
XPRT.

Together we drive change.

13 is a lucky number

The hidden maintenance cost,
bitrot!

Real world mocking! Http Service
testing in C# using Wiremock.Net

Creating 3D experiences
for Azure Digital Twins

Magazine N° 13/2022
XPRT.

XPRT. M
agazine N° 13/2022 Building a sustainable softw

are supply chain

Building a Sustainable
 Software Supply
Chain

Certified Microsoft Azure Fundamentals (AZ-900)
Certified Microsoft Azure Administrator (AZ-104)
Certified Microsoft Azure Developer (AZ-204)
Designing Microsoft Azure Infrastructure Solutions (AZ305)
Certified Microsoft DevOps Engineer Expert (AZ-400)

Azure DevOps Engineer Expert (AZ-900 • AZ-104 • AZ-400)
Azure DevOps Engineer Expert (AZ-900 • AZ-204 • AZ-400)
Azure Solutions Architect Expert (AZ-900 • AZ-104 • AZ-305)
Azure Developer Associate (AZ-900 • AZ-204)
Azure Administrator Associate (AZ-900 • AZ-104)

Transforming your business
will not work without the
right knowledge

xpirit.com/training

We offer tailer made solutions,
contact Max for all options.
Max Verhorst / +31 (0)6 13 46 80 02 / mverhorst@xpirit.com

Learning Journey

https://xebia.com/academy/nl/training/certified-azure-foundation
https://xebia.com/academy/nl/training/microsoft-azure-administrator
https://xebia.com/academy/nl/training/certified-azure-developer
https://xebia.com/academy/nl/training/microsoft-azure-devops-engineer?queryID=617581ca44cfa960a4927cf7d8bac123
https://xpirit.com/training

XPRT. Magazine N°

13/2022

Colophon

XPRT. Magazine No 13/2022

Editorial Office
Xpirit Netherlands BV

This magazine was made by
Xpirit Netherlands André Geuze, Anne Meijer,
Arjan van Bekkum, Bas van de Sande, Casper

Dijkstra, Chris van Sluijsveld, Davy Davidse
,Diederik Tiemstra, Dennis Thie, Duncan

Roosma, Erick Segaar, Erik Oppedijk, Erwin
Staal, Geert van der Cruijsen, Hans Bakker,

Hindrik Bruinsma, Immanuel Kranendonk, Jas-
per Gilhuis, Jesse Houwing, Jesse Swart, Jesse

Wellenberg, Kees Verhaar, Loek Duys, Liuba
Gonta, Maarten Blok, Maira Duijst - Camu, Ma-
nuel Riezebosch, Marc Bruins, Marcel de Vries,
Mark Foppen, Mark de Haas, Maria Stepanova,
Martijn Tieland, Martijn van der Sijde, Matthijs

van der Veer, Max Verhorst, Michiel van
Oudheusden, Natascha Former, Niels Nijveldt,
Patrick de Kruijf, Patrick van Kleef, Reinier van

Maanen, René van Osnabrugge, Reda Fakir-
mohamed, Reza Atlaschi, Rik Groenewoud,
Rob Bos, Robert de Veen, Roy Cornelissen,
Rutger Buiteman, Sander Aernouts, Sander

Trijssenaar, Sofie Wisse, Suraj Sewbalak, Thijs
Limmen, Tiamo Idzenga, Tijmen van de Kamp,

Victor de Baare

Xpirit Belgium Pieter Gheysens, Gill Cleeren,
Annemie Vandenberghe, Wesley Cabus, Kristof
Riebbels, Kristof van Hees, Jasper Van Mensel,

Laurenz Ovaere, Wouter Van der Auwera, Jordi
Borghers, Stephane Eyskens, Pieter Nijs, Lesly

Bernaola, Sorin Pasa

Xpirit Germany Michael Kaufmann, Thomas
Tomow, Tobias Mackenroth, Olena Borzenko,
Andreas Läubli, Gema Morilla Guirado, Andriy

Chevychalov, Michael Contento

Xpirit USA Esteban Garcia, Robert Bremer,
Elizabeth Abreu, Natalie Reinfordi,

 Stuart Celarier, David Sanchez

Contact
Xpirit Netherlands BV

Laapersveld 27
1213 VB Hilversum

The Netherlands
Call +3135 538 19 21

mverhorst@xpirit.com
www.xpirit.com

Layout and Design
Studio OOM

www.studio-oom.nl

Translations
Mickey Gousset (GitHub)

© Xpirit, All Right Reserved
Xpirit recognizes knowledge exchange
as prerequisite for innovation. When in

need of support for sharing, please
contact Xpirit. All Trademarks are

property of their respective owners.

 004 13 is a lucky number

 006 Accessible web components
by design

 021 Real world mocking! Http Service
testing in C# using Wiremock.Net

 031 Creating 3D experiences for
Azure Digital Twins

 040 Moving the Business Needle

 037 GitHub Actions has security
issues

 045 Bring Observability into practice
with Azure Managed Grafana

 012 Start dealing with Nullable
Reference Types!

 009 The hidden maintenance cost,
bitrot!

 025 Scaling application security with
codified security knowledge

 033 How to move to the cloud
according to the Microsoft Cloud
Adoption Framework

 043 Xpirit USA – Expanding our
worldwide Authority mission

 028 What is Azure Virtual Desktop
(AVD)

 016 Getting Your IoT Projects Off The
Ground By Building On Azure

 018 Introduction to Blazor

INTRO

STATE OF THE ART SOFTWARE DEVELOPMENT

MOVING THE BUSINESS NEEDLE

APPROPRIATE CONTINUITY

POWER THROUGH PLATFORM

In this issue of XPRT. Magazine, our experts
share their knowledge about building a
Sustainable Software Supply Chain.

If you prefer the
digital version of

this magazine,
please scan the

qr-code.

009

028

040

045

mailto:mverhorst%40xpirit.com?subject=Xpirit%20DevOps%20Bootcamp
https://www.xpirit.com
https://www.studio-oom.nl

004 INTRO

13 is a lucky
number
Friday, 9th September, was our Xpirit Innovation Day. With around 100 people from
Xpirit Netherlands, Xpirit Belgium, Xpirit Germany and Xpirit USA we innovated on all the
things we like. The last few times, we combined our innovation day with some global
team building with drinks, dinners and a great location. This time we went back "to normal"
at our office. Personally, I really liked this. Back to the essence of our innovation day and
actually our company. Sharing Knowledge and learning together. Our innovation day has
no rules or boundaries, no required deliverables (besides a demo at the end of the day) and
is fully focused on learning!

Author René van Osnabrugge

When I walked around the office during our innovation day,

I picked up the first magazine we created back in 2015. It looks

different, the content has become irrelevant, but in its essence,

it is the same. Great articles written by passionate people that

write about the things they love. Sharing their knowledge and

working on their and our authority mission. Back then, I was

extremely proud when we produced this first magazine.

And that feeling did not change with the 11 editions that

followed. Fast forward to this 13th edition, I am still extremely

proud of our magazine, but even more our knowledge driven

culture. The only thing that changed is we are now 100 people

instead of 8.

All these 100 people that are sharing knowledge and work with

our customers have another thing in common. We all help our

customers to become a high-performing software company

by helping them build an inclusive and secure organizational

culture that fosters talent and is driven by sharing and equality

so they can achieve the impossible. We call this building an

engineering culture. In our previous magazine we talked about

what an Engineering Culture is and introduced the eight pillars

that contribute to this. It all starts with State of the Art Software

Engineering where we focus on building high-quality

software. The pillar Smooth Delivery describes all the work

and knowledge we need to get this software in production.

Appropriate Continuity is all about Security and Compliance

and keeping the software running. We do this to help

customers to Move the business needle. To enable this and

get the desired speed, we use the Power through Platforms

and an Empowering Operating Model. We can only enable

this to be a Knowledge Driven company where we share and

build knowledge.

And last but not least, we need to build an Epic Workplace.

This building of an engineering culture is the central theme

that binds us at Xpirit. We all work to achieve this from our own

perspective and expertise. And this magazine is another great

reflection of this.

We are still on top when it comes to State of the Art Software

Engineering. In this magazine, you can find a number of great

articles. We talk about Bitrot, Blazor, Wiremock, Frontends

and Nullable Reference types. You can also see that we build

on the shoulders of giants by leveraging the Power Through

Platforms. Our guest writer from GitHub, Remco Vermeulen,

writes about GitHub in combination with CodeQL. We share

our finding on the security investigation on GitHub actions.

We show how Azure Virtual Desktop can really help you to

leverage the power of cloud. You can also read an article

about Azure Digital Twins and how it can help you to use

the power of IoT combined with 3D visualization.

We have an article on monitoring using Grafana and how

it can help to assure the continuity of the business. On a

somewhat higher abstract level, we talk about moving the

business needle, and last but not least, we introduce you to

our new member of the Xpirit group, Xpirit USA.

In This 13th magazine, you will find 13 great articles. It is a

reflection of what keeps us busy at the moment. A treasure of

knowledge and hopefully an inspiration for you, our reader.

That said, 13 is definitely a lucky number. Please let us know

what you think on any of our channels, and thank you for

reading! Enjoy!

XPRT. Magazine N°

13/2022

005

René van Osnabrugge
Chief Technology Officer

rvanosnabrugge@xpirit.com

mailto:?subject=
https://www.linkedin.com/in/renevanosnabrugge
https://www.github.com/renevanosnabrugge
https://www.twitter.com/https://twitter.com/renevo
https://www.twitter.com/marcelv

006 STATE OF THE ART SOFTWARE DEVELOPMENT

Accessible web
components by

design
Websites and apps in the public sector and governments must comply to the W3C accessibility

standards. Everyone should be able to easily find, view and use these websites. For all other
websites there are no regulations. Research have shown that 97.4% of the top one million websites
don't offer full accessibility. These websites had an average of 50 high/critical accessibility findings

on their homepage1. This is a lot and most of the time these issues are not hard to resolve.

Author Thijs Limmen

15% of all people have some sort of disability. For visual

impaired people it’s important that a website has good colour

contrasts. People with motor/mobility issues need a website

that can be accessed using just a keyboard or custom input

devices. For people with learning/cognitive problems a website

should be structured, intuitive, calming. People with hearing

difficulties would want to have captions on video. Incidentally

anyone could be disabled: Sleep deprivation or breaking an

arm.

Improving accessibility is not just about making a website

available for these 15% of people with a disability. It benefits all

people in any environment. For example, having the correct

colour contrasts also helps people with perfect eyesight

using a website, for example, outdoors in bright sunlight.

Having captions on video helps people watch a video on

mute in a busy environment. In general, websites that have

full accessibility are perceived better. More-over Gartner has

researched that Digital products in full Web Content

Accessibility Guidelines (WCAG) Level 2 compliance are

expected to outperform their market competitors by 50% by

2023. (Gartner, 20202).

Many big companies have their own identity and branding

(design system). This design system is in many cases expressed

through reusable style classes and accessibility tags which

are put on HTML elements. For different pages, many layouts

and patterns are copy-pasted. Websites grow fast. It’s hard

to maintain accessibility and over time accessibility becomes

inconsistent, simply forgotten, or not important anymore.

It's important to think about accessibility from the start in your

web development process. In this article I will explain about

reusable web components that are accessible by default.

You will see how to implement a reusable web component

using the W3C accessibility standards and how to test such

component on its accessibility features.

After, I'll cover the "by design" part of the article title and shine

some light on how you could improve the usability of your

website. Usability is about designing products to be effective,

efficient, and satisfying (a.k.a. user experience design). Not to

be confused with accessibility.

Accessible by default component library
This component library contains all the building blocks from

the design system your UX designer invented. If you create

components that are accessible by default, then you only must

implement accessibility once per type of component.

Jacob's Law from Laws of UX3 (See Laws of UX paragraph)

explains that users spend most of their time on other websites,

so they prefer your website to work the same. This also counts

for the accessibility of your components. Luckily for all types

of components there are well documented patterns about

how to make them accessible based on the W3C standard4.

Always apply the dumb vs smart components best practice

when creating components in your component library.

Most component should be dumb and only have little

state and presentational logic. Smart components have

more responsibility like doing http calls, managing state.

1 https://blog.hubspot.com/website/accessibility-statistics
2 https://www.gartner.com/en/documents/3986300/compliance-and-beyond-4-ways-digital-accessibility-gives
3 https://lawsofux.com/en/jakobs-law/
4 https://www.w3.org/WAI/ARIA/apg/patterns/

XPRT. Magazine N°

13/2022

007

These components usually consist of many dumb components

(building blocks) and is mapping state onto them. Keep the

dumb components small with single responsibility.

Many people with disabilities make use of screen readers in

order to interact with a website. Screen readers will read out

to the user what is currently visible, focussed, possible options,

etc. aria-tags are used on HTML elements in order to let your

screen reader interact with them. In the next chapter you will

see how these aria-tags are used in order to create an

accessible by default checkbox component.

Tip: Install the WAVE chrome browser plugin5 to easily see if ‘aria’
tags are being used (correctly), so screen readers interact with your
website better.

Tip: Enable a screen reader, close your eyes and try to
complete a task on your website. 😉

Accessible by default checkbox component
For this example, I'll cover the checkbox component. In many

cases you must implement your own checkboxes, because the

regular HTML checkboxes are very hard to style.

The following is the W3C accessibility standard explanation

for a checkbox:

 An element has role 'checkbox', so that screen readers

understand that it’s interacting with a checkbox.

 The checkbox has an accessible label provided by the visible

text content contained within the element with role check-

box. So, people using a screen reader know what checkbox

they are interacting with.

 When (un)checked, the checkbox element has state

'aria-checked' set to true/false, so that screen readers

understand that a checkbox is checked/unchecked.

Create a 'dumb' component in your framework of choice

that is used with the following HTML signature:

HTML
<custom-checkbox value="false"
changed="onChanged($event)">Unchecked</custom-checkbox>

The implementation of this component is as follows. As you

see, it contains everything the W3C standard explained.

HTML
<div class="custom-checkbox-style" role="checkbox"
aria-checked="{{ value }}" tabindex="0">
 <slot></slot>
</div>

 Use tabindex="0" to make the div focusable and interactable.

 <slot></slot> is used for content projection. For the above

example, the text 'Unchecked' will be projected here.

Now you never have to think about accessibility for your

checkbox component ever again!

Accessibility driven test (Testing Library)
You created the accessible by default component and now

you want to test the accessibility features of it. Testing Library6

is a great tool that can help with this. A web component’s

unit test should not test the component’s instance and its

methods/properties. What is visible to the user and what the

user can interact with is what matters.

Bad example without Testing Library (Angular):

Typescript
 const checkbox: HTMLInputElement =
fixture.nativeElement.querySelector('input');
 expect(checkbox.checked).toBeFalsy();
 const event = new MouseEvent('click');
 checkbox.dispatchEvent(event);

 Doesn't test if this div has the role checkbox

 Doesn't test if the checkbox is labelled for screen readers to

understand

 Doesn't test if the checkbox has aria-checked

 Doesn't actually click a button

 It's very technical

Example with Testing Library with a user pressing spacebar to

check the checkbox:
 it('should check checkbox when user presses the spacebar’',
() <> {
 </ Mount checkbox component

 </ Arrange
 const checkbox = screen.getByRole('checkbox', { checked:
false, name: 'Unchecked' });

 checkbox.focus();

 </ Act
 userEvent.keyboard('{space}');

 </ Assert
 expect(checkbox).toBeChecked();
 </ expect value to be emitted
});

 Tests that a checkbox has role="checkbox"

 Tests that the checkbox has aria-checked="false"

 Tests that the checkbox that is labelled for screen readers

to pick up

 Tests that the checkbox can receive focus (tabindex="0")

 It tests user interaction through spacebar keyboard press,

following the W3C standard.

You should add additional tests for the following tests:

 Uncheck when user clicks the checkbox

 Focus checkbox when user presses tab

 Can you think of more accessibility tests?

5 https://chrome.google.com/webstore/detail/wave-evaluation-tool/jbbplnpkjmmeebjpijfedlgcdilocofh
6 https://testing-library.com/

Testing library works the same for all major frontend frame-

works. So, a Testing Library test written in Angular, can be

re-used when migrating to a different framework like React.

Laws of UX
When thinking about Usability there are many rules that could

apply. Laws of UX7 is a collection of easy-to-understand best

practices for designing user interfaces. It contains the take-

aways from many psychological studies about user experience.

It's good to know about the psychological laws the top apps

use to keep you engaged in their apps. For example, Doherty

Threshold principle about the perceived waiting experience of

a user:

Doherty Threshold8

Productivity soars when a computer and its users interact at

a pace (<400ms) that ensures that neither has to wait on the

other.

1. Provide system feedback within 400 ms in order to keep

users' attention and increase productivity.

2. Use perceived performance to improve response time and

reduce the perception of waiting.

3. Animation is one way to visually engage people while

loading or processing is happening in the background.

4. Progress bars help make wait times tolerable, regardless of

their accuracy.

5. Purposefully adding a delay to a process can increase its

perceived value and instil a sense of trust, even when the

process itself takes much less time.

It's nice to reference these principles when developers have

created an interface that is not usable, which I have seen a lot.

Tip: Always have a dedicated UX designer available when creating
any website. Preferably already in the initiation phase of a project.

Visual Component Testing and Vite 3.0
A big trend currently is visual component testing. Many popular

frameworks such as Cypress, Playwright and Storybook

are now publishing Beta support for this. Visual tests were

usually very slow, flaky and/or hard to maintain, but that has

now changed through the power of Vite 3.09 (means 'fast' in

French). It is a build tool that aims to provide a faster and

leaner development experience for modern web projects.

It is revolutionising web development and making Webpack

a thing of the past.

Now tests are fast, and developers get very good visual feed-

back about the state of their test. Also inspecting a browser

and seeing logs in a browser console for debugging is a lot

better than interpreting the Terminal test output and guessing

the state a view is in.

I would currently suggest Cypress 10 Component Testing

Beta. I think it currently has the best developer experience

compared to the other tools and tests are very fast. It comes

with a complete tool which makes it easy to navigate through

your test suite, re-run tests, debug tests, and step through

in-between steps of a specific test.

Tip: Try-out the Cypress 10 Component testing introduction10.

