
XPRT.

Together we drive change.

Upgrading user interface for the future

GitHub Actions running them securely

Creating an open source
learning project

The reliability paradox:
Why less can be more

Magazine N° 11/2021
XPRT.

XPRT. M
agazine N° 11/2021 T

h
e sh

ift to
 c

lo
u

d
-n

ative
: A

cce
le

rate yo
u

r in
n

o
vatio

n

The shift to
 cloud-native:
Accelerate your
 innovation

HAVE YOU EVER WANTED TO EXPERIENCE WHAT IT’S LIKE
TO WORK IN A TEAM THAT PRACTICES REAL DEVOPS?
DO YOU WANT TO RUN A DEVOPS BOOTCAMP?
Then this is the event for you! You learn how to build software with immediate feedback loops
and push it to production, multiple times a day, without hesitation. You will be able to translate
everything into your daily practices and initiate your DevOps transformation based on experience
instead of text-book examples.

ACCELERATE DEVOPS ADOPTION WITH
THIS EXCLUSIVE DEVOPS EXPERIENCE

DO YOU WANT TO RUN A
DEVOPS BOOTCAMP?
CONTACT MAX FOR ALL
OPTIONS.
Max Verhorst / +31 (0)6 13 46 80 02 /
mverhorst@xpirit.com

XPRT. Magazine N°

11/2021

Colophon

XPRT. Magazine No 11/2021

Editorial Office
Xpirit Netherlands BV

This magazine was made by
Alex de Groot, Alex Thissen,

Anne Meijer, Arjan van Bekkum,
Bas van de Sande, Casper Dijkstra,

Chris van Sluijsveld, Dennis Thie,
Erick Segaar, Diederik Tiemstra,

Bastiaan Weijers, Duncan Roosma,
Max Verhorst, Erik Oppedijk

Loek Duys, Geert van der Cruijsen,
Jasper Gilhuis, Hindrik Bruinsma,
Immanuel Kranendonk, Rob Bos,

Jesse Houwing, Jesse Swart,
Kees Verhaar, Maarten Blok,

Marc Bruins, Maira Duijst - Camu,
Manuel Riezebosch, Marc Duiker,

Marcel de Vries, Sofie Wisse,
Martijn van der Sijde,

Michiel van Oudheusden,
Natascha Former, Niels Nijveldt,

Pascal Naber, Reinier van Maanen,
René van Osnabrugge,

Roy Cornelissen, Sander Aernouts,
Suraj Sewbalak, Thijs Limmen

Contact
Xpirit Netherlands BV

Laapersveld 27
1213 VB Hilversum

The Netherlands
Call +3135 538 19 21

mverhorst@xpirit.com
www.xpirit.com

Layout and Design
Studio OOM

www.studio-oom.nl

Translations
TechText

© Xpirit, All Right Reserved

Xpirit recognizes knowledge
exchange as prerequisite for

innovation. When in need
of support for sharing,

please contact Xpirit.
All Trademarks are property of

their respective owners.

 004 The shift to cloud-native:
Accelerate your innovation

 011 Never waste a good crisis
how COVID-19 drove innovation
in maritime education

 034 Creating an open source
learning project

 046 Xpirit embraces
SPACE Framework to measure
developer productivity

 037 Introducing Xpirit
Cloud-Native Software
Development

 041 The reliability paradox:
Why less can be more

 040 Introducting Xpirit
DevOps services

 031 Securing a DevOps
Workstation

INTRO

In this issue of XPRT. Magazine, our experts share
their knowledge about the shift to cloud-native:
Accelerate your innovation.

INNOVATION

SECURITY

LEARNING

DEVOPS

XPIRIT

If you prefer the
digital version of

this magazine,
please scan the

qr-code.

006

025

037

046

 006 Upgrading user interface
for the future

 025 GitHub Actions: running
them securely

 017 Be Secure and Compliant
with GitHub

004 INTRO

The shift to
cloud-native:
Accelerate your
innovation
The trend in the industry is clear. We need to accelerate our innovation to stay on top of the
curve. Cloud has become the default and now the challenge lies in how can we transform
our organization so we can leverage all that is cloud. We need to move away from traditional
operating models where we have the IT department dictating how we need to use IT. IT has
become the business! This also means IT departments need to move away from a siloed demand
supply organization and re-invent themselves to get a seat at the table in the business. They need
to enable accelerated business innovation instead of being a constraint in speed of delivery.
They need to become a high performance IT organization and reimagine how to empower
everyone so they can use IT in self-service while staying secure, compliant and efficient.

Author Marcel de Vries (Chief Technical Officer)

In this episode of our magazine we have various articles that

can help you paint a new picture of the future. How do you

empower developers with secure and performant desktops

so they can deliver the software we need so desperately while

not compromising security? How you can automate your

CI/CD with GitHub actions and make sure the supply chain

that produces the software is secure by default? How can you

embrace opensource to learn new technologies and how

can you bring software that is mature and robust, but still a

monolith to a cloud native environment? What User interface

technologies can you embrace to create flexible and

maintainable user interfaces to your customers? How can we

embrace the cloud and employ new techniques to ensure

our software is reliable and robust, while the cloud has a

completely different reliability model than your on premise

datacenter?

