. If you want to visualize the code coverage and

use breakpoints at the same time, disable the gutter coverage

and enable the line coverage via the settings: “coverage-

gutters.showGutterCoverage” and “coverage-gutters.show-

LineCoverage” respectively. This will highlight the entire code

line, something we prefer anyway.

Figure 6: Alternative visualization of code coverage by

Coverage Gutters, enabling the use of breakpoints

You can read more on this topic on Scott Hanselman’s

blogpost16.

Finally
As you’ve seen in this article, .NET Core development and

unit testing in VS Code works well. Since the major unit test

frameworks are .NET Core compatible, this is no excuse for

not writing unit tests for your .NET Core code. Also, the tasks

in VS Code are very flexible and easy to use so there’s little

need to use the dotnet CLI directly. The test explorer and

coverage tooling are not as feature-complete yet as their

Visual Studio IDE counterparts, but it is definitely workable.

In a follow-up article, we’d like to dig a bit deeper into unit

testing with VS Code, especially how to handle larger solutions

with multiple test projects.

Please let us know if you have specific questions regarding unit

testing .NET Core projects in VS Code so we can address your

issue in the next article. 

15 The default shortcuts for this are ‘Control-Shift-8’ to enable
watching and ‘Control-Shift-9’ to disable watching. So we
recommend remapping this or just clicking the button.

16 https://www.hanselman.com/blog/AutomaticUnit testingIn NETCore
PlusCodeCoverageInVisualStudioCode.aspx

Other VS Code extensions we can recommend

include:

 Azure CLI Tools for developing and running

commands with the Azure CLI.

 The Docker extension makes it easy to

build, manage and deploy containerized

applications from Visual Studio Code.

 GitLens supercharges the Git capabilities

built into Visual Studio Code. It helps you

to visualize code authorship.

 REST Client allows you to send HTTP

requests and view the response in Visual

Studio Code directly.

 Visual Studio Live Share allows you to

collaboratively edit and debug with others

in real time.

Reinier van Maanen

Marc Duiker

022 TEST ADVENTURES

Failure is not the opposite of success; it’s an essential part of it. It’s through failure,
in a controlled and tested environment, that we learn and improve; Trial and error is

the way most of us learned how to work with a computer. We don’t know any
software developer who did not crash his OS because of the ‘oeeee what does this

button do’ thought. It is because most of us could experiment safely with a computer,
that we understood how a computer works, and now we fix computers for our

entire family during Christmas because of that. The surprising truth about success
(and why some people never learn from their mistakes), is that it has everything

to do with failure.1

Authors João Rosa & Kenny Baas

Property-based
testing

Yeah! Science
In 2017 SpaceX showed for the first time

in history how they managed to land a

rocket back on Earth. For many, it was

a fantastic event. But what few people

don’t see is the process getting to that

point. But a few months later, SpaceX

posted a video online called ‘How Not

to Land an Orbital Rocket Booster’,

making fun of the mistakes they made

beginning from 2013 and onwards.

The videos show the reason behind

their success, failure! It is nothing new

to the space industry because that

industry is using a method build around

failure, the scientific method.

Falsifiability
When scientists use the scientific

approach, they come up with a

hypothesis and try to find evidence

that can falsify that hypotheses.

When we test our code with unit tests,

we can confirm that our code works,

and we can create an equivalence test

for it that shows it will fail. When we

do so, we test our code with fixed data

called fixtures. By using fixtures we fall

into the confirmation bias trap, the test

confirms that our code works, but only

with that input. These tests will only be

as robust as the possible arguments or

parameters tested against our code.

Quoting Romeu Moura: If we take a

String as an argument, then the works

of Shakespeare in Japanese & Korean

are ONE valid input. We can achieve this

robustness with parameterised testing.

However, this makes the unit tests so

big that it is harder to understand which

behaviour it is validating. We want our

unit tests to also serve as living docu-

mentation so they should be compre-

hensible and to the point. We can even

get into more trouble as our systems

evolve, and parameters can change,

making refactoring messy and slow.

System evolves
Every organisation evolves, transforms

itself. The organisation can start a

new business, create a new product

from market leads, or even expand

the operations to new countries.

The systems which support the

organisation also have a demand

to evolve side-by-side with the

organisation, adapting to the new

reality, allowing the users to be

competent with their tasks.

A classic example is the expansion of

business operations to a new country,

where they create new demand for the

system; re-use or creation of new

features can lead to a system evolution

to accommodate the new requirements.

However, with the system evolution,

it is also common to have some nasty

side effects, such as unexpected bugs

in re-used features. Using the previous

example, where an organisation

expanded the business operations

to a new country, the countries have

different national holidays; it can lead to

different behaviour on features which

are dependent on national holidays to

support business calculations, such as

in logistics operations. How can we

leverage Property-based testing to

create a supple design for our system?

Induce pain or stress the system
Using Lean Principles where we should

seek to continue improving the system,

one way is to induce pain or stress the

system. There are two ways to induce

pain in the system: in an uncontrolled

and controlled manner.

1 Black Box Thinking: Matthew Syed. ISBN13 9781473613775

Steer

Monitor

Deployment

Development
(Develop & Test)

XPRT. Magazine N°

7/2018

023

FsCheck in action
Imagine the following scenario: our team developed a

system to handle the costs of a parcel shipment. The rules

are straightforward; if the total cost of the parcel equals or

is higher than 20 euros, then the parcel is entitled to free

shipment.

The generation of the input datasets for our property-based

tests can be based on 2 methods, Primitive Generation or

Model Generation.

Primitive generation
The Primitive Generation is for the primitives offered by the

language. With C# we have bool, byte, sbyte, char, decimal,

double, float, int, uint, long, ulong, short, ushort and string

(we are ignoring object, given it is the base for the complex

data structures).

To test the parcel shipment scenario, we will start testing the

parcels which have a price below 20 euro, thus are not entitled

to free shipment:

public class WhenCalculatingParcelShipment
{
 [Property(Arbitrary = new[] {typeof(ParcelPriceBelow-

20Euros)})]
 public void GivenParcelPriceIsBelow20Euros_

ParcelShipmentIsNotFree(decimal parcelPrice)
 {
 var postalService = new PostalService();
 var isFreeShipment = postalService.IsFreeShipment

(parcelPrice);
 Assert.Equal(false, isFreeShipment);
 }
}

Notice the Property attribute as an arbitrary for the test, where

we explicitly set the context for the input dataset generation.

The Arbitrary is responsible for generating the values for the

feature under test, and for this case is defined as:

public class ParcelPriceBelow20Euros
{
 public static Arbitrary<decimal> ParcelPrice() =>
 Arb.Default.Decimal().Generator.
 Where(x => x > 0 && x < 20).ToArbitrary();
}

To complete the behaviour testing of the feature, we have a

second test focused on the parcels that are entitled to free

shipment:

public class WhenCalculatingParcelShipment
{
 [Property(Arbitrary = new[] {typeof(ParcelPriceEqualOr-

Above20Euros)})]
 public void GivenParcelPriceIsEqualOrAbove20Euros_Parcel-

ShipmentFree(decimal parcelPrice)
 {
 var postalService = new PostalService();
 var isFreeShipment = postalService.IsFreeShipment

(parcelPrice);
 Assert.Equal(true, isFreeShipment);
 }
}

public class ParcelPriceEqualOrAbove20Euros
{
 public static Arbitrary<decimal> ParcelPrice() =>
 Arb.Default.Decimal().Generator.
 Where(x => x >= 20).ToArbitrary();
}

Usually, we develop and test a system, and then deploy it to

production. From the feedback (system observability, user

feedback, among others), we continuously improve the system

to provide additional value. How many times did we felt the

pain from production? A nasty bug reported by a user that

corrupts data, or even cripples the system. As a development

team, we are under pressure to fix the issue observed in

production, which is an example of induced pain in an

uncontrolled way.