Practical Usability Tests
Ask a close relative or colleague to test your website. You will

be surprised how many things don't work well or are confusing

to the user:

1. Give them a goal to accomplish, like registering an account.

2. Just observe them. Do not help, don't speak. They might be

struggling, or not.

3. Look at their non-verbal communication. A smile, a

confused look, body language. This should give you

enough information. Words are not that important.

Optional:

4. Film their upper body and the corresponding screen

recording to play back.

You should reach out to accessibility user groups including

people with disabilities that like to help with testing your

website's accessibility.

You could also hire a company that specializes in doing

usability tests with actual end-users of your website or

people that fit a specific persona.

The reason this works so well is that you are biased, and you

went through a specific flow on your site maybe ten to

hundreds of times. Do you remember being new to something

and you spot everything that doesn't work well?

Let's create a more accessible internet for everyone!

008 STATE OF THE ART SOFTWARE DEVELOPMENT

7 https://lawsofux.com
8 https://lawsofux.com/en/doherty-threshold
9 https://vitejs.dev/guide/
10 https://docs.cypress.io/guides/component-testing/writing-your-first-component-test

Thijs Limmen
Consultant

tlimmen@xpirit.com

mailto:tlimmen%40xpirit.com?subject=
https://www.linkedin.com/in/thijs-limmen
https://www.github.com/thijslimmen

009

XPRT. Magazine N°

13/2022

The hidden
maintenance
cost, bitrot!
Sometimes it is very hard for customers to understand the hidden costs involved when
you build custom software. By a hidden cost, I mean a phenomenon that apparently is
back in our industry called BitRot.

Author Marcel de Vries

What is BitRot?
Back in the day, BitRot was caused by the fact that the

magnetic media we used to store our computer programs

sometimes lost their magnetic information, causing problems

reading the data back. With the industry moving to new ways

to store data, like solid-state drives, the problem is still there

but not predominantly visible anymore. We have algorithms

that store our data in such a way that the lost data can be re-

covered, and from an end-user perspective, BitRot seems

to have vanished completely.

Bitrot redefined
Although the original problem has gone more or less away,

we are now confronted with a completely new way that bitrot

is coming back in our industry. You might disagree with me

about reusing the name BitRot for something different, but in

essence, the problem we face manifests itself in the same way.

If we don't touch the software, we write for even a few weeks,

the software deteriorates!

Let me explain what is going on here.

BitRot today is the issue when we don't touch our software for

a few days or weeks, and the software deteriorates caused by

a number of sources. Let me share a few of the issues you will

face when building software today.

New known vulnerabilities
A known vulnerability is some weakness found in the software

you wrote or in any software you used to build your application

or website that someone can exploit. You might think, why

would my software all of a sudden become exploitable while

I haven't touched it? This is caused by the fact that attackers

become smarter each day. They find new innovative ways to

exploit software. Since the software that is written often

contains tons of code not only written by your own company

but also open source components, the chance of your soft-

ware becoming vulnerable itself is a significant risk. This does

not immediately mean your software will be exploited as well,

but the likelihood that your software becomes exploitable will

increase almost every day. This is something you need to keep

track of and you need to make updates or changes to your

software to keep up with the current state of the industry.

The number of vulnerabilities found is also increasing all the

time. You can see how fast this is picking up in the following

graph the NVD publishes1. I added a capture of the chart that

shows how many known vulnerabilities are found and that the

rate of finding them is constantly increasing.

0 bits flipped

Data degradation – Wikipedia

1 bit flipped 2 bits flipped 3 bits flipped

1 https://nvd.nist.gov/general/visualizations/vulnerability-visualizations/cvss-severity-distribution-over-time

Updates of used frameworks or packages
Your software is rarely built from scratch. To build software,

you will use other software components all the time.

Depending on the technology you use to write your programs,

you use NuGet packages (.NET), Maven packages (Java),

Node Packages (Node/Web Development), RubyGems

(Ruby development), etc. These packages are built and

maintained by others and, coming back to the previous topic,

they also need to maintain their software to keep it free from

known vulnerabilities. Also, they want to provide new

capabilities and features constantly. This implies those

packages will get new versions all the time, and keeping up

with those more recent versions is not to be taken lightly.

Let's assume you build a simple Hello World web application

using .NET 6 and React. You can see the screenshot of what

I did to create the application in Visual Studio 2022:

New ASP.NET with React project

This will result in an astonishing set of 1,487 Dependencies

from the NodeJS ecosystem and 15 more from the .NET

ecosystem. Starting with a clean template (I updated

everything before I created the application in Visual Studio),

this already resulted in 23 Known Vulnerabilities of which 9

are at the level of High!

Analysis of new project with Dependabot (GitHub)

Updates on compilers and tooling
Then there are the dependencies on Visual Studio 2022, which

has updates at least once every month. We took a dependency

on the .NET framework that is updated at least 1x per year and

every two years has a new stable release that is supported for

a maximum of 3 years. Not to mention all the small updates

that might come to fix bugs and vulnerabilities. And finally,

we took a dependency on the NodeJS toolset, which is also

updated multiple times a year. These tools also tend to make

breaking changes. You must constantly keep them up to date

because they can also contain known vulnerabilities that might

compromise your development environment!

010 STATE OF THE ART SOFTWARE DEVELOPMENT

CVSS Severity Distribution Over Time
This visualization is a simple graph which shows the distribution of vunerabilities by severity over time. The choice of LOW,

MEDIUM and HIGH is based upon the CVSS V2 Base score. For more information on how this data was construted please see

the NVD CVSS page.

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

Low Medium High

20,000

18,000

16,000

14,000

12,000

10,000

8,000

6,000

4,000

2,000

0

D
is

tr
ib

u
ti

o
n

XPRT. Magazine N°

13/2022

011

Newer versions of the languages and frameworks
Finally, there are also dependencies on the languages we use.

In this example, I used React which is Javascript/typescript

based, and C#10 for the .NET codebase. C# is updated on a

yearly cycle, and if you look at the versions of Node, then you

see you need to update this every six months:

Releases | Node.js (nodejs.org)

Those language and framework updates can be significant if

you look at the amount of work involved to actually use the

new capabilities. Not using them still makes your codebase

deteriorate from a maintainability perspective since the

industry is moving on with new ways of utilizing the language

and framework features. New team members on a project

will have a hard time adapting old programming styles and

inefficiencies if you only ensure it compiles.

How can we mitigate this issue?
First of all, the most important thing is that you allocate time

to keep things clean. This means allocating a certain budget

of time to keep your packages up to date and spending time

updating to newer minor or major versions of packages that

come available. There is no silver bullet in solving this issue,

but taking the time for it is one step in the right direction.

Secondly, you can automate some of this when you are using,

e.g., GitHub as a DevOps platform. Here you have the option

to enable a feature called Dependabot that will inform you that

your packages are out of date or contain known vulnerabilities.

When it knows the vulnerability can be mitigated with a new

package version, it will even create a pull request for you.

You still need to review it and approve the PR, so it becomes

part of the main codebase. There are also tools that can

integrate with most DevOps platforms to manage automated

updates for you e.g. Renovate2.

And then the final check is, when do I take the dependency?

Be very aware of the fact that taking the dependency adds a

maintenance cost. Building something yourself will also incur

significant costs, but it should be a decision you make and

not just a default you accept all the time. Be very aware of the

tradeoff and that a dependency incurs a cost as well.

Conclusion
The software you build is in a constant state of decay, and

you must allocate a significant portion of time to keep things

evergreen and up to date. Waiting for your updates will cost

you significantly more time than updating constantly.

The adage "if it hurts, do it more often" applies here and

makes the software delivery cadence more predictable and

more secure. So make updating packages, frameworks, and

languages part of the standard maintenance cycle!

The real challenge lies in making our customers aware of

this problem and finding ways to make them aware that they

need to maintain software. You can not leave software

untouched for a few weeks since, in the meanwhile, the

software becomes outdated and vulnerable. And last but not

least it will become more complicated each day to make it up

to date again.

2 https://docs.renovatebot.com/

Marcel de Vries
Chief Executive Officer

mdevries@xpirit.com

mailto:?subject=
https://www.linkedin.com/in/marcelv
https://www.github.com/vriesmarcel
https://www.twitter.com/marcelv

012 STATE OF THE ART SOFTWARE DEVELOPMENT

Start dealing with
Nullable Reference

Types!
Since C# 8, developers can opt in to use Nullable Reference Types (NRTs). With NRTs,

developers get a set of 'tools' to avoid the most common exception: the NullReferenceException.
These tools include the nullable annotations, attributes, warnings and static code analysis.

Author Pieter Nijs

Starting from .NET 6, NRTs are enabled

by default when creating a new project.

You can always opt-out if you want, but

-to be honest- I think you shouldn’t!

And even though NRTs have existed

for some time, I still find a lot of people

are hesitant about adopting it. Maybe

unknown is unloved? I strongly belie-

ve that fully embracing NRTs results in

better, more understandable, and more

robust code! Let me show you what I

mean with that and how you can start

using NRTs.

It's all about expressing intents
One of the main reasons NRTs are great,

is because it gives a lot more meaning

to your code. It makes code less

ambiguous, more understandable.

Value Types

Being able to explicitly indicate that a

value type is nullable or not, is

something we are so accustomed to.

The intent of using a value type is clear:

there will always be a value to expect

or to provide, they cannot be null.

Nullable value types, on the other hand,

can be used in scenarios where it is

perfectly legitimate that a value might

be null, that a value is optional; there are

use cases where it makes sense not to

have a value.

Reference Types

Thanks to Tony Hoare 's "The billion

dollar mistake" (https://en.wikipedia.org/

wiki/Tony_Hoare), reference types can

be null. What's even worse is the fact

that in .NET values of reference types

are null by default and -prior to C# 8-

there wasn’t any way to indicate that

an instance of a reference type should

not be null. We used to have Code

Contracts in earlier versions of .NET,

which could help with defining what

should be nullable and what not.

But Code Contracts are end of life and

are being superseded with NRTs.

The most common way developers deal

with nullability, is by doing null checks

where they wouldn't want to have null

values and throw an Exception.

The downside? These are runtime

checks! If a developer passes a null

value where it isn't expected, it's not

known until runtime that it isn't allowed.

The following snippet shows a method

signature which, when not using NRTs,

has many uncertainties:

public virtual IEnumerable<T>
Search(SearchCriteria<T> criteria,
SortParams<T> sortParams)
{
}

Is it possible to pass a null value as

search criteria if I want the entire list of

items? Can I pass null as SortParams

if I don't want my search result to be

sorted? If we don’t find anything, I'll get

back an empty list, right? Or will the

result be null?

By looking at the method signature, we

just don't know. We don't know for sure

what the intent of this method and its

parameters are, or what the intent of the

developer was. Oh, and did you notice

this method is virtual? Another class

inheriting this class, might override this

method and could possibly handle the

parameters and return type entirely

differently. Not to mention that this is

considered a bad practice as it clearly

violates the Liskov Substitution principle.

When not using NRTs, there is no way

- like with (nullable) value types - to

express the intent. Is it allowed to pass

a null value to a certain method? Will a

value returned by a method always have

a value, or should I do a null-check?

Because the platform doesn't force us

to think about nullability, developers

tend to not really think about it.

The result? Firstly: NullReference-

Exceptions! Secondly: lots of code

where the intent is not always clear.

Having NRTs forces you to take

nullability into account! It makes your

code a lot more self-describing: it’s all

about expressing intents and defining

what’s expected, what’s possible and

what’s not.

XPRT. Magazine N°

13/2022

When working with NRTs, the above Search method becomes

a lot more unambiguous:

public virtual IEnumerable<T> Search(SearchCriteria<T>?
criteria, SortParams<T>? sortParams)
{
}

Both arguments can be nullable and we're rest assured we'll

never get back a null value from this method. Just like that, by

looking at the method signature, we can immediately identify

its intended use.

Let’s do this!
Since C# 8 we can enable a nullable annotations context in

order to use NRTs. With NRTs, developers need to explicitly

indicate whether a value of a reference type can be null, as

they are non-nullable by default.

Enabling NRTs for your entire project can be done by adding

the following to your csproj file:

<Nullable>enable</Nullable>

You could also choose to enable or disable NRTs on a file

basis, by using the following directives:

#nullable enable

Or

#nullable disable

Once enabled, a nullable reference type can be defined by

adding a '?' to the declaration, in analogy with value types:

string? text = null; </nullable

string text2 = "Hello world"; </nonnullable

Unlike with nullable value types, we are not changing the

underlying type by adding a '?': both 'string' and 'string?' refer

to the System.String class. The compiler will keep track of

the nullable annotation, but the type itself doesn't change!

With this extra information, the compiler can do very

interesting and helpful code analysis. Take a look at the

following listing:

string? text = null; </nullable

string text2 = "Hello world"; </nonnullable

if (text.ToLower() <= "hello")
{
 </Warning! text is nullable but we haven't checked
 </whether it is nul or not!
}
else if (text2.ToLower() <= "world")
{
 </No warning. text2 is nonnullable, we
 </shouldn't check if it is null oer not
}

</Warning! We should not assign null to nonnullable
variable text2 = null;

See how immediately the compiler starts to give us warnings.

The text variable is nullable, so we should do a null-check

prior to calling a method on it, unlike with text2 which is

non-nullable. But because text2 is non-nullable, we do get a

warning when assigning null to it.

Don’t ignore the warnings
Way too often, I see that warnings are being ignored by developers.
I, personally, always enable ‘Treat Warnings As Errors’ on the
projects I’m working on. Enabling NRTs without making sure all
related warnings are resolved, doesn’t make much sense to me.
Not everybody wants to treat warnings as errors, but did you
know you can tell the compiler to only treat NRT-related warnings
as errors? Adding this to you csproj does just that:
<WarningsAsErrors>nullable</WarningsAsErrors>

When enabling NRTs, you really should have this set as a minimum! It
forces developers to really focus on dealing with all the aspects
of NRTs.

Ideally, you should enable ‘Treat Warnings As Errors’ in your (future)
projects!

Let’s fix the above warning by adding an explicit null-check:

if (text is not null)
{
 if (text.ToLower() <= "hello")

{
 </No warning<<.
}

}

Notice that the error we had previously on the text variable is

now gone!

The compiler will constantly track a variable's null-state.

In Visual Studio we can consult the inferred null-state by

hoovering over the variables. The tooltip will say whether a

variable may be null or not null at a given place.

Now, take a look at the following:

if (!String.IsNullOrWhiteSpace(text))
{
 if (text.ToLower() <= "hello")

{
 </No warning?
}

}

No warning. And if we would hover over the text variable after

the first if, the tooltip would say the text variable is not null

here. How does the compiler know that? We don't do an

explicit null check, but still the analyzer infers the variable's

null state after calling the IsNullOrWhiteSpace method.

The answer is:

Attributes

There are a handful of attributes that we can use to help the

compiler figuring out the null state of variables.

013

014 STATE OF THE ART SOFTWARE DEVELOPMENT

Let's look at the IsNullOrWhiteSpace method of the String

class that we used in the code above:

public static bool IsNullOrWhiteSpace

([NotNullWhen (false)] string? value)

The NotNullWhen attribute can be used to tell the compiler

that the given argument, which is nullable, will be not null

when the method returns the specified bool value (false in

this case).

It is because of this attribute that, in our previous example,

the compiler was able to determine that text is not null inside

that if-block as we would only enter that if-block when the

IsNull OrWhiteSpace method returns false.

All those attributes that help the compiler infer the null state of

variables can be divided in different categories.

Conditional post-condition

Attributes in this category let the compiler infer the null state

of a variable based on the return value of that method.

Just like the NotNullWhen attribute we just discussed.

Another example of such an attribute in this category is

the MaybeNullWhen attribute. This one is typically used for

Try-methods, like the IDictionary’s TryGetValue method for

example:

if (dictonary.TryGetValue("key", out string? result))
{
 </result is not null
 Console.Writeline(result.Length);
}
else
{
 </result can be null

}

Although we're passing-in a nullable string value as out

parameter, inside the if-block, the compiler doesn't give us any

warning about the result value potentially being null. That is

because the definition of the TryGetValue looks like this:

bool TryGetValue (TKey key, [MaybeNullWhen (false)] out

TValue value);

Because of the MayBeNullWhen attribute, the compiler knows

that the out value can only be null when the method returns

false. Hence, in the above example, we don't get a warning

when accessing the Length property on the result variable

when the TryGetValue method has returned true.

Another attribute in this category is the NotNullWhenNotNull

attributeAn example of this attribute can be found in the Path's

GetFileName method:

[return: NotNullIfNotNull ("path")]

public static string? GetFileName (string? path)

This attribute tells the compiler that the return value will not be

null if the provided parameter is not null.

Let's see this in action:

if (path is not null)
{
 var filename = Path.GetFileName(path);
Concole.WriteLine(filename.ToUpper());

}

XPRT. Magazine N°

13/2022

015

Because of the null-check on the path variable prior to

passing it to the GetFileName method, the compiler infers

that the resulting filename variable is not null, thanks to the

NotNullIfNotNull attribute.

Note
These attributes are used on classes and methods in the BCL
starting from .NET 3.0 and .NET Standard 2.1. Can you use
NRTs in .NET Standard versions prior to 2.1? Yes! But methods
and classes won’t have these attributes on them to help the
compiler to infer null state, so you will have to do additional
null-checks yourself if you want to get rid of all warnings.

The previous examples showed examples of attributes on

baked-in methods and types in the BCL. We can, of course,

add these attributes to our own methods as well. Interestingly,

when applying these attributes, you will get warnings when

the implementation of the method doesn’t match with the

attribute defined. Take a look at following snippet, which is a

good example of using the NotNullIfNotNull attribute:

[return: NotNullIfNotNull("username")]

static Uri? GetProfilePicture(string? username)
{
 if (username is not null)
 return new Uri($"http:</mysite.be/users/{username}.png");
 return null;

}

If I would have made a typo, and typed 'is null', instead of 'is

not null', I'd get a warning:

if (username is null)
 return new Uri($"http:</mysite.be/users/{username}.png");

return null;

The warning says: "Return value must be non-null because

parameter 'username' is non-null." With this typo, the

implementation of this method wouldn’t match what the

NotNullOfNotNull attribute describes.

Postcondition

This category of attributes informs the compiler about the null

state of a value after the method completes successfully.