With the cloud being part of virtually every business strategy

we come across we decided it is also time to spawn new

businesses where we focus on the delivery of cloud native

software delivery and providing customers with a cloud native

managed services proposition. In this magazine you will also

learn how we are embarking on those new journeys with our

team of experts.

At Xpirit we had the pleasure and privilege to have already

walked a journey with cloud native software development

and managed services for the past seven years. We learned

so much along this journey that we never dreamed possible.

With our magazine we share many things we have learned

throughout our journey and we hope they will help you

become more successful in yours.

For us it is clear that the shift to cloud-native has started.

We love to be there with you side by side with our experts

and help you accelerate your innovation!

XPRT. Magazine N°

11/2021

005

“Cloud native technologies empower organizations

to build and run scalable applications in modern,

dynamic environments such as public, private,

and hybrid clouds. Containers, service meshes,

microservices, immutable infrastructure, and

declarative APIs exemplify this approach.”
– Cloud Native Computing Foundation

006 INNOVATION

Upgrading user
interfaces for

the future
Kongsberg is a company in the maritime industry – it is heavily regulated and in general,

it does not spend too much time on 'how things look' - as long as the solution is functional.
In the past, large legacy desktop systems have been built for Kongsberg’s maritime simulation

and training division. These systems use WPF (or older!) to show and control its state.

Author Albert Brand

Recently Kongsberg started to deliver a cloud-based training

platform for maritime students, in which a view on the ship’s

bridge with all instruments is accessible from a browser.

Together with the transformation to a web platform there

was a great opportunity to rethink how to compose the user

interface with reusable elements, how these user interfaces

are connected to the simulation services, and how to achieve

a maintainable system that may be compiled into something

entirely different in a couple of years.

This article will discuss some details of this transformation to

the web. If you are interested in the ‘cloud side’, make sure

to read the article by Roy Cornelissen and Sander Aernouts in

this magazine.

Rethinking the design
Kongsberg brought in a design agency to create a fresh new

look for their entire simulation product suite called K-Sim.

This covers:

 the simulated ship controls called instruments;

 the virtual ship’s bridge where these instruments are shown

to the user called PanoramaWeb;

 the portal to start a simulation, see assessment results,

and buy licenses for specific instruments called Connect.

Initially there was a focus on the instrument design.

These were crafted as a replica of the physical world (which is

called skeuomorphic in experts terms). However, after several

iterations it became clear that in some cases, a real life design

is hard to manipulate using a display or touch screen.

Also, creating components from these designs was deemed

to be pretty complicated (although we managed to deliver

some!).

After a number of iterations, the agency took these learnings

and they made the distinction between replicas, abstractions

and digital screens. When a physical replica is too

constraining, abstractions are used to present a design that is

recognizable but does not exist in real life. For example, the

heading repeater instrument has traits of a compass rose that

add a relation to its functionality. The third distinct design type

is digital screens. Today, some instruments on a ship already

use a touch screen instead of a custom hardware panel.

It makes sense to give a similar representation to a student.

Creating composable UI elements
I joined the K-Sim Connect team in April 2020 as a Xebia

frontend architect. One of the goals was to coach the current

team in building modern web frontends. Of course they also

wanted me to help build some of the user interfaces, fast!

That seemed like a job that suited my skills pretty well.

Some teams already created web versions of instruments

(before they hired a design agency). The instruments were

built using vanilla JavaScript with CSS and did only use some

XPRT. Magazine N°

11/2021

really low-level libraries such as jQuery to help render the

output. The build quality of the components was lacking in

several areas: minimal tests, no proper separation of concerns,

no reusable parts and of course the visual design was pretty

old-school as well.

Together with one of the simulation software architects of

Kongsberg I discussed several topics:

 we should create small components to compose larger ones;

 the components should use a modern web standard to

expose and isolate itself, and allow for data ingestion and

event publishing;

 we shouldn’t build everything ourselves but use the best

libraries out there to achieve it.

The architect was also thinking about a domain-specific

language that expresses how the user interface is laid out in a

platform-independent manner. He liked what he heard about

Web Components1 as it is the official set of web standards for

creating components that encapsulate their presentation and

behavior.

So we went forward and started to create a Web Component

library based on the initial designs, with many composable

elements such as buttons, areas and text elements. But what

does composability mean in the context of a user interface?

To give an example, let’s say that you want to show a big

button with a flashing text on it. One way of building such a

component is by creating a new one from scratch with exactly

that behavior. However, such a solution does not scale: you’re

probably copy-pasting parts of a similar button, and you need

to repeat that process over and over again for new variants of

the button. An improved way would be to add parameters to

an existing button, such as “size” and “flashing”. However, that

would still not scale very well, as your component would

keep on growing with all kinds of variations which get harder

and harder to reason about, let alone write tests for all

permutations.

A better way to solve this is by creating an extensible

component, which allows for injecting other components

that only bother about their own concerns. For instance, the

flashing button could be created by the following structure:

<StyledButton>
 <Flashing colors=”[red,white]”>
 <SimpleText size=”big”>
 Emergency!
 </SimpleText>
 <Flashing>
<StyledButton>

And this is exactly what you can do with web components.