What if we shift left in the system stress, e.g., can we induce

pain during the development phase before deploying the

system to production? In this way, we can stress the system in

a controlled manner, where we can gradually introduce stress,

observing the system behaviour. If any unwanted behaviour

arises, it is caught and fixed during the development phase,

increasing the quality of the delivery.

Enter Property-based testing
Property-based testing is the construction of tests such

that, when these tests are fuzzed, failures in the test reveal

problems with the system under test2. In Property-based

testing, we randomly generate data points within the boundary

of a business invariant to verify the behaviour of the system.

The English Oxford Dictionary defines property as following:

“An attribute, quality, or characteristic of something”.

Property-based testing not only lets us test edge cases that

could expose unwanted and unexpected errors in the code

but also enables us to make small tests that are readable and

clear. Making these tests will also force us to think harder

about the problem at hand and improve our design and code

quality. Using Property-based testing pushes us to think about

the state or the state transitions of the feature under test,

rather than some value to satisfy some conditions. It leads the

development teams to have tests focus on the behaviour of

the system, rather than inputs to fulfil requirements.

The first framework implementing to use Property-based

testing with was QuickCheck3 for Haskell. A Property-based

testing framework has 3 main components: (1) a fuzzer,

generating pseudo-randomly values, (2) a sinker, which

reduces in an algorithmic way the number of hypothesis for

the input dataset, and (3) the tools for making the construction

of the property-based tests with the fuzzer and the sinker.

Property-based testing in C#
In the .NET world (C#, F# and VB.NET) the framework of

choice nowadays is FsCheck4.

FsCheck ticks all the three boxes and offers integration with

the 2 of the main .NET unit testing frameworks, xUnit and

NUnit. This integration allows for a faster learning curve for

the development teams since they do not need to learn yet

another new tool, keep them focused on delivering value for

the system.

2 https://hypothesis.works/articles/what-is-property-based-testing/
3 http://www.cse.chalmers.se/~rjmh/QuickCheck/ - QuickCheck

resources, visited on 31/08/2018
4 https://fscheck.github.io/FsCheck/ - FsCheck resources, visited on

31/08/2018

024 TEST ADVENTURES

Model generation
Often our domain logic is implemented using domain models

which is an abstraction of the real world. For this we need

to use model generation (note that some properties and

behaviour were omitted for brevity):

public class Parcel
{
 private readonly IEnumerable<Item> _items;
 public double TotalPrice => _items.Sum(x => x.Price);

 public Parcel(IEnumerable<Item> items)
 {
 _items = items;
 }
}

public struct Item
{
 public double Price { get; }

 public Item(double price)
 {
 Price = price;
 }
}

public class PostalService
{
 public bool IsFreeShipment(Parcel parcel)
 {
 return parcel.TotalPrice >= 20;
 }
}

Again, our first test will target the parcels that are not entitled

to free shipment:

public class WhenCalculatingParcelShipment
{
 [Property(Arbitrary = new[] {typeof(ParcelPriceBelow-

20Euros)})]
 public void GivenParcelPriceIsBelow20Euros_Parcel-

ShipmentIsNotFree(Parcel parcel)
 {
 var postalService = new PostalService();
 var isFreeShipment = postalService.IsFreeShipment

(parcel);
 Assert.Equal(false, isFreeShipment);
 }
}

With the dataset generator for the test as:

public class ParcelPriceBelow20Euros
{
 public static Arbitrary<Parcel> Parcel()
 {
 var input = from prices in Arb.Generate<double[]>()
 where prices.Sum() > 0 && prices.Sum() < 20
 select new Parcel(prices.Select(x => new

Item(x)).ToArray());

 return input.ToArbitrary();
 }
}

The complementary test, parcels that are entitled to free

shipment:

public class WhenCalculatingParcelShipment
{
 [Property(Arbitrary = new[] {typeof(ParcelPriceEqualOr-

Above20Euros)})]
 public void GivenParcelPriceIsEqualOrAbove20Euros_

ParcelShipmentFree(Parcel parcel)
 {
 var postalService = new PostalService();
 var isFreeShipment = postalService.IsFreeShipment

(parcel);
 Assert.Equal(true, isFreeShipment);
 }
}

public class ParcelPriceEqualOrAbove20Euros
{
 public static Arbitrary<Parcel> Parcel()
 {
 var input = from prices in Arb.Generate<double[]>()
 where prices.Sum() >= 20
 select new Parcel(prices.Select(x => new

Item(x)).ToArray());

 return input.ToArbitrary();
 }
}

Delayed feedback
For each time we run the tests, FsCheck will, by default, create

100 different inputs for one Property test. Because each tests

get run multiple times, this means we get delayed feedback

on our unit tests. The amount of time depends on the number

of tests we use. FsCheck will not linearly increase the unit test

time so that it won’t increase the tests times a 100. Using the

dotnet test --logger:trx we can verify the time that the

tests take. On a MacBook Pro from 2017, we get:

testName="GivenParcelPriceIsEqualOrAbove20Euros_
Parcel Shipment-Free" computerName="Joaos-MBP"
duration="00:00:00.0630000"

testName="GivenParcelPriceIsEqualOrAbove20Euros_
ParcelShipment-Free" computerName="Joaos-MBP"
duration="00:00:01.8040000"

testName="GivenParcelPriceIsEqualOrAbove20Euros_
ParcelShipment-Free_Unit" computerName="Joaos-MBP"
duration="00:00:00.0080000"

Not every Property-based test needs to be run 100 times

either. In FsCheck we can quickly change the default 100 times

to another number of our likings:

[Property(MaxTest = 50, Arbitrary = new[] {typeof(ParcelPrice-
 Below20Euros)})]
public void GivenParcelPriceIsBelow20Euros_ParcelShipmentIsNot-
Free(Parcel parcel)
{
 var postalService = new PostalService();
 var isFreeShipment = postalService.IsFreeShipment(parcel);
 Assert.Equal(false, isFreeShipment);
}

Also, we don’t need all tests to be FsCheck tests.

Since FsCheck integrates with xUnit and NUnit, we can

combine the standard unit tests with Property-based tests.

Decide on every single test if we will use FsCheck with the

default value, a custom run value or just a standard unit test.

João Rosa Kenny Baas

025

XPRT. Magazine N°

7/2018

Deterministic vs Non-deterministic
A basic rule in testing is that we want our test to be

deterministic, meaning that the tests will always result in

the same outcome with the same input. With Property-based

testing we are generating the data for our tests, so the tests

are non-deterministic. Non-deterministic tests are not a

problem as long as we can reproduce the errors that showed

up. So if we change our test to fail:

public class PostalService
{
 public bool IsFreeShipment(Parcel parcel)
 {
 return parcel.TotalPrice >= 10;
 }
}

We will get the following error:

PropertyBasedTesting.Tests.Unit.WhenCalculatingParcelShipment.
GivenParcelPriceIsBelow20Euros_ParcelShipmentIsNotFree

FsCheck.Xunit.PropertyFailedException :
Falsifiable, after 5 tests (0 shrinks)
(StdGen (610985339,296499972)):
Original:
PropertyBasedTesting.Tests.Unit.Parcel

---- Assert.Equal() Failure
Expected: False
Actual: True

----- Inner Stack Trace -----
 at PropertyBasedTesting.Tests.Unit.WhenCalculatingParcel-
Shipment.GivenParcelPriceIsBelow20Euros_ParcelShipmentIs-
NotFree(Parcel parcel) in /Users/joaorosa/Documents/code/
PropertyBasedTesting/PropertyBasedTesting.Tests.Unit/UnitTest1.
cs:line 37
--- End of stack trace from previous location where exception
was thrown ---
 at FsCheck.Runner.invokeAndThrowInner@318-1.Invoke(Object[] o)
 at <StartupCode$FSharp-Core>.$Reflect.Invoke@820-4.Invoke

(T1 inp)
 at FsCheck.Testable.evaluate[a,b](FSharpFunc̀ 2 body, a a)

Now we can use the StdGen tuple to seed an replay the failing

test as:

[Property(Arbitrary = new[] {typeof(ParcelPriceBelow20Euros)},
Replay = "610985339,296499972")]
public void GivenParcelPriceIsBelow20Euros_ParcelShipmentIs-
NotFree(Parcel parcel)
{
 var postalService = new PostalService();
 var isFreeShipment = postalService.IsFreeShipment(parcel);
 Assert.Equal(false, isFreeShipment);
}

This way we can rerun our failed tests easily and fix the bug we

just uncovered, a bug we usually would not find until maybe

perhaps a user or even worse a hacker found!