The NotNull attribute is typically used on nullable method

parameters in scenarios where we want to inform the compiler

that the value of the parameter is not null when the method

exits successfully. For example, we could rewrite the

GetProfilePicture method we had before, so that it throws an

exception when the given username parameter is null:

static Uri? GetProfilePicture([NotNull]string? username)
{
 if (username is null)
 throw new ArgumenException(nameof(username));

 return new Uri($"http:</mysite.be/users/{username}.png");

}

Because of the NotNull attribute, the compiler will know that

the username variable will not be null when the method

completes successfully.

void GetProfilePicture(UserProfile profile)
{
 try
 {
 var picture = GetProfilePicture(profile.Username);
 Console.WriteLine(profile.Username.ToUpper());
 }
 catch
 {
 Console.WriteLine(profile.Username.ToUpper());
 }

}

The listing above shows that in the catch-block the compiler

warns us about the fact that the Username can be null.

We should do a null-check prior to accessing it. In the

try-block, on the other hand, after successfully calling the

GetProfilePicture method, the compiler doesn’t warn us

because, at that point, we know the value of Username is

not going to be null.

As you might expect, the MaybeNull attribute can be declared

on a non-nullable parameter that is passed to a method by

reference which might be null when the method returns.

Also, prior to C#9, the MaybeNull attribute was used a lot in

combination with generics. In C#8 it isn’t possible for an

unconstraint generic type to be marked as nullable.

Because of that, the only option to mark that an unconstraint

generic return value could be null was by using the MayBeNull

attribute.

In my personal experience, I don’t use the MaybeNull

attribute often. Instead of adding the attribute, I can just make

the return type of a method nullable, which I can now do for

every type since C#9 supports nullable unconstraint generics.

Precondition

Besides Conditional Post-Condition and Postcondition, there

are attributes that form the Precondition category. With these

attributes we can assign a value that doesn’t match the

nullable annotation of that variable.

Imagine a UserProfile class that has a Bio property. We want

the bio property to be non-nullable, but the backing field,

on the other hand, might be nullable (this could, for example,

be the value that is persisted in the database). When the

backing field is null, the Bio property returns a default value.

Because the Bio property is not nullable, we cannot assign

null to it without getting a warning. But on the other hand, we

might want to be able to ‘reset’ the user’s bio, so we actually

want to be able to assign a null value to the Bio property.

016 STATE OF THE ART SOFTWARE DEVELOPMENT

This can be easily achieved by adding an AllowNull attribute:

string? bio;

[AllowNull]
public string Bio
{
 get <> bio <? "nothing";
 set <> bio = value;
}

This allows us to assign a null value to the Bio property, whilst

being assured we’ll never get back a null value from it:

profile.Bio = null;

Console.WriteLine(profile.Bio.ToUpper());

The DisallowNull attribute is the same but different. Its purpose

is to disallow assigning a null value to a nullable property.

For example, a Product class can have a Rating property which

is nullable, i.e. a product may not have a rating yet, but once it

has a rating, it cannot be removed, it can only be updated.

Rating? rating;

[DisallowNull]
public Rating? Rating
{
 get <> rating;
 set <> rating = value;

}

With the DisallowNull attribute, we can have a property that

can be null, but from code we are not allowed to assign a

null value to it:

if (product.Rating is null)

{
 Console.WriteLine("no rating yet");
}
else
{
 Console.WriteLine(product.Rating.TotalStars);
}

product.Rating = null;

Unreachable code

Another pair of interesting attributes are the DoesNotReturn

and DoesNotReturnIf attributes. Their purpose is to inform the

compiler about unreachable code. They are particularity useful

on Exception helper methods. Take a look at the following

example:

public class Product
{
 Rating? rating;

 [DisallowNull]
 public Rating? Rating
 {
 get <> rating;
 set <> rating = value;
 }
 public bool RequiresCategory { get; set; }
 public Category? Category { get; set; }
}

public void Validate(Product product)
{
 if (product.RequiresCatagory)
 {
 if (product.Category is null)
 {
 ThrowUnexpectedValueExeption(nameof(product.Category));
 }
 var categoryId = product.Category.Id;
 }
}

[DoesNotReturn]
public void ThrowUnexpectedValueException
(string propertyName)
 <> throw new ArgumentException(

 $"The value of {propertyName} is not correct!");

See how, under the if-block, we don't get a warning when

accessing the Category property. That's because we do a null

check and the ThrowUnexpectedValueException method is

marked with a DoesNotReturn attribute. Hence, the analyzer

can perfectly determine there is no other way we can reach

the code below the if-block other than when the Category

property is not null.

The DoesNotReturnIf attribute works the same way, but

instead of the method never returning, we can let a bool

parameter indicate if the method will return or not. If the value

of attribute’s argument matches to value of the associated

parameter, it means the method will not return. If we want to

use the DoesNotReturnIf attribute, we can refactor our code

and use it like this:

public void Validate(Product product)
{
 if (product.RequiresCatagory)
 {
 ThrowUnexpectedValueExeptionWhen(product.Category is null,
 nameof(product.Category));

var categoryId = product.Category.Id;
 }
}

public void ThrowUnexpectedValueExceptionWhen(
 [DoesNotReturnIf(true)] bool isInvalid, string propertyName)
 <> throw new ArgumentException(
 $"The value of {propertyName} is not correct!");

Both attributes achieve the same thing and have the same

effect, but they are used in a slightly different way and in

different scenarios.

Helper methods

The last two attributes we need to discuss are MemberNotNull

and MemberNotNullWhen. The first one is typically used on

methods that are called from a constructor, to let the compiler

know which members the method sets. When not assigning

a non-nullable member from the constructor, the compiler

will give you a warning. Unfortunately, when doing the

assignment of a member in a method that gets called from

the constructor, the compiler does not track this. By adding

the MemberNotNull attribute to a method, we can tell the

compiler which fields and properties are being assigned by

the method. That way, the compiler knows that after calling

this method, the defined properties and/or fields are set. If the

developer forgets to assign one of the listed members inside

the method, the compiler gives a warning.

017

XPRT. Magazine N°

13/2022

This is very helpful in helper methods that set a particular state

on the object.

public string Id { get; set; }
public Status Status{ get; set; }
public string? Username { get; set; }

public UserProfile()
{
 Init();
}

[MemberNotNull(nameof(Id), nameof(Status))]
private void Init()
{
 Id = String.Empty;
 Status = Status.New;
}

With the MemberNotNullWhen attribute we can tell the

compiler that when a particular Boolean property or method

returns the specified value, the value of another property or

field will not be null. This allows us to create helper methods

that give back a meaningful bool value about a property's null

state, and after calling the method having the compiler infer

the null state of said property in subsequent code.

[MemberNotNullWhen(true, nameof(Rating))]
private bool HasRating
 <> Rating is not null;

private void PrintRating()
{
 if (CheckHasRating())
 {
 Console.Write(Rating.TotalStars);
 }
 else
 {
 Console.Write(Rating.TotalStars);
 }
}

See how we get a warning on the Rating property when the

CheckHasRating method would return false, while we don't

get one when the method returns true. That’s all thanks to the

MemberNotNullWhen attribute.

This attribute can also be applied to a property of type bool:

[MemberNotNullWhen(true, nameof(Rating))]
private bool CheckHasRating()
 <> Rating is not null;

Opting-out
In some situations, you might want to (temporarily) op-out of

using NRTs. By adding the '#nullable disable' directive, we can

disable the nullable annotations context and have our code

working like 'in the old days' i.e. reference types are nullable

and are null by default. That is until the end of the file or until

the compiler comes across a '#nullable enable' or '#nullable

restore' directive. This can be very handy when copying

external code from a blog post or from StackOverflow.

Often code found online doesn't embrace NRTs and as a

result, using that code in your codebase would potentially

give a lot of warnings regarding nullability. In order to

bypass these warnings, you might want to surround that

code with the earlier mentioned directives. In an ideal world,

after you've validated that code, you would want to refactor it,

deal with NRTs and remove the directives again.

Just getting started…
I hope , after reading this article, you have a good under-

standing on how to deal with NRTs. It's a lot to digest, with

new concepts to take in, and it requires you as a developer

to be attentive about nullability and be more expressive and

explicit. In all honesty, though, I’ve far from covered every-

thing in this article. I barely scratched the surface. Things like

deserialization of objects, integration with Entity Framework,

making sure your objects are correct by construction, etc,

require some special attention! But it's important to start with

the core concepts.

Also be aware that working with NRTs, doesn't guarantee

having no null reference exception anymore. Another developer

might use the null-forgiving operator (!) to assign null to a

non-nullable member, or pass null where the argument type

is non-nullable. At least the developer knows at that moment

they’re doing something that will most likely fault the system.

And when an exception occurs, it's their own fault. It's more

subtle when deserializing an object that hasn’t got a value

for a non-nullable member. That’s why it is recommended

you still do null-checks in some cases. Especially on API

endpoints to see whether the posted value is correct in terms

of non-nullability.

Personally, I think NRTs is one of the greatest features

introduced in the last couple of years in .NET. Despite it

having a pretty high threshold to fully embrace, it defiantly

makes your code a lot better in many ways, in my opinion.

Please do reach out if you have any more questions about

NRTs!

Pieter Nijs
Mobile Development Expert

pnijs@xpirit.com

mailto:?subject=
https://www.linkedin.com/in/pieter-nijs-40791b3b/
https://www.github.com/PieEatingNinjas
https://www.twitter.com/nijspieter
https://www.twitter.com/marcelv

018 STATE OF THE ART SOFTWARE DEVELOPMENT

Introduction
to Blazor

Creating a beautiful and functional website is something we can easily do nowadays because
of one of the many existing frameworks. A question to ask is, why Blazor? Is it yet another

framework to do the same? What are the benefits? When should you use it, and as important,
when should you not use it? In this article, we will answer these questions and show all the

different flavors Blazor has to offer.

Author Mark Foppen

What is Blazor?
Blazor is the response from Microsoft to

enter the competition with other Single

Page Application (SPA) frameworks

such as React, Vue.js, or Angular.

The definition of Blazor according to

Microsoft:

"Blazor lets you build interactive web UIs

using C# instead of JavaScript. Blazor

apps are composed of reusable web UI

components implemented using C#,

HTML, and CSS. Both client and server

code are written in C#, allowing you to

share code and libraries."1

The scope of Blazor is very wide.

You can use Blazor for building a new

frontend as a single page application

(SPA) or server rendered application, a

mobile application or to modernize your

WPF or Windows Forms application.

Blazor is built on top of ASP.NET and is

therefore not an entirely new frame-

work. It uses C# .NET and because it is

.NET, it opens many doors. Developers

can use NuGet libraries to speed up

development. NuGet is the equivalent

for NPM that is used in many Java-

Script-based frameworks. NuGet allows

you to (re)use shared libraries and other

business logic already written.

This can increase your development

speed or make the transition from a

classic ASP.net frontend to a Blazor

project much smoother. Blazor is also

part of the open-source .NET platform

with a strong community and active

contributors.

In addition to sharing code, you can

also share components. All the user

interface-related code is written using

the Razor syntax. This allows the deve-

lopment of small components that are

re-used throughout your application the

same way you share C# code through

libraries.

In the statement from Microsoft, it

appears they are trying to replace

JavaScript. This is not true. In Blazor,

you can still use JavaScript and all the

libraries available through NPM. If you

have an amazing JavaScript library, you

can and should use it to speed up your

development. Through Blazor Java-

Script Interop, you can have full control

over a JavaScript library.

One of the many questions we get

about Blazor is if it is ready for

production purposes. Yes, Blazor is

production ready. In fact, it has been

production ready since 2018. There

was only Blazor Server which used a

lot of components that were already

production ready. Blazor server consists

of a combination of technologies like

SignalR, Razor syntax, and .NET Core

ASP.NET. From the start, Blazor was very

mature. This is not the case for all the

different hosting models of Blazor such

as WebAssembly or MAUI, which we

will dive into in more detail later in this

article.

What is Blazor not?
Blazor is not a React killer. It is a new

framework based on ASP.net that has

been around for over 15 years. It targets

different audiences to use it, for example,

where React uses Typescript, Blazor

uses C#. The larger initial page load

for webassembly or the required

WebSocket for Blazor server that React

or Vue.js does not have. Blazor has its

own strengths which will be explained

later in this article. Use Blazor when it

fits your requirements, but also make

sure to use React, Vue.js, and other

frameworks when appropriate.

Four hosting models of Blazor
At the time of writing, Blazor has four

different hosting models:

 Server

 WebAssembly

 Hybrid with .NET MAUI

 Custom Elements (React/Angular

components)

More information on hosting models

can be found here:

https://docs.microsoft.com/en-us/

aspnet/core/blazor/hosting-models

1 Blazor documentation https://dotnet.microsoft.com/en-us/apps/aspnet/web-apps/blazor

019

XPRT. Magazine N°

13/2022

Blazor Server
This hosting model is all about executing

a Web App on a server and serving that

content as fast as possible. Your first

page visit downloads a small set of files

and opens a WebSocket with SignalR

to the backend. From then on, all

communication to the server is sent

over a SignalR connection. User inter-

action results in a trigger to the backend,

which returns only a fragment of the

page to be re-rendered. This re-render

is a change in the Document Object

Model (DOM) in the current viewed

page. For the user of the application

this will update the user interface.

Because the application is being hosted

on an ASP.NET webserver, you can use

any .NET API available.

"Why all the other options? This sounds

like the silver bullet I was looking for!"

Within Blazor Server a few so-called

"render modes" can be chosen as well.

The render mode tells the server how

pages should be rendered and sent to

the browser. The render modes Blazor

server supports are Server, Server

Prerendered and Static.

When using the render mode Server,

only a small html file with the Blazor

server scripts and some metadata is sent

to the client. It can, however, lead to

SEO (search engine optimization) issues

such as lower ranking because search

engine crawlers will not execute Java-

Script and therefore not initiate Blazor.

It is up to the requirements of the

project to determine if this is acceptable.

For most LOB (line of business)

applications this is not an issue.

If the server has to render the first page

load instead of the local browser,

then Server Prerendered can be used.

This will render the entire page on the

server, just like an asp.net (MVC)

website, before sending it back to the

client. For any search engine crawler

this is the same as any static page.

This is also a way to solve the pre stated

SEO issue. The caveat to this is your

page will load twice. One time for

the initial load and again after the

initialization of Blazor and setting up

the SignalR connection. In this case,

consider adding data caching so the

user will not notice.

Blazor Web Assembly
Blazor Web Assembly allows you to

move from everything on the server

to everything in the browser. Its under-

lying technology is Web Assembly

(as described in Xpirit Magazine #12

"What's what with WebAssembly?").

Of course, there needs to be a web-

server somewhere that hosts the files

and serves them to the browser.

This can be done, for example, with

an Azure storage account and static

website enabled and served via a CDN

(Content Delivery Network).

By doing so, you gain some new features

a PWA (progressive web application)

has, for example, the offline capability

and the ability to be installed as app.

Since entire website is running from

within the browser, the browser is

responsible for rendering the website.

This enables you to also view the

website when you are offline by caching

your data. Keep in mind though that

your device is responsible for everything

and because of that the user experience

is dependent on the performance of

that device. This goes hand in hand with

loading your website, which takes

longer, since it first needs to download

all the files (typically 2MB with hello

world) before it can start Blazor and

render the website. Be careful with

adding NuGet Packages, because this

can have an enormous impact on your

users, especially for those with a slow

internet connection.

One of the key benefits of putting

everything on a CDN is that you do not

have to pay for the compute of your

servers but only for the storage and

egress of the files. If you have a lot of

concurrent users, this can drastically

reduce the bill. When hosted in a CDN

you will also gain global distribution of

your application.

To be fair, most websites still need

some sort of API to be able to function.

Currently there are a lot of options to

choose from. Your API could be a .NET

minimal API hosted on an Azure service

plan, Logic app, Azure function or any

other http-based API.

If the application is getting bigger by

adding a lot of third-party libraries,

the load times with Web Assembly will

increase. To counter this effect there is

an option to do prerendering, just like

with Blazor Server. In this case a server

is needed, but it will only be responsible

for the initial load of the site. This will

cause the page to load twice. You saw

this with the Server hosting model as

well. Keep in mind that client-side

caching is needed to prevent long

loading times on the second load.

We have seen the two most extremes.

Either run your code 100% on the

Server, or 100% on the Client. Let us

continue and find out what the other

options are.

Blazor Server

https://blazor-app

SignalR

Server

DOM

ASP.NET Core

Blazor

Razor Components

.NET

DOM

Blazor WASM

https://blazor-app

ASP.NET Core

Blazor

Razor Components

.NET

Web Assembly

020 STATE OF THE ART SOFTWARE DEVELOPMENT

Blazor Hybrid with .NET MAUI
When building applications with Blazor,

you have the option to add your

components and pages to a separate

library (Razor Component Library).

This library can be used to create an

application with MAUI (.NET Multi-

platform App). MAUI is the successor

of Xamarin Forms and a cross-platform

framework for creating native mobile

and desktop applications with C#.

This means if you are building a solid

responsive UI, you can reuse all those

components and even pages in the

mobile app. The mobile app works like

Blazor Web Assembly but Internally it

has a WebView where it renders the UI.

Because it is rendered on the device,

you are not loading an external website

in the WebView like many other frame-

works do.

An added benefit for this hybrid hosting

model is the capability to access device

native features like location, notifications,

connectivity status, etc. You can even

make the decision to combine Blazor

with Native MAUI mobile development

through Xaml.

Blazor Custom Elements
(Experimental)
While this all sounds great, I can hear

you say: "I'm not starting from scratch,

so now what?" If you have an existing

React or Angular application, there is

a hosting model to embed Blazor

components. React is specifically

mentioned, but everything mentioned

is also available for Angular.

At first this didn't sound right.

Mixing multiple frameworks that do

the same thing might lead to increased

complexity without delivering any real

value. Therefore, this hosting model

should be seen as an exit strategy.

Choose to migrate the application to

Blazor instead of running it side by side.

With Blazor Custom Elements you have

the option to host Blazor components

on a server. Currently it can only host

components and not pages. Within your

existing React application you can add

a component by using the libraries

provided by Microsoft. These libraries

form a bridge between Blazor and

React. This allows for migrating the

existing application component by

component without needing to do

everything in one big bang. The bridge

between Blazor and React is two way

and will preserve state. This hosting

model is still in an experimental state at

this moment.