It offers you custom elements that provide a ‘slot’ mechanism

to pass in other elements, making your components

composable from smaller parts.

Libraries? Yes please.
While implementing the first components it became clear

quickly that the Web Component standard is a little bare-

boned. This is actually often the case for web standards in

general: the standard committee is pressed to agree on a

generic solution, and they often choose low-level APIs.

It is up to the web community to pick them up and use them

as a foundation for modern libraries.

Many of the existing frameworks such as React, Vue.js and

Angular offer a way to perform a special build that wraps

components as custom elements. However, this comes at the

cost of having to ship relatively large libraries, just to draw a

single component. So we looked at alternative frameworks

and libraries to create web components while adopting a

modern approach, but without too much extra overhead.

The choice quickly became clear: we wanted to follow the

recommendations from Open Web Components2, a collective

of web components enthusiasts. These recommendations

provide a powerful and battle-tested setup for creating and

sharing web components. It recommends the LitElement3

library for building web components, the successor of the

Polymer project, which pushed the Web Component standard

initially.

Presenting the ship’s bridge in a browser
While building the shared component library, work was

underway to build a new version of the PanoramaWeb web

application to show the overview of instruments to the user

in a modern way. As PanoramaWeb is a single page app that

shows the ‘chrome’ around instruments, it was not necessary

to build this as a web component. Instead, I opted to use Vue.

js, as it an easy to pick up framework for building large

component-oriented user interfaces.

PanoramaWeb initially retrieves the instruments it needs to

show via a panel API. When the instruments are loaded, the

app has some high-level control over the simulator. It can

start and stop the loaded exercise and show the simulated

time, which is presented in the top bar. This communication is

done over a bidirectional stream of events that is exposed via a

Websocket connection. In addition, each instrument connects

to its own server-side view model instance using SignalR.

And if that is not sufficient, each instrument can communicate

with whatever service it wants, and with any protocol that is

required for it. You can read about how the radar instrument

uses a WebRTC stream for bringing the radar display to life in

the article by Roy and Sander in this magazine.

007

1 https://developer.mozilla.org/en-US/docs/Web/Web_Components
2 https://open-wc.org
3 https://lit-element.polymer-project.org

008 INNOVATION

One of the challenges was to build a view to show and

interact with the various instruments, while also being able

to resize them and reorder them using drag and drop. As the

instruments are built as separate web pages, it made most

sense to use plain iframes to show the contents. iframes have

a long history, as they have been one of the first browser

features. They allow you to load and show two or more

different pages of content in a single view, which means that

they are a good candidate to ‘stitch’ multiple instruments

together in a unified view.

Of course, there are other ways of combining multiple

elements on a single page. You can choose to create large

components that are then loaded on a single page. You could

even use custom elements as a boundary for communicating

between components. However, you need to make sure that

these components have separate styles and dependencies,

otherwise one component could influence another

component in unexpected ways. And given the output of

the in-house tool (which you’ll read about shortly), I opted

to go for iframes.

It took some sweat and tears, but PanoramaWeb started to

shape up nicely after some time.

Dragging and dropping iframes that are holding those

instruments did become a hassle at some point. iframes are

quite limited; partly because of security concerns (you can

load a page from a different domain so a browser needs to

be very careful in sharing information between both), partly

due to standardization reasons (it’s just an element that shows

a page in another page and that’s it). And for some historical

reason, if you move an iframe element to another parent

element (which I implemented as a naïve first approach), the

iframe contents will be reloaded. Even though this was not

really a functional problem (the page is initially synced with

its server view model), I really wanted to fix this bad user

experience issue.

After investigating it became clear that if you want to ensure

that iframes don’t reload when being dropped in a different

place, you should not move them at all in the DOM. Instead,

I went for another strategy: when an instrument is visually

dropped at a certain position, an InstrumentPlaceholder

component is drawn. This component constantly determines

its visual size and position on the screen (using the modern

ResizeObserver and MutationObserver web APIs) and updates

the internal state of PanoramaWeb. Thanks to Vue’s built-in

reactivity, it was a breeze to let the component that holds

the actual iframe to pick up this change and position itself on

the placeholder location. This allows for iframes to be placed

anywhere in the component tree. Nice!

PanoramaWeb

postMessage

SignalR

Websocket REST

.NET server

Webpage

Contol interface Panel API

Instrument

Viewmodel

Instrument

Viewmodel

Simulator

Instrument

Viewmodel

XPRT. Magazine N°

11/2021

009

▼ <App>
 ▼ <AppInit>
 ▼ <TabViews>
 <InstrumentPanel>
 ▼ <GridContainer>
 <GridInit>
 ▼ <PageView>
 <TopBar>
 ▼ <Grid>
 ▼ <AspectRatioContainer>
 <InstrumentPlaceholder key='1'>
 <InstrumentPlaceholder key='2'>
 <InstrumentPlaceholder key='3'>
 <InstrumentPlaceholder key='4'>
 <InstrumentPlaceholder key='5'>
 <InstrumentPlaceholder key='6'>
 <SidePanelContainer>
 ▼ <InstrumentPanels>
 ▼ <InstrumentPanel>
 ▼ <Drag>
 <InstrumentIframe>
 <InstrumentPanel>
 <InstrumentPanel>
 <InstrumentPanel>
 <InstrumentPanel>
 <InstrumentPanel>
 <InstrumentPanel>
 <TabView>

The tool that ties everything together
While I was having a go at the PanoramaWeb application,

the software architect was happily working on a tool that

soon would become the official Kongsberg-endorsed way of

creating user interfaces for instruments. Mind you, Kongsberg

already created hundreds of different simulated instruments,

and maintainability is a big concern. Many of these instruments

differ widely in style, technology stacks, architecture, layers,

initialization and communication. Only giving developers

guidelines on how to build user interfaces was not enough to

streamline and standardize this process.