Works on my machine!
Using Property-based testing also means that a test someone

else wrote works on their machine, but fails on our machine,

or on the build server. A good practice is that we as a team will

fix this and own all the unit tests. Pairing or even when needed

mob program the error and learn from it as a team!

In this example, we used a simplistic view of the logistics

domain. In the real world, the domain logic usually is a lot

more complicated, with a lot of invariants. Modelling a domain

is always essential, and we would advise you to keep it simple.

An approach you can use for this is Domain Driven Design.

Still writing code for generators can take a lot of effort and

time, definitely, but it will repay itself. When we create

generators for our domain model, the code will get written

faster because we don’t need to be concerned with test data

anymore. We only need to configure the Property-based test

to put the domain models in a specific state. Property-based

testing will increase the teams’ domain knowledge, create

more clear living documentation through the unit tests, and

improve design and code quality.

You can find the code of this article at https://github.com/

joaoasrosa/xpirit-magazine-property-based-testing. 

In this article I’ll walk through the major use-cases where

people are using containers today, I’ll show why Docker is

a safe technology choice to invest in, and I’ll finish with a

learning path for you to get started with containers.

Use Case #1: Cloud Migration
Every company has a view on moving apps to the cloud.

From five-year migration programs, to an immediate need to

migrate because the data centre provider is shutting down in

three months (this really does happen). Whatever the driver,

running in the cloud should bring agility, flexibility and cost

savings. To get there you used to have to choose between

two approaches: Infrastructure-as-a-Service (IaaS), and Plat-

form-as-a-Service (PaaS).

IaaS means renting virtual machines and deploying your apps

in the same way you do in the datacenter. You can use your

existing deployment steps, but you take all the inefficiencies

of running virtual machines on-prem into the cloud. Take a

simple example of three distributed apps, where each

component runs in a separate VM for isolation:

026 CLOUD STRATEGY

Why Containers
Will Take Over

the World
Containers are the third model of compute, after bare metal and virtual

machines - and containers are here to stay. Docker gives you a
simple platform for running apps in containers, old and new apps on

Windows and Linux, and that simplicity is a powerful enabler for all
aspects of modern IT.

Author Elton Stoneman

App 1

App 2

App 3

Running those apps to the cloud might use 30 VMs in

production, for high availability and scale. That can cost

$5K a month. You’ll still have single-digit CPU utilization

for your money, and you can’t dynamically scale because

of the time it takes to start and configure new VMs.

PaaS is at the other end of the scale. It means using the

full product suite of your cloud provider and matching the

products to the features your app needs. In Azure that could

mean using App Services, API Management, SQL Azure and

Service Bus queues.

You get complete managed solutions from the PaaS option,

together with high-value features like auto-scaling. And using

shared services means you should save on cost - but it’s going

to take a project for every app you want to migrate. For each

app you’ll need to design a new architecture, and if you’re

swapping out core components you’re going to need to

change code.

027

XPRT. Magazine N°

7/2018

Docker gives you a new option which combines the best of

IaaS and PaaS - move your apps to containers first, and then

run your containers in the cloud. It’s a much simpler option

that uses your existing deployment artifacts without changing

code, and it gives you high agility, low cost and the flexibility to

run the same apps in a hybrid cloud or multi-cloud scenario:

The process is simple. For each component in your app

you write a Dockerfile, which is a script that deploys the

component into a Docker image. Docker images are a

snapshot of one version of your component - they contain

the compiled binaries, dependencies and configuration -

everything your app needs to run. The image is portable, you

share it by pushing it to a central registry of images, which

could be the public Docker Hub or your own private registry.

Then you run your app in a container and it runs in the same

way everywhere.

Use Case #2: Cloud-Native Apps
Cloud-native applications are how greenfield apps should be

built. The Cloud Native Computing Foundation definition is

container packaged, dynamically managed, microservice apps.

In a cloud-native architecture, each component runs in its own

service, with its own private data store. The microservices-

demo application on GitHub is a great sample architecture:

It’s a web app with a single front-end, but the full feature set is

provided by many small services – like the catalogue service,

cart service and payment service. Those services each run in

their own containers. Logically they form one app, but they’re

physically distinct components and that means they can all

have their own deployment cadence. You can add catalogue

features by deploying an updated catalogue service, without

changing any of the rest of the app.

This is a huge enabler for the business because it removes

lengthy regression-test cycles and decreases the time from

idea to deployment. There’s no need to test the cart service

or the orders service if you’re adding a catalogue feature,

because those other components stay the same. It’s also a

great technology enabler. The sample project uses .NET Core,

Go, NodeJS, Java, Mongo and MySQL - a whole range of

technologies. The architecture gives you the freedom to use

the right technology for each component.

You can also include production-grade open source

components into your solution. Popular technologies are

already packaged into public Docker images which are

owned by the OSS project team, so you get the best-practice

configuration of the latest version of the software, just by

running a container. Check out the Cloud-Native Computing

Foundation’s landscape, which categorizes a huge range of

technologies that fit neatly into cloud-native apps, from

message queues and databases to metrics servers and

dashboard visualizers.

Adopting cloud-native design accelerates your app delivery

and the end result is a self-healing application which is cleanly

defined in a single manifest file, and which you can deploy

to any Docker cluster, knowing it will work in the same way

everywhere.

Use Case #3: Modernizing Traditional Apps
Cloud-native apps should be an important part of your future

projects, but enterprises already have a much larger landscape

of traditional applications. These are apps with a large

monolithic codebase, running as single components.

They may have manual deployment processes, or they may

be automated by joining many tools. They are complex and

time-consuming to develop and test, and fragile to deploy.

Many organizations are also managing apps across a range

of operating systems which are at or nearing end-of-life -

including Windows Server 2003 and 2008. It’s hard to maintain

an application landscape which is running on diverse opera-

ting systems, which each have different toolsets and different

capacities for automation.

Docker brings consistency to all containerized applications,

old and new, on Windows and Linux. The Windows Server

Core Docker image is maintained by Microsoft and it has

support for older application platforms - including .NET 2.0

and 32-bit apps. You can take a 15-year old application and

App 1

App 2

App 3

Payment

Shipping

Order User

Front-end

User

Catalogue

Queue-
Master

Cart

Mongo

NodeJS

RabbitMQ
Java Java

Java /
.Net
Core

Mongo MongoMySQL

Go Go Go Java

Queue

028 CLOUD STRATEGY

run it in a Windows container, deploying

your existing MSIs in the Dockerfile, with

no code changes.

You can run your monolith in a

container and get all the efficiency,

portability and security benefits of

Docker. Old apps which are still being

used but not actively developed can

stay as monoliths. Apps which are still

active projects can make use of

Docker to modernize the application

architecture. You can split features out

of the monolith, add new features and

use functionality from open source

components, all running in containers

and all managed by Docker:

Containers let you evolve your

traditional apps towards a cloud-

native design, without needing a 2-year

project to rearchitect them as micro-

services. You can run a production

Docker cluster which has a mixture of

Windows and Linux nodes, for running

cross-platform distributed applications.

You could run Nginx in Linux containers

to add performance, security and

scalability to an ASP.NET WebForms

app running in Windows containers.

Use Case #4: Technology Innovation
Technical innovation doesn’t end with cloud-native apps. Trends like IoT, machine

learning and serverless functions are all coming closer to mainstream, and they’re

all made easier and more manageable by Docker. I’ll focus on serverless here.