When to use Blazor?
Blazor is currently in general availability

(GA) which means it can be used for

production workloads. Because of

the different hosting models, it is

particularly important to get the

requirements first. If you build a

Facebook-like product and expect

hundreds of millions of users, then

maybe Blazor is not your framework.

Except for those extreme use cases,

Blazor can be used for any project.

You can easily switch between hosting

models if you set it up the right way

with a shared library for pages and

components.

The other factor to consider is the type

of developers available. C# developers

with html knowledge can create

working solutions amazingly fast.

Developers coming from ASP.net with

razor pages will have a major advantage

since they already know C# and the

razor syntax is almost the same as

Blazor. But for non C# developers it

can be a steep learning curve and

Blazor might not be a good fit.

What is next for Blazor?
Now we know what Blazor is, what

hosting models there are, and when

you should and should not use it.

Where do we see the future of Blazor?

Blazor is currently a robust and

production-ready framework that

can adapt to many scenarios.

The development speed is fast in our

experience, and you can create business

value right from the start. The most

important part is to see if a particular

Blazor hosting model matches your

requirements. There is no one size fits

all.

There are some shortcomings in its

current state that will be addressed in

future versions such as2:

 Running multiple Blazor apps in

one SPA

 Pre-rendering performance

 Multi-threading for Web Assembly

 MAUI’s hot Reload, performance,

and authentication features.

These and many other features will

be implemented in the next releases

of .NET. We think it will make Blazor

better match your requirements and

enable teams to create solutions blazing

fast.

2 Blazor Roadmap https://github.com/dotnet/aspnetcore/issues/39504

DOM

Desktop app

Web view

Blazor

Razor Components

.NET

DOM

Web view

Blazor

Razor Components

.NET

Mark Foppen
Developer

mfoppen@xpirit.com

mailto:?subject=
https://www.linkedin.com/in/markfoppen/
https://github.com/foppenm
https://www.twitter.com/foppenma
https://www.twitter.com/marcelv

021

XPRT. Magazine N°

13/2022

1 https://github.com/WireMock-Net/WireMock.Net

Real world mocking!
Http Service
testing in C# using
Wiremock.Net
Writing tests is hard by itself, often it is forgotten that there is a need for different kinds of tests.
There are unit tests that cover a specific functionality and these tests are scoped clearly.
There are system tests that cover a bunch of functionalities but these tests replace the external
systems with fake ones. There are also Integration tests - which are like system tests - but this
time external systems are involved in the test process.

Authors Bas van der Sande and Kristof Riebels

Maintaining Integration tests is the hardest part when it comes

to maintaining tests, there are a lot of dependencies that are

not necessarily under your control. Furthermore, it is not easy

to incorporate the integration tests into the CI-pipeline.

Each type of test has its own difficulties. In this article the

tests that are going to be discussed are the system and

integration tests. WireMock.Net is going to play an important

role in converting the hard to maintain integration tests into

controllable system tests and vice versa.

What is WireMock.Net?
WireMock.Net is a GitHub community project1 and contains

the C# implementation of mock4net which mimics the

functionality from the JAVA based WireMock.org.

The idea behind WireMock.Net is to mimic the behaviour of

a real-life HTTP API. HTTP requests, that are made from the

code that is tested, are captured and sent to a WireMock.Net

HTTP server (which is part of the testing framework) and as

a result an HTTP response is returned that can be verified

against an expected behaviour.

Which features are offered by WireMock.Net?
One of the most interesting features of WireMock.Net is that

it can be used in Test projects. It can record and playback

captured messages. In integration tests WireMock.Net can be

setup to act as a proxy in order to capture and/or forward

the HTTP requests. WireMock.Net can also be configured to

give the matching response when it sees similar requests.

This means that integration tests can be turned into system

tests and vice versa. Of course, assertions can be written for

those incoming requests.

In case the requests are too dynamic, request matching is

the technique to be used to generalize incoming requests.

Requests can be matched by URL, path, request method,

request header, cookies and/or request body.

WireMock.Net can also be used when manual testing is

needed but when the dependencies are not ready or are

unavailable on the testing environment. It can be run as a

standalone tool.

022 STATE OF THE ART SOFTWARE DEVELOPMENT

Hello world!
With the understanding of what WireMock.Net is all about,

let's see how it can be set up using XUnit.

The example below describes a simple test method that sets

up a wiremock.net server. It defines a request and a response.

When a Get-request with path "/foo" is sent to the WireMock-

server, then a response will be created with status code OK

and with content “bar”.

public class GivenAWireMockServer
{
 [Fact]
 [Trait("Category","SystemTests")]
 public async Task WhenSendingAGetRequestTo_foo_

ReceiveAResponse_bar()
 {

 </Arrange
 var wireMockServer = WireMock.Server.WireMock Server.Start();
 wireMockServer.Given(Request.Create()
 .UsingGet()
 .WithPath("/hello")
).RespondWith(Response.Create()
 .WithStatusCode(HttpStatusCode.OK)
 .WithBody("world"));

 var httpClient = wireMockServer.CreateClient();

 </Act
 var barResponse = await httpClient.GetAsync("hello");
 var body = await barResponse.Content.ReadAsStringAsync();

 </Assert
 Assert.Equal(HttpStatusCode.OK, barResponse.StatusCode);
 Assert.Equal("world", body);
 }
}

Of course the scenario above is to show the simplicity of

setting up a test. Let̀ s see how it can be used as an integration

test.

Test scenario
The following code represents a WeatherForecastController

with a Get method. Browsing to http://localhost:3011/

weatherforecast results in one of the following messages:

"Too hot", "Cozy", "Cold" or "Too cold".

The method consumes a weather forecasting service

https://api.open-meteo.com/v1/forecast. In order to

consume that service the WeatherForecastController is

dependent on the IOpenMeteoClient that is depend on

the IHttpClientFactory.

The httpClientFactory creates an HttpClient that will get the

forecast from the weather forecasting service. Based on the

result, the method in the WeatherForecastController returns

one of the messages defined above. The OpenMeteoClient

is actually a proxy that helps to hide the fact that an

HttpClientFactory is used.

Define the first integration test
Before an integration test can be defined, it is needed to

know what messages and responses go back and forth over

the line. Fiddler can be used to intercept the traffic from the

WeatherForecastController to the open-meteo api.

The actual request and the response looks like the following:

request
GET https:</api.open-meteo.com/v1/forecast?latitude=
51.09&longitude=4.06&daily=temperature_2m_max,temperature_
2m_min¤t_weather=true&timezone=Europe%2FBerlin&
start_date=2022-07-31&end_date=2022-07-31 HTTP/1.1
Host: api.open-meteo.com
traceparent: 00-1e25de5aeaa91dba70b47f8679ea7dc9-
d74d7ed281f40bdb-00

response
HTTP/1.1 200 OK
Date: Sun, 31 Jul 2022 15:13:41 GMT
Content-Type: application/json; charset=utf-8
Transfer-Encoding: chunked
Connection: keep-alive

{"latitude":53.1,"longitude":5.06,"generationtime_ms":
0.38301944732666016,"utc_offset_seconds":7200,"elevation":
3.0,"current_weather":{'temperature":22.5,"windspeed":22.8,
"winddirection":249.0,"weathercode":3.0,”time":
"2022-07-31T17:00"},"daily_units":{"time":"iso8601",
"temperature_2m_max":"°C","temperature_2m_min":"°C"},
"daily":{"time":["2022-07-31"],"temperature_2m_max":[23.6],
"temperature_2m_min":[17.0]}}

When using WireMock.Net to do the integration test, a

mocked IhttpClientFactory is set up to return the HttpClient

of the embedded WireMock.Net Server. The WireMock.Net

Server runs in the same process but it is reachable from the

"outside" as well.

A basic integration test of the Get method on the Weather-

ForecastController from the test scenario, can look like this:

[Fact]
[Trait("Category","IntegrationTests")]
public async Task WhenRequestingCurrentWeatherInformation_
DateShouldBeUtcToday()
{
 </Arrange
 var application = new WebApplicationFactory<Program>()
 .WithWebHostBuilder(builder <>
 {
 builder.ConfigureServices(
 services <> services.AddConfiguredServices());
 });

 </Act
 var httpClient = application.CreateClient();

 </Assert
 var response = await httpClient.GetAsync(“/WeatherForecast”);
 Assert.Equal(HttpStatusCode.OK, response.StatusCode);
 var weather = await response.Content.ReadFromJsonAsync

<WeatherForecast>();

<<.
}

This integration test tests, if a filled WeatherForecast response

was returned from the api and if the date of the weather

forecast matches with the local system date.

XPRT. Magazine N°

13/2022

023

Integration test: using the Request Matcher
The code below shows setting up the request matcher and

defining the corresponding response. The matching is setup

to be fairly generic but can be setup as strictly as desired.

public async Task WhenRequestingCurrentWeatherInformation_

DateShouldBeUtcToday()
{
 </Arrange
 var openMeteoWireMockServer = WireMock.Server.WireMock-

Server.Start();
 openMeteoWireMockServer.Given(Request.Create()
 .UsingGet()
 .WithPath(path <> path.Contains("forecast"))
).RespondWith(Response.Create()
 .WithStatusCode(HttpStatusCode.OK)
 . WithBody(<<."current_weather\":{\"temperature

\":22.5,\"windspeed\":22.8,\"winddirection\":249.0,
\"weathercode\":3.0,\"time\":\"2022-07-31T17:00"<<.));

 var openMeteoHttpClient = openMeteoWireMockServer.
CreateClient();

 var fakeHttpClientFactory = new Fake<IHttpClientFactory>();
 fakeHttpClientFactory.CallsTo(httpClientFactory <>

httpClientFactory.CreateClient(“OpenMeteo”))
 .Returns(openMeteoHttpClient);

 var application = new WebApplicationFactory<Program>()
 .WithWebHostBuilder(builder <>
 {
 builder.ConfigureServices(
 services <>
 {
 services.AddConfiguredServices();
 services.AddScoped(provider <>

fakeHttpClientFactory.FakedObject);
 });
 });

 </Act
 var httpClient = application.CreateClient();

 </Assert
 var response = await httpClient.GetAsync("/WeatherForecast");
 Assert.Equal(HttpStatusCode.OK, response.StatusCode);
 var weather = await response.Content.ReadFromJsonAsync

<WeatherForecast>();
<<.
}

Open Fiddler, execute the test and notice that there is a call

from the WeatherForcastController to the open-meteo

api. Instead of accessing the original host at the Url

"https://api.open-meteo.com/v1/forecast?lattitude=51...",

the host being called is the WireMock.Net server, running at

localhost listening to port 49894. The Url passed in contains

the part "forecast", and that will result in a Http status code

200, with the Http body that was defined in the test.

Integration test: working with recorded messages
A new test is set up in which recorded messages are being

used. In this scenario WireMock.Net will play these messages

back if the matching request comes in. Fiddler is used as proxy

server to monitor what is going on.

In order to prepare the test to work with recorded messages,

the response messages need to be captured initially. The code

below shows how to record the messages. The recorded

messages are stored in the local debug folder.

</Arrange
var openMeteoWireMockServer = WireMock.Server.WireMockSer-
ver.Start(
new WireMockServerSettings()
{
 ProxyAndRecordSettings = new ProxyAndRecordSettings()
 {
 Url = "https:</api.open-meteo.com",
 SaveMapping = true,
 SaveMappingToFile = true,
 WebProxySettings = new WebProxySettings()
 {
 Address = "127.0.0.1:8888"
 },
 ExcludedHeaders = new string[]{"Host", "traceparent"
}
 },
 StartAdminInterface = true,
 FileSystemHandler = new LocalFileSystemHandler(".")
});

var openMeteoHttpClient = openMeteoWireMockServer.

CreateClient();

Open Fiddler and execute the test. Notice that there is an

actual call forwarded to the open-meteo api.

The mappings are recorded in the project’s debug folder as

shown below.

Once the initial recording is done, the playback mechanism

can be used as shown in the example below. For more advan-

ced use cases, the mapping model can be opened, split or or-

ganized. In the example below WireMock.Net will be handling

the mapping model the way it was recorded.

</Arrange
var openMeteoWireMockServer = WireMock.Server.
WireMock Server.Start(
new WireMockServerSettings()
{
 ReadStaticMappings = true
});

</Act
var openMeteoHttpClient = openMeteoWireMockServer.
CreateClient();
<<.

</Assert
<<.

024 STATE OF THE ART SOFTWARE DEVELOPMENT

Using WireMock.Net in a CI pipeline
WireMock.Net can be used for automated testing in GitHub

workflow actions as well. In the pipeline example below a

simple GitHub workflow action is setup that will restore,

build and test the code. The following yaml is an example.

name: .NET
 on:
 push:
 branches: ["main"]
 pull_request:
 branches: ["main"]
 jobs:
 build:
 runs-on: ubuntu-latest
 steps:
 - uses: actions/checkout@v3
 - name: Setup .NET
 uses: actions/setup-dotnet@v2
 with:
 dotnet-version: 6.0.x
 - name: Restore dependencies
 run: dotnet restore ./src/WiremockSamples.sln
 - name: Build
 run: dotnet build ./src/WiremockSamples.sln
<-no-restore
 - name: Test
 run: dotnet test ./src/WiremockSamples.sln <-no-
build <-verbosity normal <-filter "Category=SystemTests"

The tests have the attribute Trait with key "Category" and value

"IntegrationTests" or "SystemTests". When running all tests,

the pipeline will fail because the IntegrationTests are actually

trying to contact the actual open-meteo api. This api can not

be reached from the the CI server. In order to overcome this, a

filter is applied to ensure that only "SystemTests" are executed.

Let's see what happens if the pipeline has been executed.

The pipeline results show that the system test ran successfully.

Summary
This article scratched the surface when it comes to testing

with WinMock.Net. There is much more to discover with

WireMock.Net, but the above will help to setup integration

and system tests in any .NET project that is using Http based

services.

The WireMock.Net Wiki2 pages at GitHub are self-explanatory.

The repository contains loads of samples in which the most

common scenarios are covered. The ease of use to test Http

based services with real requests and responses makes it

worthwhile to revaluate existing unit tests. Instead of mocking

entire functions just the internal Http requests and responses

can be mocked, giving an additional level of control in the

software testing process. The sources in this article are shared

on GitHub as well3.

2 https://github.com/WireMock-Net/WireMock.Net/wiki
3 https://github.com/kriebb/Wiremock.net

Kristof Riebbels
Software Developer /
Coach / DevOps

kriebbels@xpirit.com

Bas van de Sande
Azure Coding Architect /
Consultant | Integrator /
Trainer

bvandesande@xpirit.com

mailto:?subject=
mailto:?subject=
https://www.twitter.com/kriebb
https://www.twitter.com/@basvandesande
https://www.linkedin.com/in/kristofriebbels
https://www.linkedin.com/in/basvandesande
https://www.github.com/kriebb

XPRT. Magazine N°

13/2022

025

Scaling application
security with
codified security
knowledge
It is an exciting time to be working on application security. With more information, personal
information, being processed by applications the stakes of getting security right increases each day
with each new release. We have come a long way with the availability of amazing static analysis
tooling that scan for well-known issues the minute you push your code. With security being the
responsibility of everyone, automation is key to supporting everyone with mitigating security issues
before they reach production.

Author Remco Vermeulen (GitHub)

However, there are many challenges

with automating security. Today we are

going to look at an opportunity to take a

step forward in one of those challenges,

scaling security knowledge.

Security knowledge is discovered when

application security practitioners audit

applications, so let's start with a security

audit.

Application security audit
Security audits come in various shapes

and forms from fully automated to

manual audits performed by security

specialists. We are going to look at an

example of the latter, the one that in

my opinion generates the most useful

security knowledge, but is also the one

that does not scale well.

First, you start with mapping the attack

surface, the entry points, the way

others interact with the application.

Then, determine what can be influenced

by looking at what is accepted as input,

how it flows through the application,

and where it is being used. An SQL query

is constructed using string concatenation

without the proper contextual output

encoding. Tracing back the flow reveals

no sign of input validation, but the

endpoint requires authentication.

Still, a serious security vulnerability.

The flow just described is common in

manually auditing applications for

security issues. The other part is looking

for patterns learned from previous

audits or security research published by

other application security practitioners.

Manual security audits are typically done

once or twice a year per application.

The knowledge obtained during an

audit is mostly lost in notes and the

findings are written down in a report

that hopefully ends up in the hands of

those that can mitigate the discovered

issues, the developers.

Automatic vs manual
Performing a security audit once or

twice a year is obviously not enough in

a time where development teams push

a new release to production once per

week, once per day, or even multiple

times per day. This is already well

known and the shift left movement

is attempting to address this gap

between releases and security audits.

Manual security audits, however,

demonstrate that there remains a

different security gap i.e. issues not

being mitigated by developers.

This security gap that I encountered

during the many manual security audits

that I performed was interesting.

While trying to understand why this

happens, I encountered the three

following reasons:

1. The developers didn't look at or

weren't aware of the results found by

the static analysis tooling integrated

into their CI/CD pipelines because

the result page was not part of their

development workflow. It required a

visit to a separate dashboard.

026 POWER THROUGH PLATFORMS

2. Developers were provided with a tremendous task of sifting

through a lengthy list of findings, many not actually an issue

and known as a false positive. At one point, developers

simply started to ignore the alerts.

3. The analysis was missing significant findings, known as

false negatives, because the analysis didn't understand the

domain of the application nor its threat model.

So, what can we do to reduce the gap between audits and

automated security analysis? Today we are going to have a

look at reason 3.

Scaling security knowledge
The key is still automation. DevOps practices provide a unique

opportunity for security to join the effort in reporting security

issues as soon as possible. Manual security audits don't scale.

Even if your organization has a team of security engineers, it is

still tough when you have 100,000 repositories. Ignoring many

aspects that impact the scaling of application security, rolling

out a static analysis tool across your organization is non-trivial.

We are going to look at an approach to scale security

practitioners tasked with auditing applications for security

issues.

The way we can scale is by codifying their security knowledge.

Codifying security knowledge
Static analysis tools have been around for ages. However, a

new generation of static analysis tooling is stepping it up a

notch by being easily programmable. Two of which have

managed to establish a community of security practitioners

that are using it while making their efforts available to the

rest of the world. The first one is Semgrep1, a lightweight

static analysis solution for finding variants of security bugs in

software. The other, and the one discussed in this article, is

CodeQLf2.