A domain-specific language called ‘Blueprint’ was designed

and it allows you to specify how your user interface is built

up using components, binding them to certain inputs from

the view model (even with complex expressions), and listen

to output of these components. The tool, which is written in

.NET Core, can load libraries of components and compile a

Blueprint file to an actual web page (including CSS and

JS dependencies) that is ready to be served as part of the

extension for the web server application.

fragment

fragment

fragment

fragment

fragment

010 INNOVATION

In theory this tool could be used to output something

completely different: a native desktop user interface, or a

virtual or augmented reality variant. The possibilities are

pretty much endless, however that is a chapter that still

needs to be written.

We proposed numerous enhancements such as file includes

with parameterization that found its way into the tool. At some

point I even created a Visual Studio Code extension to syntax

highlight the Blueprint file contents. My fellow teammates who

wrote a lot of Blueprint code were very happy with that, as

code readability is improved a lot this way. And of course, you

get pretty bored looking at grey code all day long…

autopilot.blueprint

angle $(Heading)
towards-angle $(HeadingOrder)
allow-drag $(InstrumentPower) and $(InCommand)

heading
 group
 offset 0, -20

 label-text
 text 'HEADING'
 font-size $(FontSize)

 group
 offset 7.5, 4

 readout-text
 text $(HeadingAsString)
 horizontal-align 'right'
 font-size $(FontSizeXL)
 status 'highlight'

 readout-text
 offset 1, -2
 text 'o'
 font-size 3.5
 status 'highlight'

heading command
 group
 offset 0, 17.5

 include "autopilot-field.blueprint-part"
 $(Disabled) = not $(InCommand)
 $(Label) = 'HEADING COMMAND'
 $(FieldOffsetX) = -1.5
 $(Flashing) = $(HeadingOrderFlashing) and $(BlinkSync)
 $(EditableText) = $(HeadingOrderReadout)
 $(EnterPushed) = $(EnterHeadingOrder)

 label-text
 offset 0.5, 2.5
 text 'o'
 font-size 2.5

mode selectors
 group
 offset -37, -17.5

In conclusion
We Xebians have been trained to aim for the sky and see

problems as opportunities, not as roadblocks. However, other

developers might not have that mindset. Learning a new

library such as LitElement or a tool as Blueprint takes time, and

you need to constantly remind yourself to take a step back,

keep explaining when something is unclear, and in the end let

others learn by doing, and stop ‘holding their hand’.

Luckily, the approach that we kickstarted is being picked up,

and more and more teams are now investing in learning and

embracing that modern stack. There will always be growing

pains, but teams are pretty happy so far.

So there you have it, a ‘blueprint’ of the future of Kongsberg

user interfaces. I honestly believe that thanks to the chosen

modern standards such as Web Components and the effort

that is going into the Blueprint tool, Kongsberg does not have

to invest in rebuilding their user interfaces every two years.

And the future looks bright as well. The adoption of the

cloud e-learning environment is rising and demand for more

teaching scenarios is clearly visible. Who knows which

products will see the light of day and set a high bar for what

you can do with an ‘ordinary’ browser and the cloud?

Albert Brand
Core Development lead from
Xebia Software Development

XPRT. Magazine N°

11/2021

011

For close to five decades, Kongsberg has been a provider of

simulators. Anticipating the digital shift, Kongsberg embraced

the advancing technology and, in collaboration with Xpirit,

pioneered the first simulator service based on its acclaimed

engine room simulator platform. This service was made

publicly available in March 2020, months earlier than its

planned release date, motivated by the closing of maritime

academies in the wake of the spread of the COVID-19 virus.

By the end of the year, we had delivered a staggering thirty

thousand simulations sessions to students globally.

An ambitious plan
Motivated by this unconditional success, already in May 2020,

Kongsberg accelerated its digitalization effort and started the

cloudification of its navigation simulation platform, with the

ambitious goal of offering the first public service, a RADAR

simulation service, within the year. On the last day of

November, we launched it. This story is about parts of the

technology we created to deliver the first and probably the

most advanced navigation simulator in the cloud.

We had learned a lot from bringing Kongsberg's Engine and

Cargo simulator to the cloud, which we wrote about in our

previous article in XPRT. Magazine #10. Could we also get

their Navigation simulator to the cloud and have a working

prototype in about eight weeks? Luckily, we could leverage all

the work we had already done in the years before, but it wasn't

a trivial task either!