Serverless is all about containers. Developers write code and the serverless

framework takes care of packaging the code into a Docker image, and running it

in a container when a trigger comes in - like an HTTP request or a message on a

queue. The Cloud Native Computing Foundation has specced out the architecture

and deployment pipelines which are common to all serverless platforms:

Boring ASP.NET 3.5 monolith Cool new .NET Core app

Awesome open-source project

Architecture

FaaSController

Platform Services (Identity, Data, ...)

Synchronous or
Asynchronous

invocationEvent SourcesEvent SourcesEvent Sources
Function Instance
Invoker

029

Serverless started with AWS Lambda and Azure Functions, but

it isn’t just for the cloud. There are great open-source projects

that use the same architecture and pipeline, but they run in

Docker, so you get all the benefits of a consistent platform on

the developer laptop, on test VMs in the datacenter, and on

any cloud.

Open-source platforms like OpenWhisk, Nuclio, Fn and

OpenFaas are powered by containers and have very active

communities, as well as support from enterprises like IBM and

Oracle. And because they’re just containers, you can run a

serverless platforms on the same Docker cluster that’s already

running your cloud-native apps and your traditional apps.

Use Case #5: Process Innovation & DevOps
The last big challenge facing enterprise IT is about cultural

change and the move to DevOps, which should bring faster

releases of higher quality software. DevOps is rightly positi-

oned as people and process change, using frameworks like

CALMS which focuses the change on Culture, Automation,

Lean, Metrics and Sharing.

But it’s hard to make big changes and measure their impact

unless you underpin them with new technologies. Creating

a folder called “DevOps” on the shared drive and putting all

your deployment documents in there is not progress. Moving

to Docker helps drive the change to DevOps, underpinning all

the elements of CALMS:

 Culture / Common artifacts

 Automation / Build, ship & run

 Lean / Incremental updates

 Metrics / Consistent landscape

 Sharing / Production-grade OSS

The most significant benefit is helping the cultural change.

Having teams working on the same technology and speaking

the same language – Dockerfiles and Docker Compose files -

is a great way to break down barriers. And people are excited

by Docker. It’s an interesting, powerful new technology which

is easy to get started with and quickly improves practices

from development to production. Teams adopting Docker are

enthusiastic and that helps drive big changes like the move to

DevOps.

Containers: Flexible and Open Technologies
Moving the to the cloud, delivering new apps, modernizing

old apps, supporting technology innovation and process

innovation - that’s pretty much everything that’s happening

in the IT industry. Docker helps it all happen, which is why

containers will take over the world.

But there is some work to do to get there. You need to write

Dockerfiles to package your apps to run in Docker containers.

You need to write Docker Compose files or Kubernetes

manifests to define all the pieces that make up a distributed,

containerized app. Deploying, managing and monitoring

apps is different when they’re running across hundreds of

containers.

You need to make an investment to get the benefit of

containers, but it’s a safe investment to make. You can start

with what you currently have, and you’ll be moving to open

technologies. You’re not restricted to certain languages or

frameworks - you can Dockerize pretty much anything if you

can script the deployment. And you won’t be locked in to

any one vendor - the Docker image format and the container

runtime spec are open standards, so you can run your apps

on any container platform.

The Learning Path: Getting Started with Docker
If containers are going to going to take over the world, you’d

better get on board. As soon as you start looking at the

container space you’ll see a huge array of technologies -

Docker Swarm, Kubernetes, containerd, Istio, as well as all

the vendor platforms - Docker Enterprise, AKS on Azure,

and Amazon’s EKS. Where do you start?

Here’s my opinionated learning path. It starts you off easily and

adds capabilities (and complexity) with each step. The idea is

you stop when you get what you need. The endgame could be

running a cloud-native .NET Core app on a service mesh with

Istio on Kubernetes, or it could be running .NET Framework

apps in Windows containers on Docker Swarm. Either of those

is correct, if it works for you:

 1. Run a container
  Instal Docker Desktop and run Nginx or IS

 2 Package your own app
  Write a Dockerfile and build a Docker image

 3. Run a distributed app
  Use Docker Compose to define and manage many containers

 4. Run an app with high availability and scale
  Initialize a Docker Swarm cluster and deploy your Compose file

 5. Add autoscaling, sidecar logic and network policies
  Spin up a Kubernetes cluster for extra features over Docker Swarm

 6. Control container integration with rate limiting & routing rules
  Deploy and configure a service mesh on your cluster - this is where Istio comes in

There you are. It’s simple really, and Pluralsight is your friend

here, there’s a whole set of Docker and Kubernetes courses,

with lots more on the way. Now is the time to get started,

so install Docker Desktop on Mac or Windows and go

Dockerize! 

XPRT. Magazine N°

7/2018

Pipeline

Spec

Artifact
(bin/image)

Events

Code

Function
Instance

Invoker

Build Deploy Monitor &
Auto-Scale

030 CLOUD STRATEGY

Imagine diving straight into the combined logs of your application for the last

hour and trying to find out why a certain part does not respond anymore, without

any clear direction or suspicion about what type of problem you are facing.

You’re searching for a needle in a haystack and it will be very hard to quickly and

methodically find the problem. Furthermore, you might not even find a real problem

in the logs of your application. You may be facing infrastructure issues that do not

clearly manifest as problems in your application logs. In this article we will introduce

you to metric systems that allow you to gather the right metrics in the right place in

this new environment. We apply these metric systems specifically to Kubernetes but

they are also valid for other platforms.

When you want to know the health of your system two terms are important:

Monitoring and Observability.

Monitoring versus observability
First let’s talk about the difference between monitoring and observability and why we

feel it is important to make this distinction. When we talk about monitoring we look

at whether our system works. This is done using numerical measures or metrics that

can be compared over time and plotted into graphs or tables. Also, alerts can be set

on these metrics, so you can be notified when problems start to occur. Examples

of these metrics are: number of failed requests per second, percentage of memory

usage, average duration of requests, number of requests per second etc. The metrics

used for monitoring are usually not very human readable on their own and they are

often plotted against time or against another metrics in a graph in order to make

sense.

When we talk about observability we look at investigating why the system is not

working. An example of this is logging readable messages in a file or another more

central logging system. These messages contain details about the behavior of your

application and can be very useful when trying to find out what exactly is wrong.

Gathering metrics
on Kubernetes

A million and one metrics to choose from, but what to monitor?
The IT world has been evolving at a rapid pace, and we now have microservices that
run inside docker containers on Kubernetes being hosted in public or private clouds.

These shifts in technology and platform also introduce new challenges, such as
how do you monitor your applications in these environments?

Authors Pascal Naber & Sander Aernouts

“Monitoring tells
you whether the

system works.
Observability lets

you ask why it’s
not working.”

Baron Schwarz

XPRT. Magazine N°

7/2018

031

There are various levels of logging that can range from fatal

errors (your application is crashing) to very verbose messages

that help you debug your running application to find out why

your application is behaving in a specific way.

Monitoring and observability serve different purposes.

Good metrics gathered in the right places will help you

monitor your system and pinpoint where a problem is

occurring, and it will give you some notion of what type of

problem it is. But to answer what exactly is going on you will

have to dive deeper and need more detailed information,

and this is where observability comes in. When you have

found the most likely place a problem is occurring, you can,

for example, start diving into the logging and then into the

suspicious application or suspect part of the application to

figure this out. In the remainder of this article we will only talk

about what metrics to use for monitoring, since observability

is an entirely separate topic.

What metrics to use?
There are a million and one metrics that can be collected,

but trying to monitor a lot of different metrics is confusing

and does not help you to quickly find out what is wrong.

Luckily, we do not have to reinvent the wheel, as there are

already several sets of metrics available for both applications

and infrastructure. In this article we will look at the two most

well known in these areas: the four golden signals and USE.

Four Golden Signals
The most well-known way of logging metrics are the Four

Golden Signals. Google has described this in the book Site

Reliability Engineering, which can be read online for free:

https://landing.google.com/sre/book/chapters/monitoring-

distributed-systems.html#xref_monitoring_golden-signals

Google describes four kinds of metrics to monitor user-facing

systems in their book. When the following four golden signals

are measured, and a human is being paged in case of

problematic signals, the service is decently monitored.