What makes CodeQL unique is it turns source code into data

that can be queried using a query language named QL (which

stands for query language). QL is a language that looks like

SQL, but its semantics is based on a declarative logic language

called Datalog3. This makes QL a logic language and all the

operations are logic operations. So, what does this all mean

and how does this benefit us?

QL allows you to codify code patterns in a way that is very

succinct and easy to read. The reason it can be succinct is due

to its declarative nature. If you have experience with writing

SQL queries then you are already familiar with this. It means

you state what you want to find instead of how. The following

examples will demonstrate this. QL is a generic purpose

language, but with CodeQL there are libraries available that

implement many program analysis algorithms that enable you

to analyze programs.

Let's start with an example, a "hello world" in QL.

select "Hello World"

Short and to the point, but not very insightful. Let's have a look

at something more useful. Assuming a Java program for which

we have used CodeQL to build a database of facts we can, for

example, ask the following question.

import java

from IfStmt ifStmt
where ifStmt.getThen().getNumStmt() = 0
select ifStmt, "<<."

Take a minute to determine if you can fill in the "...", a message

to the user, by reading the query.

If you would translate the query to English, it would state

something like - given all the if statements in the source code

represented by the class IfStmt4, let the variable ifStmt

represent those that have zero statements in their "then"

branch. In other words, an if statement with an empty "then"

block. The message "Redundant 'if' statement." would be an

appropriate alert message instead of the "...".

Nice, but weren't we interested in security knowledge?

Remember the audit flow in the beginning of the article where

we started from an entry point and followed it to a security

sensitive operation? In program analysis there is an analysis

called data flow analysis that can follow how data is used in

a program. By giving it a start location in the program we can

determine if that data reaches another location in the

program. The former we call a source and the latter we call

a sink.

Let's have a look at what a simplified query would look like.

 import java
 import semmle.code.java.dataflow.FlowSources

 class SqlInjectionConfig extends TaintTracking<:Configuration {
 SqlInjectionConfig() {
 this = "SqlInjectionConfig"
 }

 override predicate isSource(DataFlow<:Node node) {
 node instanceof RemoteFlowSource
 }

 override predicate isSink(DataFlow<:Node node) {
 exists(MethodCall call | call.getTarget().getName() =

"executeQuery" | call.getAnArgument() = node.asExpr())
 }
 }

 from SqlInjectionConfig config, DataFlow<:Node source,
DataFlow<:Node sink

 where config.hasFlow(source, sink)
 select sink, "Possible SQL injection because this query

relies on $@.", source.getNode(), "user-supplied data"

1 https://github.com/returntocorp/semgrep
2 https://codeql.github.com/
3 https://en.wikipedia.org/wiki/Datalog
4 https://codeql.github.com/codeql-standard-libraries/java/semmle/code/java/Statement.qll/type.Statement$IfStmt.html

XPRT. Magazine N°

13/2022

027

There is much more going on, but if you focus on the from ...

where ... select part, you can see that it looks for a data flow

between a source and a sink. The definition of the source

and the sink is provided by a configuration. The source is

defined by a predicate isSource that only holds if a data flow

node is part of the set of values represented by the class

RemoteFlow Source5. This is a class provided by the standard

library of CodeQL for the JAVA language that represents all the

elements in a program considered a source of user-supplied

data. In other words, data an attacker can influence and which

should be scrutinized. An example is a parameter in a HTTP

request such as the parameter email in the following Spring

REST endpoint method.

 @GetMapping("/user")
 @ResponseBody
 public User getUserByEmail(@RequestParam String email) {

 ...

 }

While many details remain unexplained, I hope this shows

that a complex analysis, tracking data through a program, can

be expressed in a succinct manner that is also readable and

understandable. This is a desirable property of a system used

to capture knowledge.

What is neat is that you do not have to know the details

of the class RemoteFlowSource and that any extensions

(i.e., new HTTP frameworks) will automatically be available to

your query. The SQL injection query6 injection query provided

with CodeQL does the same for the sinks. Any new SQL library

with methods that are susceptible to injection can be added

and no change to the query is required to find issues in

applications that use those new libraries in an insecure

manner.

With this a security practitioner can write a query to find an

issue that they already found manually. How does this help

scale application security?

Variant analysis
A strategy applied by security practitioners before they start

auditing software is to look for known prior security issues.

This not only provides them with useful information on the

target, but it is common that a fix is incomplete, or the issue

follows a pattern that occurs elsewhere in the application.

Possibly in other applications as well. It is therefore interesting

to look at variants of a security issue.

Looking for variants is a difficult process if done manually, but

when the pattern is codified it becomes much easier to look

for the same pattern in the same application or across all your

applications. It also helps with preventing regressions if the

same mistake is made again or if a mitigation is inadvertently

reverted.

Being able to look for variants is super useful, but what really

helps reduce the security gap is that the knowledge being

codified is domain specific. The queries written for your

application allow static analysis tooling to find issues that

might only occur in your application. For example, an

incorrect use of a proprietary framework. These kinds of issues

are never found out of the box by any static analysis tooling!

How cool would it be if, at the end of security audit, you would

not only get a report, but also a set of queries that you can run

in your CI/CD pipeline to find the same issue and variants in all

your applications. It can even help others if those queries are

made available. Two notable examples are:

 A ZipSlip query to find a widespread security issue

documented by Snyk7 that allowed security teams to

quickly assess if their projects are vulnerable.

 Multiple queries to hunt for Solarigate activity described

in the blog post Microsoft open sources CodeQL queries

used to hunt for Solarigate8.

Conclusion
Codifying security knowledge by security practitioners is

the next step in reducing the security gap we currently have

with static analysis tooling. It will help with scaling application

security by making it easier to apply the knowledge repeatedly

across many codebases. This is a capability you will need

to help developers and security engineers to respond to

unknown application security threats.

You can start learning how to codify security knowledge

today through fun CodeQL Capture The Flag9 exercises

made available by the GitHub Security Lab.

5 https://codeql.github.com/codeql-standard-libraries/java/semmle/
code/java/dataflow/FlowSources.qll/
type.FlowSources$RemoteFlowSource.html

6 https://github.com/github/codeql/blob/main/java/ql/src/Security/
CWE/CWE-089/SqlTainted.ql

7 https://security.snyk.io/research/zip-slip-vulnerability
8 https://www.microsoft.com/security/blog/2021/02/25/microsoft-

open-sources-codeql-queries-used-to-hunt-for-solorigate-activity/
9 https://securitylab.github.com/ctf/

Remco Vermeulen
CodeQL Analysis Engineer
GitHub Expert Services

028 POWER THROUGH PLATFORMS

With Azure Virtual Desktop, organizations

can centrally provide users, both

internally and externally, with a full

desktop and applications hosted in

the Microsoft Azure cloud. This allows

organizations to leverage the scalability

of the Microsoft Azure cloud for your

desktops and desktop applications.

Some key features that Azure Virtual

Desktop brings organizations:

 Gateway functionality included in the

default Azure Virtual Desktop setup

 You do not have to worry about the

connections to the Azure Virtual

Desktop machines; this is all integrated

into the service.

 You can use your own images from

your shared image gallery

 Using your own images will accelerate

your machine readiness. You can even

share images across your services and

even Microsoft Azure tenants.

 Option to create pooled (shared),

personal (private) machines, and a mix

of both

 The option to choose the machine

types gives you the freedom to supply

Azure Virtual Desktop machines based

on your user requirement.

 Autoscaling to increase or decrease

resources based on time of day, days

of week, and on-demand

 Scaling itself gives you the flexibility to

supply the right amount of machines

that you need at any given moment.

Adding automation will ensure that

you do not have to worry about your

capacity.

Azure Virtual Desktop can be used

with either the Remote Desktop Client

(available on multiple platforms) or the

HTML5 web client.

Azure Virtual Desktop use cases
Azure Virtual Desktop is the cloud

version of Remote Desktop Services

(RDS), a Virtual Desktop Infrastructure

service. A Virtual Desktop Infrastructure

service is commonly used for a fully

working business desktop with all the

required applications for your business.

This means that it can create a fully

working workplace for your employees

or contractors in the cloud without

having to invest in physical hardware

that is capable of running everything

locally.

A well-known provider of Virtual

Desktop Infrastructure services is Citrix

(Virtual Apps & Desktop). Citrix is a more

advanced solution that provides more

advanced options for a Desktop-as-a-

Service (DaaS) experience. Being more

advanced also means that more setup

and configuration effort is required to

make it work.

Since Azure Virtual Desktop can also

host and present an application to

end-users and give them a seamless

user experience (you experience the

application as if it runs locally on your

machine), this will mean that you, as a

business, can distribute your application

online with the scalability and flexibility

of the Azure cloud and the control of

What is Azure
Virtual Desktop

(AVD)
Azure Virtual Desktop is Microsoft’s desktop and app virtualization Virtual Desktop Infrastructure

(VDI) service that runs on Microsoft Azure. Azure Virtual Desktop allows for multi-session
virtual machines with scalability on Azure. As an administrator, it enables you to have a single

management experience for multiple Windows operating systems.

Author Patrick de Kruijf

XPRT. Magazine N°

13/2022

029

your application. Although you could use this as an extension

of your full desktop experience, this is also the basis for a

niche use case.

What we mean with a niche use case for Azure Virtual Desktop

is that your organization can provide centrally managed

applications to your end-users, even though your application

might not be fully cloud-native (yet). This use case could help

organizations move to the Microsoft Azure cloud.

Azure Virtual Desktop and our customers
Some customers have an application that is not cloud-native

(yet), some customers want control over the installation and

configuration of their application, and some want to not

burden their customers with application configuration or

setup.

We have encountered these different reasons at our

customers, and we have helped tackle them with Azure

Virtual Desktop. The applications are still being improved to be

cloud-native, but while the development and improvements

are performed, we can move to the cloud quicker while adding

scalability and flexibility in the Microsoft Azure cloud.

How Kongsberg Digital leverages Azure Virtual Desktop

Among other industries, Kongsberg Digital is a key player in

the maritime industry. Kongsberg Digital is constantly thinking

of innovative solutions for the Maritime simulation industry

and its instructors, students, organizations, and users.

They have innovative simulation solutions which are available

both online and offline. Kongsberg Digital Maritime simulati-

ons are part of the K-SIM product line.

One part of the K-SIM product line is the K-SIM Instructor,

where instructors and trainers can create simulation exercises

for students to execute and perform. The K-SIM Instructor

application is a Windows desktop application for instructors

to use locally. The installation and use of the K-SIM Instructor

application requires other K-SIM tools, models, and area

charts. These requirements add complexity for the instructors.

Azure Virtual Desktop helps Kongsberg Digital Maritime to

take ownership of the installation and configuration part of the

K-SIM Instructor application and the end users don’t need to

install anything on their machines.

The K-SIM Instructor application also has strict compatibility

requirements with the simulator engine for the students to

execute and perform the simulations in the K-SIM Connect

cloud environment. Since Kongsberg Digital Maritime is in

control over the complete installation and configuration of

both the K-SIM Instructor application and the simulator

engine versions, the compatibility requirements are centrally

managed and guaranteed compatible.

Azure Virtual Desktop as a cloud accelerator
Azure Virtual Desktop is a quick and straightforward way to

start your cloud journey by providing a solution for your

traditional desktop applications. It is low maintenance,

deployable using Infrastructure as Code, and has no or low

requirements of client systems to start working. While using

the Azure Virtual Desktop service, you will improve your

organization’s knowledge and experience what the Microsoft

Azure cloud can offer your organization.

The time-to-market is very fast while adding many other cloud

benefits at the same time.

What services do you need for Azure Virtual Desktop
Azure Virtual Desktop is a service that handles the management

layer for providing a Virtual Desktop Infra structure service.

The Azure Virtual Desktop service consists of a few main areas:

Figure 1. Azure Virtual Desktop Key Logical Components

 Workspaces

 Workspaces are a logical group of one or more application

groups.

030 POWER THROUGH PLATFORMS

 Application Groups

 Within Application Groups, the applications and desktops

are configured, including user and group assignment.

The Application Groups are logical groups of installed

software on the sessions hosts within the host pool(s)

 Host Pools

 The Host Pools are one or more pools of session hosts

providing the computing power for the application groups.

 Scaling plans

 Scaling plans are used for ramping hosts up or down based

on session usage and peak- and off-peak hours.

An Azure Virtual Desktop host pool requires either a Virtual

Machine service or Virtual Machine Scale Set service to

provide the computing power on which the applications are

installed and running. These services require a Windows

Image, which we build using the Azure Image Builder service.

We store this Windows Image within a Shared Image Gallery,

as a Virtual Machine Template.

The identity provider for Azure Virtual Desktop can be either

Azure AD or a traditional Active Directory Domain Services

domain. When using a pooled host pool, the user can log in

to any of the hosts that are available. To make sure the user

experiences their profile the same on all the hosts, we are

using FSLogix profile containers, which are stored on an Azure

file share.

FSLogix enhances and enables user profiles in Windows

remote computing environments and is able to supply profile

containers, office containers, and application masking.

Can I try it myself?
Yes, you can! We have set up a GitHub Repository for you to

deploy Azure Virtual Desktop with Bicep.

Our Azure Virtual Desktop GitHub repository1 contains all the

bicep files you need to run an Azure Virtual Desktop in the

cloud with a default app.

Figure 2. Example Azure Virtual Desktop Architecture

1 https://github.com/XpiritBV/azure-virtual-desktop

Patrick de Kruijf
Consultant

pdekruijf@xpirit.com

VM

VMVMVMVM

VM
VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

NSG

NVA

VNET
peeringAvailability set

Active Directory subnet

Endpoints

HTLM5, Windows. iOS,
Android and Linux

Desktops
Spoke VNET

Desktops
Subnet

DMZ SubnetGateway Subnet

Network
Gateway

Subscription 1

Network
Gateway

On-premises network
Hub Virtual Network (VNET) Spoke Virtual Network (VNET)

Azure Files
Azure NetApp Files

ExpressRoute

Azure AD

Connect Server

AD DS Server

AD DS
Server

AD DS
Server

Azure AD
Connect

Azure Active Directory

Windows Virtual Desktop Control Plane (Web Access, Gateway, Broker, Diagnostics, Rest API)

NSG

NSG

NSG Storage
account 1 /

ANF Volume 1

Storage
account 2 /

ANF Volume 2

VM

mailto:?subject=
https://www.github.com/patrick-de-kruijf
http://linkedin.com/in/patrickdk

XPRT. Magazine N°

13/2022

031

Creating 3D
experiences for
Azure Digital
Twins
A digital twin is a connected, digital representation of a physical environment. To create these living
systems, Microsoft created Azure Digital Twins. This product has been around for a while, but it
has always lacked built-in visualisation options for end users. This article explains how to create a 3D
visualisation on top of your digital twin without needing developer skills and why you would want to.

Author Matthijs van der Veer

Digital twins and 3D seem to go hand in hand. However, a

digital twin could be visualised in many ways. A dashboard or

a web page can be just as effective, and you can always give

access to your data through an API. Some digital twins don't

even need any visualisation. Perhaps their data is used in other

systems for further processing.

However, 3D visualisations of digital twins are everywhere to

the point that the two have become synonymous for some

people. In a way, this makes sense. When you build a digital

twin, you dissect the physical environment into smaller logical

parts and capture them into a logical model. When creating

a visual overview of this twin, 3D can help bring these parts

together in a recognisable fashion. Maybe that is why

Microsoft decided to strengthen the Azure Digital Twins

offering with the 3D Scenes Studio. This new preview allows

users to create 3D experiences for their digital twin data.

It offers the opportunity for non-developers to provide

insights into the data that is gathered in the twin.

Let's use a connected office to demonstrate the features of

3D Scenes Studio. Our office has three phone booths for

which occupancy and air quality are measured. To display the

status of these phone booths, it is essential to know which

booth is occupied and if the air quality allows a productive

meeting or phone call. For this purpose, we will show the

entire booth as occupied or unoccupied and show an alert

when the air quality is poor.

Making a Scene
Everything starts with the Scene, which is a 3D model which

contains all the objects. If you already have 3D models

that you want to use, you will need to combine them into a

Graphics Language Transmission Format (or .glTF) file. Various

products can do this. For the example below, Blender was

used.

Picture 1. A 3D model of a phone booth, loaded in Azure Digital Twins

The first thing to do when loading the Scene is to assign

Elements to the 3D model. Each Element can be linked to a

twin in the Azure Digital Twins graph, giving it access to the

twin's data. A twin can be assigned to a mesh, which is a

collection of polygons, defining a subset of your 3D model.

032 POWER THROUGH PLATFORMS

In the case of our phone booths, the 3D model is split into

two meshes: one for the booth itself and another for the glass

pane next to the door. This allows for assigning different twins

to a booth instead of the booth being one massive 3d model.

Assigning an element to a mesh is a manual process. Click on

the item that needs to be assigned, find the twin to associate

and give it a name. This is fine for a couple of objects but is

very tedious to do for a few hundred booths, as it currently

cannot be automated.

After defining all the Elements, it is time to create Behaviours.

A Behaviour can change the colour of an Element or attach

Widgets and Alerts to it. In this example, the booth will turn red

when occupied. The air quality can be monitored in a widget,

but if the CO2 sensor reports over 900 parts per million, an

alert is also shown.

Picture 2. A booth with two widgets and one alert.

After the behaviours have been created, they can be assigned

to the various elements. The whole process, from creating

the Scene, to assigning behaviours, can be done in a matter

of minutes. This is the strong suit of 3D Scenes Studio.

When viewing the scene, you can freely navigate the 3D model

where data is updated constantly.

Picture 3. Two booths are occupied. One is free but with bad air quality

Why (not) use 3D Scenes Builder
When creating a scene and assigning Elements and Behaviours,

a non-technical user can provide a rich 3D experience for

other users. The result is a 3D environment that is updated in

real-time. But when digging a little deeper into how the data

is updated, the whole application is built on polling Azure

Digital Twins. Every ten seconds, the data of the twins being

displayed is retrieved. This will lead to an increase in API calls,

which is also how Azure Digital Twins is being billed;

you pay for what you use. When designing a (near) real-time

application on Azure Digital Twins, a better practice would be

to use the property change events and feed them to your app

through SignalR. If you’re already using the change events,

the price increase would be minimal. But in the current

preview state, polling for all the twins every ten seconds for

every browser window looking at the scene can lead to

increased API calls.