First challenge: from (up to) 200 computers to
1 docker container
Kongsberg's simulator platform for navigation and offshore is

called Spirit. It is a highly distributed system, with a simulator

server at its core, simulating 'the world' and all hydrodynamics

(motion of water and the forces acting on objects in the

water). Spirit allows Kongsberg to build simulators ranging

from a single desktop computer to full mission ship bridges

consisting of hundreds of computers working together to

drive instruments and provide real-time 3D visual imagery.

Never waste a
good crisis
How COVID-19 drove innovation
in maritime education
Rapid advances in new technology are changing the way seafarers learn. Advanced simulation
is known to be one of the most effective applied training tools. They have been used in the
training and education of seafarers for many years but often limited due to relatively high
acquisition and operation costs. Democratization of simulation training is now happening,
which will allow many more students to get access to high-quality simulation tools at an
affordable price. Cloud technology and the increasing internet availability across the globe
enable this transformation. The ongoing COVID-19 pandemic further accelerates it. We can
expect improved quality of education, but this also could prove to be an essential tool in the
digitalization transformation that the maritime industry faces.

Authors Gullik Jensen (Product Director for Digital Services at Kongsberg), Roy Cornelissen (Consultant @ Xpirit, working with

Kongsberg since 2017) and Sander Aernouts (Consultant @ Xpirit, working with Kongsberg since 2017)

012 INNOVATION

Source: https://www.kongsberg.com/digital/solutions/
maritime-simulation/integrated-team-training/

Spirit has years of investment in its platform. It is entirely

Windows-based, and most of its components have some form

of GUI, even the server components. However, in a cloud

environment there is not much use for a GUI. A cloud-native

system should run headless on a server. Sure, you can install

them on a VM and serve the UI over Remote Desktop, but that

is an old-fashioned solution and a costly one.

We already had an entire platform and ecosystem for running

simulators as containers in a Kubernetes cluster named K-Sim

Connect. It handles everything for scheduling simulations,

managing exercises and students in a SaaS offering. Spirit also

had to land in this environment. We knew we were in for a

challenge to containerize a system that wasn't designed with

containerization in mind.

There are roughly two approaches for this:

1. Rewrite from scratch as a headless system, using .NET

Core/.NET 5 and Docker, and run it as Linux containers, or:

2. Adapt the existing system step by step and make it run in

the cloud.

Many architects and developers would shout: “rewrite from

scratch; this system is not cloud-native!”. It would probably

be the cheapest solution from an operational perspective in

the long run, but it would have a very long time to market,

tremendous development cost, not to mention disinvestment

in an already successful and proven system. We had a very

short time window to be successful, so while we were scaling

up with our engine room simulators in production, we started

working on bringing the Radar Navigation Trainer to the cloud.

Our existing platform had also proven that we could run

Windows containers in the cloud just fine. Of course, Windows

containers are big, and Windows nodes are more expensive to

run, but it fully supports Windows-based software, including

more “exotic” things like Win32 code and registry access.

We knew we needed this for Spirit as well.

Our approach was somewhat trial-and-error at first because

we needed to find out the obstacles we had to overcome.

We took the Spirit installer and created a Docker file that

installs it. Obstacle number one was that we needed to

make the installer run headless. That was an easy fix in the

InstallShield definition, by giving it a silent option.

Together with the Spirit architects, we looked at how we

could make all the components involved in the simulation

run headless.

This diagram depicts the critical components that participate

in a Radar simulation. All server components (light blue boxes)

had a GUI that displays their states and provides manual

controls like stopping, starting and pausing. The first thing the

Spirit team did for us was changing these components to run

without any GUI in a Docker container.

The green components are full-blown GUI applications

(mostly WPF). They all play an essential role in the system.

Integrated
Training

Possibilities

K-SIM
Crane

K-SIM
Offshore

K-SIM
Navigation

K-SIM
Engine

K-SIM
Dynamic Positioning

Instructor Station

Real Time Communication Bus

Student Station

Shared
Memory

Radar Display

Resource Manager
Server

Exercise Server

Web Server

3. Start Student Stations(s) according
to exercise configuration

1. Request
to load an
exercise

5. Serve web
based instruments
+ SignalR 2-way
communication

2. Start server and
load exercise

Simulation
“the world”4. Launch Radar

display

013

The Instructor Station is used to create exercises, add vessels,

set up conditions like weather and the sailing area, assign

students and start the exercise. Based on the configuration in

the exercise and the simulator, the Resource Manager starts

several other components.

We needed to automate the process of loading an exercise

and starting the simulation without user interaction. Since we

don't need all of the Instructor Station features in the cloud,

only the ability to load an exercise, the Spirit team delivered a

console application that did precisely that. This way, we could

bootstrap the system via the command line.

The Student Station was trickier. It has the vital task of running

the instruments that the students interact with. Instruments

have a GUI but also hold logic to interact with the server

components. The Radar instrument, in particular, has a part

that generates sweeps based on the input data. A radar sweep

is a full 360 degree turn of the radar beam, generating one

picture. On each step in this turn, the radar generates a scan

by shooting the beam in that direction.

A separate executable called the Radar Display reads scans

from shared memory and draws them on the screen. So, there

were several things to address here:

 remove the GUI of the instruments while still running the

logic;

 run Shared Memory in a docker container (could we do

that?);

 replace the Radar Display application with something that

could generate images without a GUI.