The four golden signals are:

 Latency: the time it takes to service a request.

 Traffic: a measure of how much demand is being placed on

your system (e.g. http requests per second)

 Errors: the rate of requests that fail

 Saturation: the part of the system which is most

constrained.

These signals are suitable for monitoring your application or

microservice, if you like. They don’t monitor the CPU, Disk or

Memory (it’s hard to define how to monitor the traffic of a CPU

for example). For this reason, we also need to monitor our

infrastructure. For infrastructure a practice named USE is also

available.

RED method

Tom Wilkie coined the RED method which is based on the

Four Golden Signals without saturation. Wilkie believes

saturation as it is used in the Four Golden Signals is for more

advanced use cases and suggests to focus on the other three

metrics first.

https://www.weave.works/blog/the-red-method-key-

metrics-for-microservices-architecture/

 The Prometheus configuration

and Grafana dashboards for the

RED method are made available

by Tom Wilkie on this github

repository, which can be found here:

https://github.com/kubernetes-

monitoring/kubernetes-mixin

USE
When we look at the infrastructure, we can use the “USE

metrics” to monitor the resources. USE was conceived by

Brendan Gregg in his blogpost “The USE method”

(http://www.brendangregg.com/usemethod.html). USE is a

method to monitor resources such as CPU, Memory and

Disk. USE is an abbreviation and stands for:

 Utilization: the average amount of time the resource was

busy performing work – this tells us how busy the resource

is.

 Saturation: the degree to which the resource has extra work

it cannot perform directly. Often this work is queued.

One hundred percent saturation means the resource is

servicing the exact amount of work it can handle, so no

queuing occurs yet.

 Errors: the number of errors that occur.

If you apply both the Four Golden Signals and USE metrics to

your infrastructure and application stack, you have a decent

visibility of the health of both your infrastructure and your

application.

About errors

You may need to filter or separate some of the metrics out,

depending on the type of errors that occur. For example, if

your service returns many Bad Request (400) responses, your

average duration might be very short, as Bad Request usually

means the caller did not send the right information, so the

response is sent almost instantly. So, you might want to

exclude Bad Requests responses from your duration metric.

Also, you may want to consider whether a Bad Request is

really an error. In most cases it means the caller did not

send the right information so it is not really an error in your

application.

Depending in your situation these metrics may require some

finetuning.

Next, we will look at how to apply these concepts to

Kubernetes.

We can treat the nodes and pods as infrastructure and thus apply the USE metrics

to these levels. And for the application we can use the Four Golden Signals.

For infrastructure we need to go one level deeper, and we need to define what

resources to monitor with the USE metrics. For nodes and pods we can look at the

following resources: CPU, memory and disk. We apply the USE metrics to each of

these resources.

The following diagram illustrates the various levels of monitoring and the resources

and metrics that should be gathered when we apply the USE method and the Four

Golden Signals:

How to gather these metrics on Kubernetes
The aim is to be able to gather various sets of metrics on three levels of our

application. The de facto standard for gathering this type of information on

Kubernetes is Prometheus, combined with Grafana for dashboards. With Prometheus

we can scrape metrics from different endpoints. To gather metrics about the nodes,

pods and application we will have to expose Prometheus-compatible endpoints for

all of this.

CNCF graduates

Both Kubernetes and Prometheus are part of the Cloud Native Computing

Foundation (CNCF). At the moment of writing this article, both CNCF projects

have reached the graduated stage. See https://www.cncf.io/projects/

To expose metrics for the nodes we can use the node exporter that is part of

kube-prometheus. This is an application that you run in a pod on each node as

a daemon set. It will expose metrics about your node through a Prometheus-

compatible endpoint.

To expose metrics for the pods we can use CAdvisor. CAdvisor is part of your

Kubernetes cluster by default and exposes metrics about your pods through a

Prometheus-compatible metrics endpoint. You don’t have to run any additional

pods for these metrics.

To expose metrics for the application, the application itself will have to expose

these metrics through a Prometheus-compatible endpoint. For .NET applications

a good library to expose metrics to Prometheus is AppMetrics

(https://github.com/AppMetrics/AppMetrics).

032 CLOUD STRATEGY

Four golden signals and USE on
Kubernetes
Three different levels can be identified

when monitoring an application that

runs on Kubernetes. In Kubernetes your

application runs inside a pod which runs

on a node. So, we can look at these

three levels. First, the node itself. If a

node is experiencing issues, you may

see issues in your pods as well. Next, we

can look at the pod itself. If the pod is

experiencing issues, you may also see

issues in your application. Lastly, we

can look at the application itself.

The underlying infrastructure (node

and pod) may be healthy, but your

application can still have issues that

are unrelated to the infrastructure.

The following image illustrates how

these three levels are related. A pod

runs on a node and an application

runs “on” a pod.

The following picture illustrates these

dependencies. When a lower level is

unhealthy, you are likely to see issues in

the levels above as well. So when we are

monitoring our systems we take a look

first at the lowest level, and if that level

is healthy we move up to the next

level. This way gives you a structured

approach to pinpoint which level is

having issues.

Node

Utilization

CPU

CPU

Pod

Application

Rate

Utilization

Saturation

Memory

Memory Errors

Saturation

Errors

Disk

Disk Duration

Errors

App

App

Pod a

Pod c

Node 1

Node 2

Pod b

Pod d

App

App

App

Pod

Node

Pod

App
Four
golden
signals

USE

XPRT. Magazine N°

7/2018

033

Prometheus

The following image shows how these parts work together to make metrics available

To get started quickly, you can use the Prometheus operator combined with

kube-prometheus to set up Prometheus, Grafana and a set of default metrics

and dashboards. Both can be found in this repository on github: https://github.com/

coreos/prometheus-operator and are available as Helm charts that you can install

into your cluster.

App App

metrics metrics

Pod a

Grafana

cadvisor

Node 1

node exporter

Pod b

cadvisor

Pascal Naber & Sander Aernouts

Summary
There are many metrics that can be

gathered from infrastructure and

applications. Luckily there are already

several metrics systems available that

can help you to collect the right metrics

in the right place. In Kubernetes we can

gather metrics on different levels: node,

pod and application. You treat node and

pod as infrastructure and apply the USE

metrics to these. For the application,

you can use the Four Golden Signals.

You can use Prometheus and Grafana to

gather and visualize these metrics.

When you apply these metrics to your

application in Kubernetes, you have a

solid foundation for monitoring. 

034 DEVOPS

A short history
In the past, technology did not have a

dominant share in the products and

services of companies. IT was managed

in a decentralized manner, and was

closely related to the business, directly

supporting it. The world was not

changing every second and products

and services were not digital. Its role

was to support the business, and this

is why IT was seen as a cost center.

Over time, digitalization of products and

services slowly started to strengthen

the role of IT, which resulted in larger IT

departments. At that time, IT was often

organized around software delivery

value streams* with all required roles

and expertise located on the same

office floor. When you looked inside

these software delivery value stream

organizations, they were organized

horizontally (frontend, backend,

operations, etc.) and in that way they

were siloed. Because these silos are

often reflected in the software

architecture as described in Conway’s

Law**, technology was not yet

optimized for maximum flow.

However, from an organizational

perspective, the department was

aligned in order to foster a climate

of working towards a common goal.

Technical dependencies caused by the

aforementioned silos were manageable

and also aligned for future optimization.

These opportunities for optimization

made Patrick Debois coin the term

DevOps in 2009. The goal of DevOps

was to implement changes that would

enable the IT department to make

steps towards optimizing the speed

of high-quality software delivery by

bringing development and IT operations

closer together. Unfortunately, around

the same time the idea of IT as a cost

center was being strengthened due to

a worldwide economic recession. This

forced companies, banks and insurance

companies to cut costs. As a result, IT

was centralized in shared service cen-

ters and centers of excellence that focu-

sed on technical disciplines, or it was

outsourced. Centralization of IT allowed

these companies to optimize the utili-

zation of their resources, but later on it

became apparent that this is not optimal

when you want to increase the speed of

high-quality software delivery.