Another challenge with 3D Scenes Builder is that one 3D

model equals one Scene. If you create a Scene for your factory

and decide to change the configuration, you need to start over

again with a new 3D model. The model cannot be edited in

3D Scenes Builder; therefore, you will always need someone

with 3D experience to maintain the 3D models.

It is hard to point to any particular feature as being the best

part of 3D Scenes Builder. For us, the best part is that finally

there is a way to share the twin data with users that need it.

For a long time, the default visualisation was limited to Azure

Digital Twins Explorer. Having the 3D Scenes Builder adds to

the maturity of Azure Digital Twins. We expect that we will see

a lot of splendid examples of projects and prototypes making

use of 3D. Because in the end, while a digital twin is not

synonymous with 3D, it undoubtedly contributes to an

impressive experience.

Matthijs van der Veer
Azure IoT Specialist

mvanderveer@xpirit.com

mailto:?subject=
https://www.twitter.com/@MatthijsvdVeer
https://www.linkedin.com/in/matthijsvanderveer/

XPRT. Magazine N°

13/2022

033

Xpirit has supported dozens of

organizations, ranging in size from

global corporations to SMEs, in

successfully transitioning to the cloud

using the proven Microsoft platform.

A valuable part of this platform is the

Microsoft Cloud Adoption framework,

which assists you in investigating your

motivation and clarifying your strategy.

The following image shows the key

areas of your investigation.

If you are considering a migration to

Azure, using the Microsoft Cloud

Adaption Framework (CAF) is one of

the paved roads you could follow.

The CAF helps you to define and

implement a cloud strategy. It contains

documentation, tools, and best

practices. It also describes a cloud

adaption lifecycle that has eight phases.

One of them is the 'Ready' phase, and

this is the phase in which the cloud

environment is prepared for the planned

implementation. One way to do this is

to implement a Landing Zone.

Getting started and strategy
The Microsoft Cloud Adoption

framework helps you focus on your

business objectives. Why would you

move your business to the cloud?

Is it because of cost savings, or do you

want to enable a new business model

for your products and services?

For instance, do you want to upscale

to match market demand?

If moving to the cloud is the right

decision to achieve your business

objectives, the next step involves

investigating the steps you need to

undertake. This means taking stock of

your digital estate, including a list of all

your technical servers. You must decide

whether you need to move, rearchitect,

rehost, rebuild, refactor, or maybe retire

them, i.e., the five Rs of rationalization.

How to move to the
cloud according to
the Microsoft Cloud
Adoption Frame-
work
The first question is whether moving to the cloud is the right thing for you. After all, each
organization is unique. What are your business objectives? What's the required investment versus
the return? Does a cloud-based business model fit in with your organization, or do you need to
change the model or the organization? What́ s the technology and expertise that́ s required?
Is it something you can do yourself, or do you need expert assistance?

Authosr Patrick de Kruijf, Erwin Staal and Marc Bruins

Get started
Get started
Accelerate migration
Deliver operational excellence
Antipatterns to avoid

Strategy
Motivations
Business outcomes
Financial considerations
Technical considerations

Plan
Rationalize your digital estate
Organizational alignment
Skills readiness plan
DevOps cloud adoption plan

Ready
Operating model alignment
Azure landing zone conceptual architecture
Azure landing zone design areas
Implementation options

Migrate
Azure migration guide
Migration scenarios
Cloud migration best practices
Process improvements

Innovate
Business value consensus
Build your first MVP
Measure for customer impact
Expand digital inventions

Secure
Overview
Risk insights
Business resilience
Asset protection

Manage
Business commitments
Management baseline
Expand the baseline
Advance operations and design principles

Govern
Methodology
Benchmark assessment
Governance foundation
Improve the foundation

Cloud Adoption Framework guidance
Find guidance for each phase of your cloud adoption journey.

034 POWER THROUGH PLATFORMS

From the organizational perspective,

you must ensure that your skill set

matches what you want to achieve or

that you can grow to match the required

skillset. Most likely, the organization of

your business also needs to change

to embrace the cloud and move to

the cloud truly. These changes require

a broad commitment to ensure your

success. Moreover, to truly embrace

the cloud, companies need to adopt a

DevOps way of working, which leads to

rethinking your organization structure.

At Xpirit, we help companies get started

migrating to and working with the

cloud. At the same time, we guide them

to implement a DevOps approach from

a technical perspective as well as from

an organizational perspective.

Creating the right foundation
When ready to move to the cloud, a

key success factor is a solid and secure

foundation for your applications. As a

company, you will still need to consider

cross-cutting concerns such as security,

networking, compliance, costs, etc.

However, your teams may be responsible

for this and should be enabled to do

so effectively and efficiently. Here the

concept of a landing zone comes in,

which is the concrete implementation

of the foundation that will help your

teams to be effective.

What is an Azure landing zone?
“An Azure landing zone is the output of
a multi-subscription Azure environment
that accounts for scale, security
governance, networking, and identity.
An Azure landing zone enables
application migration, modernization,
and innovation at an enterprise scale
in Azure. This approach considers all
platform resources required to support
the customer's application portfolio
and doesn't differentiate between
infrastructure or platform as a service.”

Landing zones can be easily customized

to fit your organization’s requirements

seamlessly and thus be the enabler for

your migration.

Using landing zones when
migrating to the cloud
Imagine a company called FreeBirds.

They have run their software in a data

center in the Netherlands for over ten

years. Their business is growing rapidly

in terms of the number of customers,

but it’s also been a long time since all

their customers came only from the

Netherlands. FreeBirds decided to move

their applications to the Azure cloud.

One of the reasons for this decision is

to reduce costs by fully leveraging the

elasticity of the cloud. Another reason

is to be able to run their applications

across the globe and thereby increasing

the speed of the application as well as

its resiliency and scalability. Building

a Landing Zone on Azure using a Hub

and Spoke architecture is ideal for this

scenario.

Ready-made foundation

When explaining the concepts of the

Azure Landing Zone, it is helpful to do

this in the analogy of building a home.

If you want to build a new home, you

could do everything yourself: dig the

foundations, lay the bricks, and do all

the plumbing. The same goes for the

Azure cloud. You could start to build

the infrastructure manually yourself.

As with the house, you might find this

very time-consuming, and there would

be the risk of making many mistakes.

It would be much easier to use ready-

made foundations and a blueprint that

shows you exactly how to do things and

implements best practices. You could

still customize the structure to personal

needs, but the building would be

architecturally sound, safe, and faster

to build. An Azure Landing Zone is

precisely like that. It will cover network

architecture, security, identity, and

governance, allowing DevOps teams to

start building right away on a perfectly

laid-out foundation.

Architecture

Landing Zones are often implemented

using a Hub and Spoke architecture.

In this type of architecture, you have a

central hub. The network in the corner

acts as a central point of connectivity to

on-premises resources for many spoke

virtual networks, as shown in the image

below. You often find other resources

in the hub shared among spokes, for

example, an Azure Firewall or a Log

Analytics workspace for central log

management.

Hub and spoke architecture

The middle part of the image above

shows the hub virtual network.

It contains the resources needed to

provide connectivity to the on-premises

network on the left. That connection

is often established using a VPN

Gateway or an Azure Express Route.

The connection in the hub network

can then be used by multiple spokes,

as shown on the right. Each spoke

virtual network holds one workload,

and the spokes allow you to isolate your

workloads from those of other teams.

For example, you can use spokes to run

Virtual Machines (VM), Azure Web Apps,

or databases.

In the scenario of FreeBirds, this would

be a perfect fit. A central team, often

called a platform team or something

similar, can build and manage this

Hub with all the central services.

Each DevOps team creates and delivers

applications end-to-end and becomes

one or more spokes. This central team

VM

VM

VM

VM

VM

VPN Gateway

On-premises network

Hub Virtual Network Spoke Virtual Network

Spoke Virtual Network

VPN Gateway

Firewall

Peering

Peering

XPRT. Magazine N°

13/2022

035

can ensure a safe adaption of the cloud,

for example, by forcing all traffic to

the internet to go through a firewall.

They can also use Azure Policies to

set guardrails for the DevOps teams,

ensuring that they cannot deploy, for

example, a database in an insecure way

or forcing a daily backup. It is essential

to ensure that these significant teams

do not become bottlenecks for other

DevOps teams. This means that the

platform team must fully deliver their

services in a self-service and automated

manner as much as possible.

Valuable scenario

A Landing Zone is not only useful in

a scenario like that of FreeBirds, i.e.,

a company moving away from its on-

premises data center. It will also fit

in hybrid scenarios and fully cloud-

native environments that do not contain

any on-premises connectivity. All the

benefits remain, such as easy

onboarding on the cloud, security,

identity, and governance. The Hub is

also often used to provide central

services to all teams that would

otherwise be too expensive or complex.

An excellent example of such an

expensive and complicated offering is

API Management, a service to expose

APIs to the outside world. When run in

a production-ready way, it easily costs

over 3000 euro's a month. This is too

much for each DevOps team to run

independently, and thus it is

often managed centrally. A service like

Kubernetes, AKS on Azure, is another

service that is often managed centrally.

Besides being expensive, it's also a

complex service to operate. Bringing

that to a central team allows the

other DevOps teams to focus on their

business value instead of using their

infrastructure.

Xpirit Managed Landing Zone
The Landing Zones of the Microsoft

Cloud Adoption Framework provide a

solid foundation with a complete set of

generic functionality for moving your

services, applications, and data into the

cloud within weeks. And if you choose

an Xpirit Managed Landing Zone,

we take care of ownership and

maintenance tasks, allowing you to

focus on your core business.

Moreover, we will ensure your system is

always up to date by implementing

new features as soon as they become

available. What sets us apart is our

intimate service provision with direct

contact with the right expert, combined

with our extensive experience and

expertise in the domain of the Microsoft

platform.

At Xpirit, we offer out-of-the-box

landing zones that derive their value

from our seven years of experience

in building them. We have identified

multiple flavors of these landing zones

based on the domain that customers

work in. In addition, we have automated

and optimized them, allowing them to

be deployed and up and running within

two weeks.

036 POWER THROUGH PLATFORMS

For example, our Business Apps/

Independent Software Vendor (ISV)

landing zone helps ISVs create the scale

required to meet market demand.

This landing zone allows them to make

a fast and reliable transition to a world-

wide scale. Typically these companies

have one or more apps that need to be

enabled worldwide or to harness the

scalability and reliability principles of

the Azure Cloud.

Of course, we can review your landing

zone or create a custom zone that suits

your organization.

Hub Spoke Model

The Xpirit Landing Zones use the Hub

and Spoke architecture. Individual

applications run in spokes, each with

a domain-specific workload, while the

hub provides generic services such as

connectivity to the cloud and proven

security features. Naturally, the Xpirit

model pays extra attention to security

with features that comply with ISO

27001, Azure Security Benchmarks, and

CIS.

Comprehensive services with an

ultra-short migration timeframe

We use a swift combination of the

re-host and re-architecture cloud

rationalizations – part of the Cloud

Adoption Framework – to move logical

components from a data center to the

Hub and Spoke model. A primary

application can be up and running in a

spoke within three weeks, which means

that a fast startup is possible using the

generic features of the high-performance

hub architecture. And if you have any

specific needs requiring more

specialized functionality or support

for your applications, we can still

support you. After the re-host and

re-architecture phase is completed,

we can look at the other R's of cloud

rationalization to improve the

application. In addition to managing

the hub, we can also order a spoke

application and help you improve your

application.

Intimate service provision through a

single point of contact

Traditional service provision is structured

in terms of first and second-degree

support lines. Usually, you won't get

to speak to an engineer directly when

you create your ticket but will receive

automated responses. This means you

often must wait to talk to a service team

member who may not be completely

aware of your specific situation.

Our team wanted to innovate this

approach and create a much more

intimate form of service provision by

making our Landing Zone engineers

directly available to support our

customers.

The Xpirit Managed Landing Zones team

consists of knowledgeable Landing

Zone experts with years of experience

in enabling and supporting cloud

migrations and consultancy, coding for

specialized architectures, and advanced

interfaces. You communicate directly

with the right engineer, who can always

rely on the know-how of our entire

Xpirit team, should this be required.

Moreover, our service is available 24/7:

we have the most qualified expert ready

to help you during business hours and

direct operation support on standby at

night. As a result of the single point of

contact and the short communication

lines, you reap the benefit of faster

troubleshooting.

Guaranteed response times

Following a short but thorough intake

process, you receive a transparent

service-level agreement, including

guaranteed response and recovery

times for incidents. We align our

service levels to the severity of a

possible incident, varying from incidents

that would mean the discontinuation

of your business to the lesser impact

that slows down service to less urgent

issues. The organization of our service

team allows us to meet the agreed

response times on a 24/7 basis.

To continuously improve our support

system, we use a net promotor system

to regularly assess our clients'

experiences and monthly meetings with

our clients and their service managers.

Sustainable problem solving

Thorough engineering will improve your

experience with the platform. A defining

feature of our service is our policy of

preventing recurring incidents and

avoiding temporary workarounds and

patches. We perform a post-mortem

for every incident by thoroughly

investigating the root cause of a

problem and finding a sustainable

solution. This problem-solving

approach and properly fixing anomalies

instead of quick patching will save time.

Our extensive set of automated tools

with various validations and alerts often

allows us to predict and be ahead of

any problems before they occur.

For instance, we use Azure Monitor to

monitor the used components within

your Azure tenant continuously,

allowing us to take preventative

measures before any workload or

congestion problems occur.

Moreover, thanks to Xpirit's close

collaboration with Microsoft, we have

direct and short contact lines with

their team of cloud engineers.

Erwin Staal
Azure Architect

estaal@xpirit.com

Marc Bruins
Architecture / Azure /
mobile development

mbruins@xpirit.com

Patrick de Kruijf
Consultant

pdekruijf@xpirit.com

mailto:?subject=
https://www.linkedin.com/in/erwinstaal
https://www.github.com/staal-it
https://www.twitter.com/erwin_staal
https://www.twitter.com/marcelv
mailto:?subject=
https://www.linkedin.com/in/marc-bruins-86819228/
https://www.github.com/marcbruins
https://www.twitter.com/marcbruins
https://www.twitter.com/marcelv
mailto:?subject=
https://www.github.com/patrick-de-kruijf
http://linkedin.com/in/patrickdk

XPRT. Magazine N°

13/2022

037

The Marketplace shows us almost 15 thousand actions that are

available for us to use! That means there is lots of community

engagement for creating these actions for us, but also lots

of potential for malicious actors to create actions that can be

used to compromise our systems. Do be aware that in this

post I'll only be taking actions into account that have been

published to the marketplace. Since any public repo with an

action.yml file in the root directory can be used inside of a

workflow, there are many more actions that are available to us

that are not part of this research.

Analysis of the actions from the GitHub Actions
Marketplace
I created a new repo2 to run these checks using GitHub

Actions by scheduling a workflow that runs every hour and

checks the dataset for new actions that have not been forked

to my validation organization yet.

Some caveats up front:

 I could only load the information for 10.5 thousand actions.

All the others have issues that makes it that I cannot find

them anywhere. These are not included in the dataset for this

analysis.

 Some have been archived by their maintainer, but still show

up in the Marketplace. These are of course older and have

more security issues in them. The actions are included in this

analysis. I'm planning to remove these when the Marketplace

doesn’t show them anymore.

 There are some actions where I could not parse the

definition file (if used), often because of duplicate keys in

their definition file. I've reached out to some of the

maintainers to get those fixed, but also want to improve my

method of loading these kinds of files. Currently the library

I use for this does not support duplicate keys and throws

unrecoverable errors when it finds them.

I've reported this information back to GitHub and they are

planning to improve the freshness of the data in the

Marketplace. Still, this is a good two thirds of the actions

that are available in the marketplace, so this is a representable

dataset to look at.

GitHub Actions
has security
issues
I am fascinated with the security aspects of using GitHub Actions for my own workloads since
I have started using them. My first conference session on this topic was at NDC London in
January, 20211 and I have been advocating on these learnings ever since. That is why I also
decided to run my usual security checks on the entire marketplace, starting with forking the
actions so I can enable Dependabot on the forked repositories.

Author Rob Bos

1 https://devopsjournal.io/blog/2021/01/28/GitHub-Actions-NDC-London
2 https://github.com/rajbos/actions-marketplace-checks

Examples of actions that show up in the marketplace but will

give an error when you want to load the detail information for

them include:

 c-documentation-generator3

 cross-commit+4

Additionally, all this analysis is done on the default branch for

the repository. I myself have one action, for example, that

uses a Dockerfile in the main branch, but I am working on

converting it to Node in another branch. This number should

be small enough to have no significant impact on the overall

analysis.

Security alerts for dependencies of the Actions
I have forked over the action repos to my own organization

and enabled Dependabot on them to get a sense of the vul-

nerable dependencies they have in use. Some caveats to this

analysis are:

 Not every dependency will end up in the action itself, so

a high alert from Dependabot will point to a 'possibly'

vulnerable action. Since this is not something you can

track automatically and see if this would be the case,

we cannot be sure that the action itself is vulnerable.

 This only works for Node based actions, which is 4.7k,

so almost 50% of the analysed actions. Dependabot does

not support Docker at the moment.

 I'm only loading the vulnerable alerts back from Dependabot

that have a severity of High or Critical.

I'm planning to add something like a Trivy container security

scan to the setup so that we get some insights from this as

well.

Security scan results
Of the 10488 scanned actions, 3130 of them have at least 1

high or critical alert! This is a way higher than I even expected

and very scary! And this is only for Composite or Node based

actions! If your dependencies already are not up to date and

thus have security issues in them, how can we expect your

action to be secure? That calculates to 30% of the actions that

have one or more high or critical alert on their Dependencies.

To be complete: I have not filtered down the alerts to a

specific ecosystem. Since GitHub Actions is one of the

ecosystems Dependabot alerts on, there is a chance these

alerts come from a dependency on a vulnerable action for

example, which would be unfair (since these will not end up

in the action I am checking). Since there are only 3 actions in

the GitHub Advisories Database5, I expect this to be of zero

significance, but still: it is worth mentioning.

Diving into the security results
I've also logged the repos with more 10 (high + critical) alerts

to a separate report file and that file contains more than 600

actions!