We had already learned that you could run quite a bit of "old"

Windows mechanics in a Windows container (provided that

you run a Windows Server Core image). COM, registry access,

Win32, all of that works. We quickly verified that Shared

Memory, which also is an old construct, worked as well.

This meant that we could reuse the existing components that

generate radar sweeps. We just needed a new way to host

them since they ran in the Student Station GUI application.

Specifically, for the Docker container, we created a Headless

Student Station. This is a .NET Console Application that loads

the Spirit framework components that run the instrument

logic but skips the presentation layer. One tricky part here

was that the Student Station is a Windows application driven

by the Windows message pump. Some components in the

Student Station rely on having this message pump available.

Also, the Radar's COM components require an STA thread

(Single-Threaded Apartment) to run. We created a class that

sets up an invisible Window that drives the message pump

and sets up a Dispatcher that guarantees the Single-Threaded

Apartment. It was a quick trick to make things work, but this is

typically something you'd want to revisit later to make the

application more container-friendly. However, it requires a

more significant change in the architecture.

In the container, we launch this Headless Student Station

instead of the regular one.

You can run multiple processes in one container. This is what

we do: all of the Spirit components run inside this single

container, one container per student.

The Bootstrapper component that replaces the Instructor

Station plays an important role here. It is the root process that

determines the lifetime of the container. Furthermore, it

communicates with the K-Sim Connect platform to track the

status and progress of the simulation session. Recently, we

added an automatic assessment of the student based on data

from the simulator, which our web portal displays in real-time.

Second challenge: from WPF to a web-native UI
This brings us to the next elephant in the room: How to deal

with the Student UI? Our first-generation Engine Room

simulators still have a local GUI application. It works by virtue

of a relatively simple client installation and a pure Client/

XPRT. Magazine N°

11/2021

Bootstrapper

Real Time Communication Bus

Headless Student
Station

Shared
Memory

TBD

Headless Resource
Manager Server

Headless Exercise
Server

Headless Web Server

3. Start Student Stations(s) according to
exercise configuration

1. Request to
load an exercise

Container 5. Serve web
based instruments +
SignalR 2-way commu-
nication

2. Start server and
load exercise

Simulation
“the world”

4. Generate Radar
images

014 INNOVATION

Server topology. We could bring the product to market fast,

even though it's somewhat of a compromise to require a

local client.

The Spirit platform is more complex, with its real-time

communication bus. We knew that installing the Student

Station on a client PC was not an option because of its

large footprint, and we wanted to push the platform to be

web-native anyway.

Over the past years, Kongsberg had invested in an extension

framework for Spirit. An important driver for this was the

ability to innovate on top of the platform without changing,

testing, and releasing the entire platform itself every time.

This multi-speed architecture of the extension framework

significantly accelerated our efforts as well.

One of the tenets in the extension framework was that new

instruments based on this framework would be served and

rendered in a web UI. This is where the Spirit Web Server

comes into play. It is an integral part of our solution.

Normally these web components are hosted by the Student

Station GUI application as individual panels with an embedded

browser. The radar was going to be a web-based instrument as

well, based on the extension framework. The Spirit Web Server

would serve it, which we exposed in the Docker container, via

a Kubernetes ingress. Each student gets his own (temporary)

environment with a unique URL:
<session id>.<cluster-region>.elearning.ksimconnect.com

Kubernetes Ingress rules take care of the magic of routing

traffic to the correct container.

The final piece of the puzzle was the replacement of the

Student Station’s “chrome”, which handles the display and

arrangement of the instrument panels. This application,

named PanoramaWeb, was written specifically for our move

to the web as a pure native web app, using Vue.js as its basis.

Albert Brand's article in this magazine provides a more detailed

background of the technology behind the web app. We will

continue to extend PanoramaWeb and, as it matures, it will be

the future Student Station.

Now that we had a way to display instruments over the web,

we could build the foundation of the Radar instrument.

Buttons, status indicators and other user interaction like

drawing range markers or bearing lines are all handled on the

client side. The extension framework includes a SignalR

connection with the server, which allows us to communicate

state and updates between the browser and the container.

Replacing the radar display
An essential part of a radar instrument is the radar video,

the well-known, often circular, view that displays the radar

sweeps.

As the first diagram illustrates, the existing Radar Display is also

a GUI application. It handles the drawing of the radar video, as

well as all the user input. We had already dealt with the user

input via the web panel. What was left was the radar video.

The data feed for the sweeps was already available in the

shared memory block. The Radar Generator component

constantly writes new values for each scan, much like a real

radar would. We extracted the logic from the existing Radar

Display GUI and created a new headless component to

house that logic. It's called ScanConverter. Apart from

PanoramaWeb, this is one of the few parts we rewrote for our

cloud scenario. ScanConverter takes the data from Shared

Memory and produces an image. We do this roughly 25 times

per second, which is an acceptable frame rate.

XPRT. Magazine N°

11/2021

015

Third challenge: near-real-time communication on the web

Next, we needed a way to send these radar video frames to

the browser.