** Conway’s Law
“Organizations which design systems

... are constrained to produce designs

which are copies of the communication

structures of these organizations.”

–M. Conway

Architectures of systems will be

designed and shaped in the way that

the organization to deliver these

systems is shaped. If you have

technology value stream teams

organized around a frontend application

or around backend services or other

splits, the architecture will reflect this.

The idea of reversing this is to design

the architecture you want, with low

coupling and high cohesion and form

your technology value streams around

that, enabling you to maximize the flow

of value.

Back to the future
Nowadays we are living in a world that

is changing every second. Because of

digitalization everyone and everything is

connected with each other. Marc

Andreessen’s article on “Software is

Back to the
future of the
value stream

Reflecting on lessons learned using value streams
in leading a DevOps transition.

Authors Martijn van der Sijde & Jasper Gilhuis

XPRT. Magazine N°

7/2018

035

eating the world”1 is being confirmed by changes in industries every day. Products

and services are largely digital. The idea that “IT is the business” is making its way

into the board room. This new mantra is giving IT a leading strategic role in the

organization. If you doubt whether this is true, try the following: ask a banking

executive what would happen if he would send all his bankers home. Then ask him

or her to imagine how long it would take before the bank would be out of business.

After that, ask how long this would take if all IT-operations personnel, the people

who prevent or solve system failures, would be sent home. Or how long this would

take if all software developers were not there, causing a halt to all changes in

software required for selling products or for complying with regulations.

In this rapidly changing world, the business and thus IT needs to be able to respond

quickly to external developments and threats in order to achieve their business goals.

Competitors who are able to add new features more quickly and deliver these to

customers faster will outsmart the competition. To be able to keep up, it requires

companies to be able to innovate and adapt rapidly, whilst at the same time maintai-

ning high quality and security. The good thing is that the characteristics of software

and cloud-facilitated services and infrastructure, on which digital products and

services are based, enable this when applied correctly. This is why IT is turning into

a profit center instead of a cost center. To be able to maximize the benefits of IT as a

strategic innovation driver, the focus needs to be on delivering value, using software

delivery value streams, while optimizing its speed and quality. Applying DevOps

principles and practices help to realize this.

To help kick-start this optimization, we must identify value stream(s) and choose

one to start with. In a way we are reverse engineering to where we came from before

the centralization into centers of excellence took place. But in the case of reversing

Conway’s Law, the organization and technology value stream teams will have to

follow the technology, instead of the technology following the way IT departments

are organized. This is because our point of departure is the technology and the

teams around it, while focusing on maximum flow of value. In other words: back to

the future of the value stream.

* Value stream
Value streams originate from the manufacturing world. It typically covers the entire

cycle from a request to delivery. Its sole purpose is to identify value. Value is only

added when it is delivered to the requestor. Value streams can be used to identify

flows of information and material. After identifying these flows it is important to add

a timeline to these flows. Value streams can help identify bottlenecks or even waste

in your system. In manufacturing this seems obvious, but one often fails to apply

value streams in business and IT processes.

An example of a simple development value stream, covering personas and covering

the process from work being identified towards the actual product being deployed in

production.

Development Value Stream

How to carefully select a value
stream to start with
With DevOps we concentrate on the

software development value streams

and the products and services they

deliver. As stated in Gene Kim’s

DevOps Handbook2 you should start

by carefully selecting your first value

stream. This is key because this

selection determines the difficulty of

the transformation, both technically

and culturally. This is important from

a change management perspective,

because you need to increase your

chances on a first success to be able to

scale your transformation throughout

the organization. In addition, the people

leading this DevOps initiative must also

be given the opportunity to experiment

and learn to do this transformation.

The following steps can guide you in

selecting the right value stream:

1. First identify domains that deliver

products and services. A way to do

this is by looking for logical clusters

of applications.

2. Evaluate these domains on a set of

criteria. These criteria cover the areas

of people, process and technology.

Examples are: importance of time-

to-market and ability to innovate,

willingness for change, opportunity

for quick wins. Creating a weighted

score based on these criteria helps

you choose and select a domain and

value stream you want to focus on.

3. Identify the software delivery

value streams (and their mutual

dependencies) delivering products

and services in that domain.

Design a logical grouping of the

capabilities these value streams

provide. The technology should

be functionally cohesive and not

logically cohesive in order to reduce

dependencies as much as possible,

providing opportunities for maximi-

zing flow.

4. Staff the team(s) for the value streams

of the software delivery. You can use

the DASA Competence Framework3

for guidance on the required hard-

and soft skills.

1 Marc Andreessen, https://on.wsj.com/2oWxsdy
2 DevOps Handbook http://bit.ly/2oYTgVT
3 DASA Competence Framework

http://bit.ly/2NDtrJj

P
e

rs
o

n
s

In Production

D
u

ra
ti

o
n

Work identified

036 DEVOPS

Setting goals and measuring the effect of your improvements
In short the reasons for adopting DevOps are: being able to produce better products

and services, delivered in a faster, and if possible, cheaper manner. Better products

and services can be detailed further stating that the products and services need to be

of high quality and can be easily adapted to changes in requirements and opportuni-

ties for innovation.

However, when do your improvements contribute to these goals? It is known that

only one out of three experiments will truly be successful for your value stream.

You need to know whether a change you have made was an improvement or not.

That is why metrics are a hot topic when applying DevOps principles and practices,

and rightfully so.

So far so good. Every well-known DevOps resource points you in that direction.

Then the next question is: what metrics to start with and how to measure them.

Based on DORA whitepapers4 we recommend that you start collecting data for four

metrics right away that tell you something about delivery speed and product and

service quality (see Figure 1 Aspects of software delivery performance (– source:

State of DevOps report 2018).

 Deployment frequency

 For the primary application or service you work on, how often does your

organization deploy code?

 Lead time for changes

 For the primary application or service you work on, what is your lead time for

changes (i.e., how long does it take to go from code commit to code successfully

running in production)?

 Time to restore service

 For the primary application or service you work on, how long does it generally

take to restore service when a service incident occurs (e.g., unplanned outage,

service impairment)?

 Changing failure rate

 For the primary application or service you work on, what percentage of

changes results either in degraded service or subsequently requires remediation

(e.g., leads to service impairment, service outage, requires a hotfix, rollback,

fix forward, patch)?

Figure 1 Aspects of software delivery performance (source: State of DevOps report 2018)

The count of releases to production, the changes the release contains and the

number of reported incidents are metrics that are often already registered or

available in a change and incident management system in a non-DevOps world.

Or these metrics are part of your team’s backlog in an Agile planning and CI/CD

system like Azure DevOps***. The time of incident creation and the time of incident

closure following a release can be registered, and this allows you to calculate

the time to restore. The same is true for the number of releases to a specific

environment. For the change failure rate, the relation between these two data

entities, a release and an incident, needs to be made. A quick and easy way to do this

is to look at the creation dates of both, and relate them to each other in that way.

This leaves us with the lead time for changes. For automatically calculating this, the

basic CI/CD pipeline needs to be implemented (as mentioned earlier) to be able to

collect this data easily. The work item administration will be the main source for the

required data.

* Azure DevOps Metrics
Azure DevOps, previously known as

Visual Studio Team Services (VSTS),

offers functionality for visualizing

metrics. These extensions are available

through the marketplace.

Figure 2 shows a sample Lead Time

metrics chart available in Azure DevOps,

using the Analytics extension from the

marketplace.

Figure 2 Sample Lead Time graph

For more information on Cycle Time and

Lead Time, see: http://bit.ly/2wXDn6E using

the Analytics extension http://bit.ly/2NvpciD.