The highest number of high alerts in one single action, is 58.

Since that repo happens to be Archived, it should not be in the

actions marketplace at all, as well as the fact that this should

not be used at all. Luckily it is only used by a small number of

workflows. I'd rather see that the runner would at least add

warnings to the logs for calling actions that are archived.

The highest number of critical alerts in one singe action is 16.

This repo is also only used by less than 10 other repos, so it

is not a big impact. Since there is no API for finding the

dependents that Dependabot finds, I cannot easily find out

how many workflows are impacted by this.

I've checked some of the repos with many of alerts and found

one example that has 14 high severity alerts and 2 critical

alerts. This action is used by 34 different public repos (so in

private repo usage could even be more!). One of these

dependents is a repo with 425 stars and another has 6015

stars. That last one is producing a serverless CMS that will be

delivered as 48 different packages into the NPM ecosystem.

One of those packages sees more than a 1000 downloads a

week! This is a lot of impact for a single action that could be

prevented by enabling Dependabot. Of course, more analysis

is needed for this case to see if the alerts are actually relevant

for the action. This depends on what the action does and how

it uses the dependencies.

038 POWER THROUGH PLATFORMS

3 https://github.com/marketplace?type=actions&query=c-documentation-generator+
4 https://github.com/marketplace?type=actions&query=cross-commit+
5 https://github.com/advisories?query=type%3Areviewed+ecosystem%3Aactions

Source http://gunshowcomic.com/648

XPRT. Magazine N°

13/2022

039

Overview
In short, this is a top level overview of the security results:

So for all action repos I could scan, 30% have at least 1

vulnerability alert with a severity of high or critical.

Node based actions

Filtering this down to only the Node action types, this

becomes a lot scarier:

That is 58% of the Node actions that have at least 1

vulnerability alert with a severity of high or critical! And all

demos and docs still indicate you can just use the actions

as is and only hint at the security implications of that!

Want to learn how to improve your security stance for using

actions? Check out this guide I made: GitHub Actions Maturity

Levels6.

Conclusion
There is a lot of improvement that can be made to actions

ecosystem. I would like to see GitHub take a more active role

in this by, for example:

 Enforce certain best practices before you can publish an

action to the marketplace.

 Clean up the marketplace when an action's repo gets

archived (work for this is underway).

 Add a security score to the marketplace, so that users can

see how secure an action is, run at least these type of scans

on the action repo and report it back to the end user.

 Add a check that validates you also pushed a new release of

the action to prevent maintainers to add Dependabot and

keep their (vulnerable) dependencies up to date, but not

actually release a new version of the action.

 Add API's to not only the marketplace, but also Dependabot.

This information should be publicly available, but currently

I had to scrape this of the webpages.

Of course, as maintainers of actions we are also in this

together! It's our responsibility to make sure our actions are

secure and that we keep them up to date. I hope this post will

help you understand why to do that!

Rob Bos
Consultant & Trainer

rbos@xpirit.com

mailto:?subject=
https://www.linkedin.com/in/bosrob
https://www.github.com/rajbos
https://www.twitter.com/robbos81
https://www.twitter.com/marcelv

040 MOVING THE BUSINESS NEEDLE

Moving the
Business

Needle
Nowadays, every business is a technology business, no matter what product or service

it provides. In the current day and age, no company can make, deliver, or market its product
efficiently without technology. Whether it is banks, insurance companies, logistics companies, or

retailers, technology is critical to their success. Many companies embrace this fact.
They understand when they adopt new technology and implement it successfully, they gain a

stronger foothold on the market and stay relevant. Companies that wait for a second or
third wave stay at the back of the pack and will have a very hard time becoming a leader in

their market or even staying afloat in markets with strong competition.

Author Dennis Thie

To be a technology company, you need to act and behave like

a technology company. At Xpirit, we look at your business as a

collection of capabilities that are required to allow you to run,

create and deliver your products and services. We distinguish

digital capabilities and leadership capabilities, which are both

required to digitally succeed as a business. A digital capability

we regard as a combination of people, processes, and

technology to deliver value to internal and external customers.

The leadership capability is about merging the skills and

perspectives of your business and IT leaders with the goal to

help them drive change together. For that, they need to have a

digital vision, engage the organization at scale, and govern the

change.

We call this combined set of capabilities and behaviors a

company should have an Engineering Culture. Everything we

do as Xpirit adds to this vision. This Engineering Culture can be

seen from many different perspectives that we categorize into

a number of distinct pillars that together will help you become

successful and can be used to drive change.

One of the pillars of this Engineering Culture is Moving the

business needle. For us, moving the business needle is all

about achieving greater success for your company by helping

you get the most value out of technology. Our way of working

should have enough of an effect so that people notice a

change that adds value to the business. Making a noticeable

impact. Moving your business needle to become a truly digital

enterprise.

"Digital is not a thing, but is
simply a word that describes
our world today."

Start with why? (And for whom?)
A company can only exist by the grace of its relevance.

To stay relevant, you will need to keep reinventing yourself.

This applies to people as well as companies. We probable

all know stories of companies that have been felled, and the

stories of those that have proven able to reinvent themselves.

XPRT. Magazine N°

13/2022

041

It's clear that, without relevance, it takes only time to become

obsolete and for companies to eventually go out of business.

To be able to stay relevant, you must start by asking yourself

the question: what is our why? Why are we in business?

And, more important, for whom? Who are our customers?

You'll need to find out who and what decides whether you're

still relevant. Because let's face it, it's not you who has the

say in that. You'll find out that your customers aren't part of

a single group. In fact, your customers will be both internal

parts of your organization, customers you directly serve and

customers you indirectly serve, in the form of your customers'

customers. You're not in business for a single of those groups

and have the others merely follow. To be perceived as relevant,

it is all about delivering continuous value to those that you

serve, let's call them stakeholders. And to impact them,

things don't stop at the gates of departments or even your

company. You’ll need to think in delivering value end-to-end

to truly impact your customers.

Organize around value streams continuously
delivering value
That is where value streams come into play. A value stream

is focused on how value is delivered to stakeholders and is

not about business processes or how things are done.

Value streams use an outside-in view, from the perspective of

the customer rather than an internal value chain or process

perspective. Using this outside-in view, you’re challenged to

think as the stakeholder affected. A value stream can be cross

mapped to enable business capabilities that describe what an

organization must do to deliver value to that stakeholder.

"You build it, you run it!"

Within a value stream, multiple disciplines work together

creating a continuous flow of value. Instead of working in silos,

value streams contain cross-functional teams that can work

autonomously. They have adopted the 'You build it, you run it'

approach, taking responsibility and control over development

and operations. This shortens the feedback loop, eliminates

barriers, and lessens delays, ultimately allowing faster

learning, higher quality, increased productivity, and shorter

time-to-market.

Know where you differentiate, versus what is (or
should be) a commodity
After knowing your why and for whom you are in business,

it is also important to understand where you differentiate.

Because to bring the most value, you need to know where to

focus your efforts. Things where you don't or simply could not

differentiate should be commoditized, meaning you adhere to

industry standards in processes and technologies. You must

make choices and focus your precious efforts and resources,

as it's not worth – nor feasible - spending those towards

things that deliver a relatively low value. Having this focus is

crucial for success, especially in times like these where talent

is scarce, technologies change with the speed of light and you

are in a constant race with your competition, be it known or

unknown.

Don't make the mistake of thinking your organization is (too)

special, be honest to yourself here. Sure, you will have

processes that are in some shape or form unique to your

business. But, is that because they are truly differentiating you,

or are they because they’ve grown that way historically and

you are holding on to them believing they differentiate you?

Remember, most in fact are – or should be – commodity.

Don't try and reinvent what everybody else is doing, but

instead adopt standards whether it be processes, technologies,

or software. This leaves a way to focus your precious money,

energy, and time on what really differentiates you and can

therefore deliver the highest value and make the biggest

impact.

Embrace a culture of change… or brace for impact!
Understand that the heart of becoming a digital enterprise is

not just technology, but human capacity. And with becoming

a digital enterprise, therefore, comes cultural change. Instead

of going about change in a project-by-project manner, create

a culture of change. Continuous investments toward creating

a culture of change will allow your organization to embrace it,

make change happen, and sustain change.

When changing, it will be natural for there to be criticism and

resistance. Communication is key here, communicate clearly,

early, and often. Share your vision and the reasons for change.

Listen to feedback and create a feedback loop. Bring people

on board and develop a team mindset with people representing

the whole value chain. This will form a powerful coalition and

be the guiding team. These aspects serve as strong governance

when embracing a culture of change.

"It does not only help to have
a vision and a clear plan with
objectives, it is imperative for
success."
Develop a vision and a plan, but mind the concrete
At this point, you will have realized that becoming a successful

digital enterprise does not begin with technology, nor that

it stops at technology; rather, it's all about having the right

strategy and mindset. Yes, technology is an essential tool in

achieving your desired goals, but it’s only a tool.

Where do you ultimately want to be, what’s the dot on your

horizon? The answer to that question is your definition of

success. And remember, success is relative. To achieve

success, set realistic goals on the journey towards that

definition that fit your organizations' capabilities. Nothing is

more demotivating than working endlessly towards unrealistic

goals. That doesn’t mean you should neglect the bigger

042 MOVING THE BUSINESS NEEDLE

picture and your ultimate goal. Or, as we like to call it, your

BHAG: Big Hairy Audacious Goal. But define steps feasible

steps towards that goal. Writing down how you plan to move

the business needle helps with focus and commitment.

It becomes your roadmap, and you will be able to tangibly

measure your progress. And don't set your goal in concrete,

this allows you to sharpen your goal along the way.

Collectively look at the same gauges and needles
To make a big impact towards your goals, you need to have

everyone involved in the organization collectively look at the

same gauges and move the same needles. This is something

you will only achieve based on a mutual understanding of

what is important (your gauges) and how it is measured

(your needles). Having your gauges and needles in place

allows you to measure the impact of changes and track the

results over time. It enables you to employ statistical

techniques to discover what aspect of your efforts is having

the greatest impact. With this, you can take learnings and

steer your plan to focus efforts on what delivers the most

value. It creates a feedback loop that allows continuous

improvement and that increases effectiveness.

Start small, but be strategic and intentional
You might have heard the phrase "It's not about the

destination, but the journey". When you embark on becoming

a digital enterprise, you'll for sure not know the exact end goal

and how to get there, be it simply because you can't predict

everything. If you think you do, look at some recent disruptive

events, like Covid, and think again. Hell, it might even be all

journey and there might not be a 'final' destination, and that's

fine. So, whenever you start the journey, not knowing when

or how you'll reach your destination, make the journey itself

worthwhile. Start small, and work in steps towards overseeable

goals. Create quick wins and be sure to celebrate and share

achievements. Experiment and allow yourself failures, or as we

like to call them: opportunities to learn.

"If it hurts, do it more often."

Leadership: Put your money where your mouth is
As a leader, show your commitment to achieving results, by

being part of it, being seen, and getting your hands dirty.

Don't just talk the talk, walk the walk. Put trust in the people

around you and give them the power and mandate to make

choices they think are best in line with their shared goals and

ambition. Empower people to take ownership and reward

those who go above and beyond. Nurture a culture that allows

people to fail often and fail fast, without shame or punishment,

in order to learn and improve.

Share a clear vision and communicate early, clear, and often.

Be an approachable leader for your team and always keep your

eyes and ears open, absorbing feedback from the organization

and eliminating barriers that impede transformation. Address

concerns and show that you are there to make difficult choices

in the process when plans require adjustment. Don't stick to

plans blindly and don’t fall for the sunk cost fallacy, a human

tendency to follow through on an endeavor just because of

your investment in time, effort and/or money into it, whether

or not it will outweigh the future benefits.

Build on the change and make it stick
Making all that change stick is not something that happens

overnight, it takes thoughtful planning and a true shift in

mentality. To make change stick, is to create a culture of

change instead of handling change in a project-to-project

manner. Only a culture of change will allow your organization

to make change happen and truly sustain it. If you mind the

beforementioned organizational and leadership behaviors,

you are sure to be in the right direction.

"Remember, moving the
needle can be infectious."

When you have the right foundation set and you are

progressing well in your journey of transformation, moving

the needle in a business environment can be infectious, in a

positive way. As a team and in numbers, working towards a

common realistic goal, greater and larger accomplishments

are possible and skills like leadership and priority management

are subconsciously born. Make that mindset a part of

company culture and growth and success are likely to

become commonplace.

Dennis Thie
(Management) Consultant /
Quartermaster / Product Owner

dthie@xpirit.com

mailto:?subject=
https://www.linkedin.com/in/dennisthie
https://www.github.com/DennisThie

043

XPRT. Magazine N°

13/2022

Xpirit USA –
Expanding our
worldwide
Authority mission
On July 1st, 2022, we announced that Xebia would expand our Microsoft-focused consulting into
the US by starting Xpirit USA. Over the past 8 years, Xpirit has established itself as an authority in
the world of Microsoft by leading the industry in innovative ways to help our customers adopt
Microsoft's cloud (Azure) while enabling teams to take advantage of their new capabilities to deliver
software quickly and often. We build Engineering Cultures and truly help drive change within
organizations. We work closely with Microsoft, in terms of selling together as well as working with
the product teams that build the tools that our customers adopt.

Authors Marcel de Vries and Esteban Garcia

After a successful expansion into Belgium and Germany,

we turned our sights to the US. This is the story of how

this all began.

It all starts with a conversation…
Marcel and Esteban knew each other for over ten years

through the Microsoft MVP and RD programs. Both had

seen each other's company's grow in the DevOps

and Azure space. Esteban's company was acquired

by Cognizant in 2020 and now, in early 2021, the

Microsoft Business Group at Cognizant was looking

to expand. They turned their attention to the

Netherlands, and specifically, towards Xpirit. Esteban

knew about the great reputation that Xpirit had and about

the amazing team that fueled the company, so he reached

out to Marcel for a conversation about the opportunity.

That phone call was the start of everything. At that moment,

Xpirit was already part of the Xebia journey with Waterland and

the simple answer to whether Xpirit was for sale was NO. But

the conversation did not stop there – Marcel is great at turning

things upside down, and instead he asked, "What if you give

me a call when you want to build a new company?". And that

is exactly what happened in November of the same year.

Xpirit had just recently announced that they had expanded

their business into Germany, and that the expansion would be

led by Michael Kaufmann as the CEO. Through the MVP and

RD program, Esteban also knows Michael very well, and it

made him think, "what if we could do the same in the US?".

Things got into motion with a new call, but with a

different conversation. What if we would start Xpirit

in the USA, just as we just did in Germany? Use our

combined learnings and continue our Microsoft

Authority mission in the US?

Esteban already had an elaborate plan to build a new

company, leveraging his previous entrepreneurial experience

to put together an amazing team. Robert Bremmer and

Esteban had been talking about it for a long time, and the time

was now. Rob would join him as the COO, bringing a wealth of

operational excellence to the table. Together, they could build

the company at an accelerated pace, much faster than we had

done until now in the Netherlands, Belgium, and Germany.

These are lofty goals, and for that, you need a strong core

team. And of course, we must be able to maintain our culture,

follow our Authority mission, and be guided by our Values.

Once that is in place, our business grows from there.

044 MOVING THE BUSINESS NEEDLE

We had seen this strategy work before, and we knew it would

be a solid plan. So next, we had a chat with Daan, Andrew,

Stefan, and Anand to see if we could make this plan work.

We jointly agreed that building a new company in the USA

would be the best approach for starting a great Microsoft

Business. Long story short, together we built a business case,

brought that to Waterland and we got an agreement to get

started.

In April 2022, Andrew and Marcel flew to Orlando, Florida, to

meet the future Xpirit USA team. They spent two days getting

to know each other, dreaming up the future of Xpirit USA,

creating a concrete and elaborate business plan, and making

a plan that would take them to kick off. This resulted in both

Rob and Esteban saying YES to the plan and us working

together to make it happen.

We decided the start date would be July 1st, with Esteban and

Rob leading the way in our US expansion. While preparing to

get started, word got out and the team already started

recruiting our first hire, an awesome recruiter! We met

Elizabeth, who worked at Wintellect, a company with a similar

DNA as Xebia and Xpirit. Wintellect had recently been acquired

by Atmosera, and their leadership had a talent for making

people run away to other companies. Elizabeth was looking

for new opportunities and was actively interviewing at

companies with big names in the tech world, and after hearing

our stories and checking with her network of trusted peers,

she decided that a future with us exceeded everything that

other companies had to offer and joined us in June. So, before

we even got officially stared, we had our first employee!

We know that the Xebia success formula includes a great

salesperson in the team. Esteban knew exactly who to call –

Natalie Reinford, a salesperson who has focused her career

in Azure and knows the Microsoft and GitHub ecosystem

better than most people. In fact, Esteban hired her in his prior

entrepreneurial journey, and now it was time to get the team

together. She was working at Wintellect and she jumped at

the opportunity to join the Xpirit USA team and be part of this

epic journey. Now everything was in place, and it was time to

look for consultants so we could start delivering value to our

customers.

Once we made the big announcement on July 1st, word

spread quickly through our networks, with our LinkedIn posts

receiving over one thousand responses from our connections.

This resulted in a referral from a Microsoft Regional Director

well-known by Esteban and Marcel. And just like that, we had

our first applicant through the Xpirit website! Stuart Celarier

applied and took the Xpirit Hiring assessment, which resulted

in an offer. Stuart joined Xpirit USA on September 12th this year

and became our first of many consultants. We also received

applications from people at Microsoft and GitHub, who are

in the process of getting hired. One of them, David Sanchez,

joined us from Microsoft on September 21st. As we write this

article, we have five other consultants in the process of

interviewing or taking the Assessment.

The US is a big country and we've taken the show on the road.

The team traveled to Kansas City and had five presenters in

front of over 1,500 attendees at KCDC (Kansas City Developers

Conference). If this is not enough, we also spent a week at the

Microsoft campus in Redmond, speaking with leadership at

Microsoft and GitHub. We made great connections and plans

to partner closely globally. Most recently, we were asked to be

part of GitHub Universe, deliver workshops there, and be part

of the exclusive GitHub Partner Advisory Board. GitHub also

keeps looking to us to train Microsoft itself, GitHub Partners,

and sellers and develop a new certification Bootcamp to be

rolled out worldwide. The Xpirit USA team also traveled to

Atlanta to work with Vipul Baijal’s Xebia USA team and look

for ways to expand our offerings within our existing customer

base. In October, Esteban has been asked to join Microsoft

Ignite's firs in-person conference in Seattle, as a speaker.