We started by looking at how streaming services such as

YouTube or Netflix solved streaming video to clients at an

incredible scale. But there is an important difference between

streaming content such as videos and streaming a live radar

video feed. When dealing with videos, users need to see them

from start to finish without skipping parts of the video.

Even when live streaming on YouTube, for example, the view

does not have to be near real-time. For us it is more important

that the user sees what is happening right now on the radar

than that the user views the video from start to finish.

We looked at streaming technologies such as Dynamic

Adaptive Streaming over HTTP (DASH or MPEG-DASH) or

HTTP Live Streaming (HLS). Still, each of those prioritizes

delivering a smooth (live) stream to a large number of users

over providing a video stream as close to real-time as

possible to a single user. We then looked at a different type

of video streaming, focused on near real-time video

conferencing: WebRTC. WebRTC is a protocol for real-time

voice and video communication on the web. It focuses on

peer-to-peer communication, and an important feature is

that it is natively supported by browsers these days.

When using WebRTC, we need a so-called signaling server.

The clients use this central server to discover each other when

initially setting up the WebRTC connection. After the initial

bootstrapping, the signaling server is no longer needed, and

the WebRTC clients communicate directly with each other

peer-to-peer. WebRTC has several mechanisms to enable such

direct communication across different networks separated by

the internet. When this fails, clients can use a TURN (Traversal

Using Relays around NAT) relay as a fallback. With a TURN

relay, clients no longer communicate peer-to-peer, but they

use this central relay to communicate. The TURN relay is

an essential component for us because we often need it

in restricted environments such as corporate or school

networks. These types of networks typically don't allow any

of the mechanism that WebRTC uses to set up a peer-to-peer

connection.

The peer connection in a WebRTC session can contain

multiple video and audio streams that are synchronized.

This is important in video conferencing because when you

see people talk, you want to hear the sound that matches the

movement of that person's mouth. In a simulation, we also

want to synchronize multiple video streams such as a radar

video, a 3D view and audio streams to make sure what the

user sees and hears matches the current state of the simulated

world.

WebRTC seemed to fit our needs perfectly, but our main

challenge was to set up a WebRTC session between a Docker

container and a web browser. While WebRTC is natively

supported in browsers, using it on the side of the server in a

C# .NET application was more complicated. We had to

implement support for WebRTC into our C# application, just

like the browser vendors did for their browsers. The source

code for the WebRTC libraries is made public by Google, but

its native C and C++ need to be integrated into your own

application. After some digging, we found that Microsoft

already had a project on GitHub that was aimed at supporting

WebRTC in the HoloLens applications, and the library

produced by this project allowed us to integrate WebRTC into

our C# application with relative ease.

Since each simulator container is a self-contained application

with its unique endpoint, we opted to put both the signaling

server and the server-side peer in the same process in the

Docker container: the Spirit Web Server.

The browser connects to a SignalR hub (the signaling server)

that is exposed on the Docker container and exchanges the

required messages to set up a WebRTC connection with the

simulator, running in the same container. Once the connection

is established, the simulator starts streaming the radar video,

generated by the ScanConverter component, over WebRTC

to the browser.
Signaling server

Signaling server

Peer 1

Peer 1

Browser

Peer 2

WebRTC

SignalR

Docker container

Peer 2

VideoTrack #1

VideoTrack #2

VideoTrack #3

MediaSream

PeerConnection

Simulator

Signal server

016 INNOVATION

The world after COVID-19
2020 started quiet for us, and we expected to steadily grow

our customer base and start working on bringing the next

simulator to the cloud. COVID-19 fast-tracked our plans and

ambitions. Our product owner asked us "whether we were up

for a challenge," and the team boldly accepted. And now, one

year later, we have clusters running in multiple regions, with

users across the globe using our simulators in the cloud.

But we are far from done, we merely started to unlock the

navigation simulator's potential in the cloud, and we are

already looking ahead to bring more and more features

besides radar to the cloud.

As with the Engine Room simulator, this project shows that

you don't need a complete rewrite of your system to

capitalize on it in the cloud. We were able to bring it to

market fast with targeted changes, but we realize we still

have work to do. But by just doing it, we have learned a lot

more about where and how to focus our efforts to optimize

the Spirit platform for the cloud than starting with a

complete redesign. Behind the scenes, teams within

Kongsberg are now working hard on making the simulator

leaner and more container-friendly. New features are already

being developed "cloud-first".

The launch of the RADAR service is one more important step

in the democratization of maritime simulation. One hurdle at

the time, we are shaping the future of maritime simulation and

doing it to the benefit of the user and for the benefit of a safer

and greener world. And on the way there we create some epic

shit technology.

Roy Cornelissen
Distributed architecture, mobile
development, creative

xpirit.com/roy

Sander Aernouts
Microsoft application lifecycle
management (ALM)

xpirit.com/sander

Gullik Anthon Jensen
Lead digital transformation
Maritime Simulation, Kongsberg
Digital

XPRT. Magazine N°

11/2021

017

Secure and Compliant by default
Nowadays, security is often implemented with a mindset

of preventing breach. Make sure your perimeter is safe and

prevent bad things from happening. This is often accompanied

by a control framework of choice that targets three important

areas - Confidentiality, Availability, and Integrity.