Having these metrics in-place befo-

re the transformation allows you to

forecast what benefits your DevOps

initiative can bring. It also allows you to

periodically measure whether your im-

provement experiments are contributing

to this. From here you can add additi-

onal metrics as you see fit. You get the

most value out of these metrics when

they are measured over the integrated

work across all teams on a product. It is

important to note that these metrics do

not measure individual or team perfor-

mance, but are value stream-related.

What’s next? Value stream
mapping and continuous
improvement
When we have our first technology

value stream and have put the

foundation for metrics in-place, it is

time to adopt a continuous improve-

ment process as a vehicle for making

improvements. Or enhance this process

if it is already there. The basis for this

is creating a value stream map for the

development value stream.

4 Accelerate: State of DevOps 2018 http://bit.ly/2oW0sSN

 Forecasting the value of DevOps Transformations http://bit.ly/2Qk9YLZ

XPRT. Magazine N°

7/2018

037

Figure 3 Continuous improvement cycle

The value stream map will show the

roles of people who take part in the

software delivery value stream from

requirement until monitoring a product

in production. It shows which tasks they

execute to make this possible.

The process to depict this will already

be of help, because it allows us insight

into what is required to get software

into production. The next thing they will

learn is where any inefficiencies occur in

their work. In other words, it will expose

bottlenecks that prevent a reduction in

time-to-market and an increase in

delivering quality. This gives them input

for experimenting with improvements

that reduce these bottlenecks.

The metrics data will clarify whether

an improvement had the impact that

was expected. Basic metrics need to be

available from the start as explained, but

based on a specific improvement, these

metrics can be extended as required,

as part of the continuous cycle.

Three take-aways
Of course, the steps explained in this

article are just a few highlights of

what is necessary to get a DevOps

transformation up and running.

For example, we did not discuss giving

people a DevOps foundation through

training, or the steps required to change

management behavior. The focus was

on the elements that are related to

the value stream. The three things you

should take away after reading this

article are as follows:

1. To determine where to start your

DevOps transformation process,

create a matrix of domains that you

have identified. In this matrix you

score each of the criteria that you

think are important to arrive at a

value stream selection. These criteria

should take people, process and

technology into account. It will tell

you something about the relative

amount of resistance to change that

you can expect in the value stream

teams, and how this value stream

will benefit from technology

optimization. It will also show the

importance of time-to-market and

innovation for the business of this

value stream. The weighted score of

this matrix will lead you to your first

value stream and will enable you to

start your DevOps transformation

initiative.

Plan C
o
d
e B

u
ild

 Test Releae Deploy O
pe

ra
te

M
o

n
ito

r

Determine Business Goals,
Vision and Principles

Select Value Stream

DevOps Mindset
Alignment

Assess Current DevOps
Maturity

Evaluate Metrics

Execute Imptovements

Identify actionable
improvements

Continuous
Improvement

Determine applicable
metrics

Run a Value Stream Map
Workshop

2. Before you start making improve-

ments with your value stream, make

sure you can report the following four

metrics:

 1. Deployment frequency

 2. Lead time for changes

 3. Time to restore service

 4. Change failure rate

 This will allow you to continually

track progress towards the goals you

have set. It is important to be able to

measure your own success, but

it is also important to be able to

show your success to higher-level

management. So, start by making

an analysis of the raw data current-

ly available in your release and ITIL

management systems. If this data is

insufficient, then make improvements

before you start optimizing your value

stream with DevOps principles and

practices.

3. The value stream map is the heart-

beat of your continuous improvement

process. Adopting a continuous im-

provement process with teams allows

them to make any change

required in a structured and

measured way. The first step is to

create a value stream map of your

software delivery value stream.

The bottlenecks that are identified

can be prioritized based on the

aspect that has the most added value

for achieving particular business

goals. You should update your value

stream map on a regular basis, for

example every three months. 

Martijn van der Sijde Jasper Gilhuis

039

XPRT. Magazine N°

7/2018

Put teams in
control with Azure
Security as Code
DevOps is the current trend in software development where autonomous teams should
own the full life cycle of a product. In short, this means they need to build and run
the product they own. Teams become responsible for writing the code, managing the
infrastructure, monitoring the application health, and supporting the product. By using
autonomous DevOps teams, organizations hope to be able to respond to the ever-changing
demands of their clients and be able to differentiate from their competitors.

Authors René van Osnabrugge & Geert van der Cruijsen

What are the options for DevOps teams to perform
permission management?
But how do we enable DevOps teams to manage

permissions? There are several options to consider so let’s

take a look at a few examples for a team working on Azure.

Firstly, teams could utilize the Azure Portal to manually

manage the permissions. That might work for small

organizations and startups, but as soon as you start to scale

up, or when audit regulations come in to play, the portal is

very limited in functionality. It does not support audit trails,

and it requires high privileges for many users. And by allowing

certain users to be Azure subscription owners, the risk is that

they might break other infrastructure by carrying out manual

changes.

The most important downside is that this approach requires

a lot of manual labor and it is impossible to reproduce the

current state if you would need to recreate your entire

infrastructure.

Hello ticket system!
When permissions need to be limited to fewer people, a

second solution that is being used a lot in non-DevOps

cultures is a ticketing system. These kinds of solutions help

in streamlining the process but have some major downsides.

When teams with the special privilege of setting these

permissions have to support many teams, or get a large

number of requests, queues might occur and thus these

requests will block the flow of development teams.

Another downside is that these forms and tools are far away

from the code and tools the development teams love to use.

And last but not least, there is only a paper audit trail of what

was requested, but this has no relation with what actually

happened. There is no way to recreate the environment from

the audit trail in the ticket system.

Automation is key
The best option is to use automation for these kinds of

repetitive tasks. We’ve seen several companies build their

own self-service portals and have even helped some of them

release these types of solutions. These self-service portals

can streamline the permission requests in a far superior way

compared to ticketing systems, because all requests are

automatically handled by the application instead of ending up

in a queue for a human to process them. This automated

process can be extended to match your own requirements.

However, an automated self-service portal also has some

downsides. Building such an application requires quite some

coding effort, and since we’re working with permissions and

access, security bugs can be easily introduced. And, if you

want to build more complex requirements such as audit trails

or 4-eyes principles, your application becomes more complex,

which comes with substantial maintenance effort. Another

downside of automated self-service portals is something it

shares with the ticketing system: It is still a portal somewhere

on the inter/intranet that is far away from the tools the

developers like to use.

040 DEVOPS

Our Goal: Rethink the way in which
development teams interact with
organizational silos
Permission management is one of the

many examples where development

teams have a dependency on

another team, department or system.

Other examples are firewalls, identity

management, and computing

resources. In our case, we wanted to

build a better solution for development

teams to perform permission

management, but similar solutions

can be created for other scenarios.

In our scenario, we wanted to create

a solution for development teams

that would tackle the difficulties of

managing permissions with a number

of key goals in mind:

A solution that works for
developers
Our solution should be something that

is close to developers, integrates in their

workflow, and does not require all kinds

of web applications that are located

somewhere on the inter/intranet.

We did not want to customize too much

ourselves but we had a number of

requirements that we considered as

“must haves”. These requirements were

things like audit trails, 4-eyes principle

on changes, automated deployments,

and versioning on changes

And last but not least, it should connect

to developers. What do developers love

most? Code! So the solution we build

has to be based on code. Not just any

code, but code that can easily be read

by developers and by non-developers.

What can building a solution based
on code offer us?
The most frequently used communi-

cation mechanism between business

and developers is through documents.

Documents that describe what needs

to be done. A very nice approach to

make this a bit more structured and

readable by both humans and machines

are structured files, For instance,

YAML, XML or JSON, which is human

and machine readable.

When requirements like permissions,

firewall ports, etcetera are written down

in a structured format, all of a sudden

this can be implemented automatically

by a machine. When we describe our

permissions in structured files, which

is essentially just code, developers can

change it within their development

workflow without having to make

changes in other solutions.