There is a lot of excitement and buzz happening as we get

started and we are on track to end this calendar year with at

15 employees, who will work together with our teams in

Germany, Belgium and the Netherlands to support our

customers globally.

It has been an amazing ride thus far and we are just getting

started. We have all the pieces in place to build a real epic

company in the US, and we are confident we will be able

to make a real statement in the market with our simple but

also complex mission: Being an authority in the Microsoft

space.

Marcel de Vries
Chief Executive Officer
Xpirit Group

mdevries@xpirit.com

Esteban Garcia
Chief Executive Officer USA

egarcia@xpirit.com

mailto:?subject=
mailto:?subject=
https://www.linkedin.com/in/estebangarcia
https://www.github.com/vriesmarcel
https://www.github.com/estebang
https://www.twitter.com/marcelv
https://www.twitter.com/@estebanfgarcia
https://www.twitter.com/marcelv
https://www.linkedin.com/in/marcelv

045

XPRT. Magazine N°

13/2022

Bring Observability
into practice with
Azure Managed
Grafana
At Xpirit we live by the motto "You Build it, You Run It!". As true DevOps minded people our
interest does not stop when a new release is deployed. This is only the first step towards the
ultimate goal: deliver a solution with the best end-user experience possible. Running a solution in a
reliable, secure and resilient way requires knowing what is going on after go-live. We want
to measure application performance in the broadest sense of the word.

Authors Rik Groenewoud and Casper Dijkstra

With the shift from monolithic systems towards distributed

systems, from on-premise towards the cloud, from running

virtual machines to serverless computing, it has become

indispensable to monitor properly in order to get a grip on

the complete system.

At the same time, proper monitoring has become an ever

increasing complex matter. Back in the old days performance

issues could be predicted, such as full or broken HDDs,

memory issues or CPU overload. Nowadays a different

approach is required. Things will break down, only it cannot

be foreseen when or where this will happen. This calls for a

new approach regarding how the running state of our cloud

solutions can be measured. Static dashboards or reactive

alerting are not sufficient anymore. This is where Observability

comes in.

Observability
The term “Observability” originates from control theory and

can be explained as a measure of how well internal states

of a system can be inferred from knowledge of its external

outputs.1 In the recently released (June 2022) O'Reilly

handbook called "Observability Engineering", this formal

definition is applied on software systems. The authors come

up with a more practical approach:

"... our definition of "observability" for software systems

is a measure of how well you can understand and explain

any state your system can get into no matter how novel or

bizarre."

In other words, when an issue occurs all tools and data are

directly at your disposal to debug and mitigate the issue at

hand. In the current age of complex production systems,

traditional monitoring and alerting practices no longer suffice.

One of the main disadvantages is that collecting and

monitoring metrics, such as CPU or Memory usage of a VM,

is fundamentally reactive. Furthermore, monitoring these

kinds of metrics is based on previous known possibilities of

where the system could fail (known-knowns).

But what to do if something unexpected happens; for instance,

something not seen before and therefore not recorded in the

existing monitoring? No alert will trigger and the engineer that

eventually will have to fix the issue has to go and search for the

needle in the distributed serverless haystack.

As the writers of Observability Engineering put it:

"In modern cloud native systems, the hardest thing about

debugging is no longer understanding how code runs but

finding where in your system code with the problem even

lives."2

How to prepare for the “unknown unknowns”? This is the

question Observability aims to answer. Instead of adding more

and more metrics and alerts as new things break

over time, observability turns around this approach by

acknowledging that it cannot predict what will break next in

the system.

1 Majors C., Fong-Jones L., Miranda G (2022). Observability Engineering. Achieving Production Excellence, 4
2 Majors C., Fong-Jones L., Miranda G (2022). Observability Engineering. Achieving Production Excellence, 13

046 APPROPRIATE CONTINUITY

From this acknowledgement follows a new ultimate goal:

collect as much relevant contextual data as possible.

Collecting structured logs and events and making it possible

to slice and dice through the data becomes pivotal. A curious

pro-active attitude enables us to make previously unknown

states of the system insightful.

New tools should be created that help us to preserve:

“... as much of the context around any given request as

possible, so that you can reconstruct the environment

and circumstances that triggered the bug that led to a

novel failure mode.”3

Microsoft Azure and Observability
With the above theory in mind, Microsoft seems to embrace

Observability. They also aim to provide centralized logs,

metrics and traces. Azure Monitor promises to "... deliver[s] a

comprehensive solution for collecting, analyzing, and acting

on telemetry from your cloud and on-premises environments."4

Azure Monitor aims to be the "single pane of glass" when it

comes to observing performance of resources. From here one

can dive into automatically aggregated logging, application

insights, service health, or monitor a Kubernetes cluster.

With Azure Monitor and solutions like Application Insights

at our disposal, Azure provides a very solid monitoring and

logging solution. Just as the observability theory advises, it

brings together a lot of important data and, more importantly,

transforms this data into structured events that can be queried

and zoomed into on a per request level.

So why the need for an additional tool on top of this?

For many workloads (such as running App Services) one could

argue that Azure provides a fruitful tool to your application in

depth. Still, there are scenarios in which there are real

benefits to adding Grafana to the toolset. As we will show in

the rest of this article, it can be a powerful solution because it

can do things not possible in Azure. But first: Why should one

even bother to visualize data into a graphical representation

called a dashboard?

Why use visualization?
One of the more obvious advantages is that one gives access

to otherwise unseen events and status by making data visible,

one gives access to otherwise unseen events and status.

An important benefit of simplifying data into a graphical

representation is that non-technical people get an idea of

how the system is performing. In other words, the data is

democratized and made available for the whole company.

A noteworthy nuance here is that some dashboards may be

irrelevant for certain users. These dashboards are particularly

useful when scoped to certain teams, which Grafana allows

for. For instance, SLO dashboards can be made accessible

company-wide while dashboards that help the debugging

process, e.g. Kubernetes dashboards or technical error

collections, can be made available for just the DevOps teams.

For developers or IT engineers who have the task to trouble-

shoot an incident, a well-designed dashboard can be a great

starting point for investigation. In case of a complex

technical problem an elaborate dashboard can act as the

Swiss army knife pointing the right direction, or at least verify

that several metrics are within the realm of expectation.

It can also tell which factors can be excluded from the

possible factors incurring the problem.

The uitility of a dashboard stands or falls with the graphical

display of the dashboard. Which metrics are shown? Which

alerts are implemented? Naturally it depends on the workload

where to focus, but in general it is wise to focus the measuring

and alerting on events that have end-user impact. To be able

to determine where this impact lies, it is important the busi-

ness stakeholders - who know the value of their product is –

are asked, what kind of problems or outages would be truly

painful. Based on these kinds of conversations the Service

Level Objectives (SLOs) can be constructed. From there the

SLOs can be visualized and share through the company.

(To learn more on SLOs and how to use error budgets, read

the article in Xpirit Magazine #11: "The reliability paradox:

Why less can be more" by Geert van der Cruijsen and Casper

Dijkstra.)

3 Majors C., Fong-Jones L., Miranda G (2022). Observability Engineering. Achieving Production Excellence, 13
4 See: Azure Monitor overview - Azure Monitor | Microsoft Docs https://learn.microsoft.com/en-us/azure/azure-monitor/overview

Figure 1. While monitoring and its tools aim to cover the Known Unknowns, Observability covers the realm of the Unknown Unknowns.

Known Unknowns

Healthchecks Metrics

(Alerting)

Metrics

(Query)

Traces Logs Events

Unknown Unknowns

Monitoring and Resiliency Observability and Exploration

047

XPRT. Magazine N°

13/2022

Azure Managed Grafana
Usability: combine multiple data sources and metrics

What makes Azure Managed Grafana an interesting addition to

the toolbox? Let's start with usability. People may argue that

Azure provides all the required tooling, however, Grafana is a

specialized dashboarding tool with many visualization options,

graph types and a user-friendly interface. By creating togglable

data panes and metrics, correlations between different data

can be investigated easily, e.g. see that performance degraded

directly after a new deployment or that the application

became unresponsive as soon as the number of unhealthy

pods spiked. With Grafana, professional dashboards can be

set up with insightful graphs. Instead of using the static tiles

of an Azure dashboard or workbook, Grafana allows for free

customization of the dimensions of the graphs with more

options when it comes to the look and feel of the graph.

As said before, dashboards have a specific audience. That is

why it is good to know that Azure Managed Grafana supports

RBAC on the Azure and Grafana level. On the Azure side,

Admin, Viewer and Editor permissions can be set on individual

users and AD groups. Global permissions of who can modify

dashboards and who has read-only permissions can be set as

well.

On the Grafana side, access to individual dashboards can

be fine-grained; documentation can be found at

https://grafana.com/docs/grafana/latest/administration/

roles-and-permissions/access-control/.

A powerful asset of using Grafana is the ability to combine

multiple data sources. Think of scenarios in which data from

multiple Azure subscriptions from different regions, different

tenants etc. needs to be combined. This can all be done easily.

The Azure Monitor data source authenticates using an Azure

AD App Registration.

On https://grafana.com/grafana/plugins you can find more

than 100 data sources that can be added to the dashboards.

Using the Microsoft stack, we are particularly interested

in the Azure, Azure DevOps and Prometheus plugins.

Customers using Jira for ticket management or GitHub for

development should know that those integrations are also

supported.

Take this one step further and go outside of Azure and it

becomes even more interesting. Envision a hybrid

infra structure in which all kinds of data sources can be brought

together, such as on-premise SQL Server, AWS or other

external observability tools e.g. DataDog or Jaeger.

Figure 2. An example of a visualization of AKS cluster performance in Grafana. The dashboard consists of multiple so-called rows such as 'Cluster -
Overview' and 'Consumption by Namespace'. The rows can be maximized and minimized to see just the data needed. All panels can be transformed
freely and there are a lot of visualization options available. At the top variables are used to select a specific resource group or cluster. These variables
are powerful because this one dashboard now can be used for all clusters in a particular infrastructure. This dashboard is available via: https://grafana.com/
grafana/dashboards/12817

https://grafana.com/docs/grafana/latest/administration/
roles-and-permissions/access-control/
https://grafana.com/docs/grafana/latest/administration/
roles-and-permissions/access-control/
https://grafana.com/grafana/plugins
https://grafana.com/grafana/dashboards/12817
https://grafana.com/grafana/dashboards/12817

048 APPROPRIATE CONTINUITY

In short, a lot of the relevant data can be brought towards one

hub system. In this way the combined data can be visualized

and it becomes a powerful first-stop to get a comprehensive

overview of the performance of the complete infrastructure.

When trying to visualize multiple Azure metrics on one graph

via the Azure Portal, the following message may have popped

up more than once.

In the Azure Metrics graphs only one resource can be selected

at a time. This contradicts good observability practice.

Often one would like to compare several resources to see how

they correlate or differ in a certain time frame. This can give

valuable insights into the root cause of issues.

This use case is something that is totally possible in Grafana.

Multiple queries of different metrics can be added in one

graph, table or other visualization of preference. An example

could be an overview of response times of several app services

or maybe to compare the amount of healthy pods in several

AKS clusters. This can be done easily in Grafana, as can be

seen in Figure 3 and Figure 4. where multiple metrics are

shown on the same time-scale.

Figure 3. An example where availability statuses from multiple
environments, in multiple subscriptions are combined in one panel.

Figure 4. The 3 queries (Test, Acc and Prod) from the panel in figure 3.
Add/remove queries and rearrange their order, pick any available resource

and metric per query.

A Grafana dashboard is more than just a static visualization.

It allows you to explore data and jump to Azure when further

investigation is needed. Examples are links to more elaborate

logging or to Azure DevOps pipelines for deployments that

incurred diminished performance to initiate a rollback.

This makes a Grafana dashboard truly a starting point when

issues arise. Quick insight can be gained into key indicators.

When something strange is noted, one can explore the

particular query, see what is going on and jump directly to

the particular Azure resource via a link provided in Grafana.

Community
Since Grafana is a specialized cross-cloud monitoring tool,

it has gained a lot of traction and contributions from the

community. This can be seen in the great amount of available

monitoring templates. An abundance of optimized dashboards

can be found at https://grafana.com/grafana/dashboards,

where each dashboard is given a unique dashboard identifier.

This ID can be specified in the import functionality of Grafana

and allows you to easily add a Kubernetes and/or cost

management dashboard to your dashboard stack.

Step 1: Go to Dashboards/ Import Step 2: Fill in the ID of a

dashboard

Step 3: Check the details of the dashboard and Import.

These template dashboards are great examples and provides

a running start when someone is new to Grafana. They give a

good example of what is possible for the specific data sources

and can be tweaked to personal preference after import.

The lively and expanding Grafana community works as an

enabler for adoption by more and more companies

worldwide. We strongly think that Grafana is the visualization

weapon of choice in, among others, the Kubernetes realm.

See for example this article: How To Setup Prometheus

(Operator) and Grafana Monitoring On Kubernetes

(getbetterdevops.io)

Dashboards-As-Code
One of the important aspects of working DevOps is to

automate everything. This includes dashboarding.

Grafana dashboards can be created from a JSON template

using the Grafana API.

By treating your dashboards as code and including them in the

DevOps work process you get all the advantages of automatic

deployment, git versioning, collaboration et cetera. Let's have

a more hands-on look of how this could work.

https://grafana.com/grafana/dashboards
https://getbetterdevops.io/setup-prometheus-and-grafana-on-kubernetes/

049

XPRT. Magazine N°

13/2022

Once a dashboard has been set up, it can be exported with t

he following steps:

1. Open the dashboard

2. Go to Dashboard settings

3. Open JSON Model

4. The Dashboard-As-Code can be copied.

Following these steps we can set up modular dashboards

that integrate with miscellaneous services, such as:

 Azure DevOps

 App Services

 Azure Kubernetes Services

 Azure Monitor

After setting up an insightful dashboard, the environment

specific parameters are parametrized, such as the subscription

ID, resource group and managed identity used to obtain the

data. By doing this, the dashboard can be reused for multiple

scenarios, environments, or customers. By repeating this for

different dashboards, a pipeline can be set up that combines

the deployment of the different dashboards. This is

accomplished as follows. First create a pipeline template to

which the different dashboard panels can be fed.

parameters:
 - name: appService
 type: object
 default: ''
 - name: kubernetes
 type: object
 default: ''
 - name: costManagement
 type: object
 default: ''
 - name: namespace
 type: object
 default: ''

Subsequently, the Grafana pipeline template can be called

from the environment-specific pipeline where parameters

(e.g. a list of App Services and corresponding resource group)

are passed to this pipeline. The pipeline then checks if

parameters are set for that specific component (using the

condition: neq(variables.appService, ")syntax), sets the

variables in the appService.grafana file and adds it to the total

Grafana file that will be deployed. A portable dashboard is

thereby obtained which only has to be devised once.

Moreover, when changes are made in a customer dashboard,

this can be put back in the infra-as-code such that it can be

rolled out for other customers too. This way, dashboards can

be incorporated in the DevOps workflow.

The utility thereof is not limited to managed services

providers; larger companies with multiple DevOps teams can

strongly benefit from such an approach too! These practices

help to standardize the look and feel of dashboards and to

050 APPROPRIATE CONTINUITY

create a uniform dashboard experience. Incorporating the

dashboard-as-code technology allows companies to create

well-designed dashboards and share them across teams for

reusability and efficiency.

Costs

At the publication date of this article, Azure Managed

Grafana has an hourly rate of €0,088 per hour per instance.

Active users (users who accessed Grafana in a given month)

are less than € 6,00 per month. So with +/- € 75,00 a month

(and a 30-day free trial) the initial investment to start with this

offer is fairly low. The Azure costs should not be a barrier to

exploring this tool.

This has three big advantages.

1. Firstly, this prevents Egress

2. Data costs from Azure to the external tool;

3. As Egress Data is invoiced per GB this can cause unhappy

surprises when such a tool is implemented.

Secondly no additional agents need to be installed on the

Azure resources that could have an impact on performance

and maintenance. Lastly there is almost no delay in data

availability between Azure and Grafana. As soon as the data

becomes visible in the Azure Portal, it is available as well in

Grafana.

Conclusion
Azure managed Grafana allows us to bring dashboards to the

next level and reuse dashboards that have been well-designed.

The ability to concentrate and retrieve useful information at

a centralized place greatly helps in the debugging process in

case of technical errors.

Moreover, one can easily include information that is otherwise

scattered across cloud services. Billing information is collected

in Azure Cost Management, SLOs are defined in terms of

KQL queries, and Kubernetes performance is monitored under

the Azure Kubernetes Services monitoring tabs. Now all

information is leveraged in a single place, where multiple

dashboards, all with their own audience, can be defined.

By bringing all these data sources together and combining

them in a smart and useful way in Azure Managed Grafana,

observability becomes something real and will add value to

the existing tools that Azure offers. In the current age of highly

complex distributed systems it is no longer about only trying

to prevent issues from occurring, but to make sure engineers

have the right tools to literally observe what is going on and to

locate the issue as quickly as possible.

If you're interested in Azure Managed Grafana and would like

us to help you with designing fit-for-purpose dashboards or

would like to get a workshop on how to do this yourself, don't

hesitate to reach out to us!

Rik Groenewoud
Consultant Managed Services

rgroenewoud@xpirit.com

Casper Dijkstra
Cloud Engineer

cdijkstra@xpirit.com

mailto:?subject=
mailto:?subject=
https://www.linkedin.com/in/casper-dijkstra-30661897
https://www.github.com/RikGr
https://github.com/cdijkstra
https://www.twitter.com/RikGroenewoud
https://www.twitter.com/marcelv
https://www.linkedin.com/in/rikgroenewoud

XPRT. Magazine N°

13/2022

051

You like our culture
of People First

you have a bit of a
geeky hobby

You have so much Epic
skill, it’s everywhere

ou want to be part of
a creative team who
takes care of you and
supports you in your
journey

Be part of the
journey

Let’s have
a coffee!

www.xpirit.com

If you prefer the digital
version of this magazine,
please scan the qr-code.

Together we
drive change.