Let’s take a look at an example file:

resourcegroup: xpirit-asac-article
- userPrincipal: Asac-Group-Owners
role: Owner
- userPrincipal: Asac-Group-Readers
role: Reader
- userPrincipal: asac-user-01@road-
toalm.com
role: Contributor

This snippet, with a few lines of code,

describes the end state of users and

groups in a resource group. When you

look at the snippet, you see straight

away what the resource group looks

like. If you compare this with requests

in a ticketing system, you would have

to take the start state and all changes

together to see what the current or end

state should look like.

This is great, but the main advantage

of a structured file is that it can be

shared with the team, the business and

operations. And even better, it can be

interpreted and executed by a machine.

This makes recreating environments a

lot easier as well.

041

XPRT. Magazine N°

7/2018

Version Control as auditing tool
Now that we have a solution for writing

the requirements in code, we should

also have a solution for the audit trail,

4-eyes principle, and versioning.

Here is where source control, in our

case Git, comes in. Combining code

with Git, which most developers are

already accustomed with, gives us most

of the requirements we wanted, and for

free! Git has built-in functionality for

versioning, branching and audit trails.

Most Git servers have pull request

features which give us reviews, appro-

vals or 4-eyes principles. And when we

add automated builds and releases, we

can also add automation to process

these code changes into environment

changes.

The last advantage of having the

permissions in code is that the team

itself is in full control of what the

changes will be. They do not require

certain admins or central teams to

manage their permissions for them.

Introducing Azure Security as Code
As mentioned before, the principle of

using structured files and Git instead

of manual work and ticketing systems

is broadly applicable. Many systems

can be unlocked by applying the

same principles. To give you a hint

of what is possible we would like to

guide you through our use case:

‘Setting permissions on Azure’.

The first thing we thought about was

the technology stack. We wanted a

library that was cross-platform and

could be easily extended using the

Azure API. The eventual choices we

made for our technology stack were

as follows.

YAML

We use the YAML format to store the

security configuration. YAML can easily

be read by people, even the not so

technical ones, and it is great for

merging in Git.

AZ Command Line Interface

(Azure CLI)

All interaction with the Azure API is

done with the Azure CLI. We choose

this because Azure CLI is a cross-plat-

form implementation that is broadly

used. Microsoft promotes the API and

makes sure it is always up-to-date with

the latest Azure API. Alternatives like

PowerShell Modules or C# libraries are

sometimes lacking behind.

PowerShell Core

To write the orchestration of the scripts

and make it easily usable as cmdlets,

we use Cross-Platform PowerShell.

This runs on every platform and is

perfect to write the script flow, using

the Azure CLI for doing the real work.

Docker

As an optional service, especially for

people on Linux or Mac, we provide a

Docker container where both the CLI

and PowerShell are installed together

with the latest version of the Azure

Security as Code library.

Installing the software
The second thing we thought of was

the usage of the library. How will people

consume the library? We wanted to

make this is as easy as possible and

came up with two different distribution

mechanisms: installing via a Powers-

hell Module, and running it in a Docker

container.

Because we understand that every use

case is different, we made it an open

source library so people can extend and

modify it to their needs.

Azure Security as Code can be installed

from the source code on Github, by

installing the Powershell Module from

the PowerShell Gallery or by pulling

and running the Docker container from

Docker Hub. This article uses the

PowerShell Modules.

To get started, open a PowerShell

Windows (admin mode) and install

the Azure-SecurityAsCode Module.

Because the modules use the AZ CLI

underwater, login to Azure with the

Azure CLI as well.

Install-Module Azure-SecurityAsCode
#login with Azure CLI
az login

Looking at the available cmdlets there

are 3 main categories:

 Get-Asac-All[Resources] – This

retrieves all resources of a specific

type into separate YAML files.

For example. all resource groups and

related RBAC settings will be stored.

 Get-Asac-[Resource] – This retrieves

a specific resource into a YAML file.

 Process-Asac-[Resource] – This

applies the configuration that is

defined in the YAML file.

Let’s take a sample scenario to under-

stand how this works.

Scenario: Manage your RBAC on
resource groups
To make it a bit more tangible, let’s

walk you through a scenario in which

we want to baseline the security of our

Azure Resource Group. We want to

let teams manage their own security

without giving them the keys. Therefore

we need to baseline the resource group

and store the settings as a structured file

in Git, where the development team can

then modify it.

Get all the resource groups in the
subscription and their RBAC settings
in the current
directory
Get-Asac-AllResourceGroups
-outputPath $pwd
Get settings for 1 resource group
Get-Asac-ResourceGroup -resourcegroup
xpirit-asac-article -outputPath $pwd

When these commands are executed,

a YAML file for each resource group is

created in the target folder as follows:

resourcegroup: xpirit-asac-article
rbac:
- userPrincipal: Asac-Group-Owners
role: Owner
- userPrincipal: Asac-Group-Readers
role: Reader
- userPrincipal: asac-user-
01@roadtoalm.com
role: Contributor

Let’s assume we want to assign rights to

asac-user-02, make them Reader, and

remove the Asac-Group-Readers from

the resource group.

042 DEVOPS

We update the YAML as follows:

resourcegroup: xpirit-asac-article
rbac:
- userPrincipal: Asac-Group-Owners
role: Owner
- userPrincipal: asac-user-
01@roadtoalm.com
role: Contributor
- userPrincipal: asac-user-
02@roadtoalm.com
role: Reader

After updating the YAML, we call the

following Asac cmdlet.

Process-Asac-ResourceGroup -resource-
group xpirit-asac-article -basePath
$pwd

The new settings are applied to the

resource group.

This scenario is for resource groups, but

the same actions can also be executed

for other resources, for example SQL

Server, DataLakeStore, and Key vault.

Making this part of the
development process
Now that we have seen how easy and

convenient it is to set roles and users,

we need to ask the question: “How

can we embed this in the development

process?”

The answer is pretty simple. In exactly

the same way as you treat your other

code and configuration files.

The first step is to set up a Git repository

that can hold all the configuration files.

A perfect way to make your Git

repository accessible to everyone is

to use Azure DevOps Repos.

The next step is to set branch policies

on your Git repository that allow you to

control check-ins to the Git Repository.

If you want teams to set and request

their own security settings, but still want

to have control over the process, branch

policies are a perfect way to do so.

In Azure DevOps, navigate to the code

repository and select branches.

On the master branch, select the

Branch Policies option.

Select the [Require a number of

reviewers] policy in the branch policy.

Optionally add Automatic Reviewers to

have someone from the security team

review all the changes.

Once you have set up the branch policy,

you need to make sure the policy is

applied once you have changed this.

Of course there are many ways to do

this. The easiest way is to have a

Continuous Integration build that runs

every time a change is merged to the

master branch.

Just configure a build with a Powershell

script that runs the Process-Asac-

[resource] cmdlets.

What else can we do?
The way forward in a DevOps world

where automation is key, is by moving

towards a model in which configuration

is stored as code. By using Git and Build

Pipelines as a mechanism to move

configuration changes to production

offers a lot of benefits. First and

foremost the auditability and traceability

of a change, and secondly it is a nice

and easy review mechanism.

But Configuration As Code can bring

more benefits. You can use it to

describe end-state, which enables you

to rebuild things from scratch without

having to know all history. And you can

use it as living documentation of your

system, or use the files as baseline to

validate changes.

Azure Security as Code is one example

of how to use development methodo-

logies as a way to enable development

teams. But of course this does not

only apply to our specific scenario.

Rethinking the way in which people

interact, replacing humans with

machines and manual actions with

automated processes is the real take

away. You can do this by storing settings

in a structured format, choosing the

right technology stack, and enabling

your end-users to stay close to the tools

they use and love. Because in the end it

is all about enabling people to be more

productive and deliver more value to

the end-customers.

Would you like to contribute?
If you want to contribute to the library,

please take a look at our Xpirit Github

page https://github.com/XpiritBV/azure-

security-as-code. 

Rene van Osnabrugge

Geert van der Cruijsen

XPRT. Magazine N°

7/2018

Think ahead.
Act now.

www.xpirit.com

If you prefer the digital
version of this magazine,
please scan the qr-code.