In many cases we receive an Excel list with hundreds of rules

we need to implement to make our application “secure”.

Following these rules makes us compliant but not necessarily

secure, and in practice we can visualize the security score like

in the graph below.

In this new world, where cyber threats are the new normal,

you and your organization should assume that your software

is or will be under attack, and people are going to use your

software in ways you cannot anticipate. This is where “Rugged

DevOps” or “SecDevOps” comes in. To be “rugged” means that

you can deal with this unanticipated use and sudden attacks,

that your software and infrastructure is resilient against abuse,

that it does not contain vulnerabilities and that it is secure by

design. Furthermore, your software as well your processes

should be in such a state that you can deal with frequent

changes. After all, it makes all your effort rather useless when

your application becomes insecure after five releases because

you have no time to maintain the periphery.

Be Secure and
Compliant with
GitHub
How do we ensure security after we have deployed our application? This question comes up in
many customer engagements. How do we make something secure and how can we ensure we
are compliant? Unfortunately, many of these questions arise after the fact. After the application has
been built, or even after it has been deployed, and this is exactly what makes it hard. Our answer
to these questions is, you do not. You don’t do this afterwards; you are secure and compliant by
default.

Authors René van Osnabrugge, Michiel van Oudheusden, Jesse Houwing and Arjan van Bekkum

Integrity Confidentiality

Avalability

1

32

018 SECURITY

And that’s why we should consider security in every phase of

our development lifecycle and shift security as far to the left

as possible.

Defining a secure and compliant delivery process
With the move to DevOps and Continuous Delivery, where

deployments happen multiple times per day, it is even

more important to be in control of the process. When the

“security department” is outnumbered by the number of

product teams and engineers, they have their hands tied.

Without automation and the integration of security into

the daily work of Engineers (Developers, IT-Operation,

Test Engineers, etc.), this department can only do compliance

checking. And as Gene Kim mentions in the DevOps

Handbook: “Compliance checking is the opposite of security

engineering” (source: The DevOps Handbook – Gene Kim –

page 313).

In terms of compliance, it all boils down to being able to show

that the code that has been produced is traceable (audit trail),

reviewed (4-eyes) and that the artifact which has been

published to production is unchanged from the code it

originated from (integrity). But does all of this make the

code secure? Probably it will, but certainly not all aspects are

covered. If we keep in mind that we want to write and deploy

secure software, we should enable teams to do just that.

We should make sure that code:

 is reviewed

 scanned for known vulnerabilities

 doesn’t expose your passwords or keys

 checked against common errors

 uses approved standard libraries

 and is well tested.

Our process should:

 produce immutable artifacts

 test the application

 monitor for anomalies.

All of this is needed to develop secure and reliable software.

By focusing on security within the development and

deployment process, the need for information shifts from

the auditor to the teams themselves. To debug a problem in

production, sufficient logging is needed. To ensure the same

version is deployed to test and production, scripts need to be

in place and, in order to get a notification when a problem

occurs, sufficient monitoring needs to be implemented.

When the need is within the team itself, security and Non

Functional Requirements (NFR) become a different priority,

and the result is that the teams become compliant

automatically. By implementing the security and the necessary

countermeasures, the required controls to be compliant will

be fulfilled automatically. And the best part? It is verified

continuously by an automated pipeline and evidence can

be retrieved from the system at any time.

If we shift our focus from building software and making it

“secure” to building “secure” software in a “secure” way, we

create secure systems. And when we create secure systems,

we can test and validate in each step of our process, and they

are compliant systems as well. If you are secure, it is most

likely that you are compliant as well.

It is vital to enable teams to integrate security into their

processes and pipelines. This means at every stage of

the so-called Application Lifecycle, which consists of the

following phases:

 Requirements

How do you collect requirements? How do you make sure

the requirements cover the security requirements and the

Non-Functional Requirements (like availability, backups,

privacy, etc.)?

 Local Development

What can engineers do within their local environment to

develop, build, test and run more secure code?

 Source Control

Once code leaves the local machine and is checked in to

Source Control, what can we do to make this more secure?

 Build

When building code that comes from a Source Control

Repository, what do we need to check and validate, in the

code as well as in the produced artifact? Furthermore, what

can we do to ensure that the pipeline itself is secure?

 Release

When the artifact is released to a Non-Production

Environment, what can we do in terms of security - of the

artifact (integrity, are we sure it is the same code as in

source control), the pipeline and the target environment?

 Monitor

What can we do to ensure that the infrastructure and

application that has been deployed stays healthy, and how

can we detect, respond, and recover from any unforeseen

circumstance?

In the rest of this article, we will explore a number of GitHub

features that can help us to take some steps into secure

software development.

Moving your code to production
When we want to ship a new feature to production using

GitHub, we can divide our attention to the following 5 phases:

 coding phase

 storing phase

 build phase

 deploy phase

 release phase

In the following paragraphs we will walk through each of these

phases, explaining the various practices you can use, and we

will show how GitHub can help you to implement some of

these steps.

XPRT. Magazine N°

11/2021

019

Coding phase

In the coding phase, code is being developed. In most cases

this happens locally on the developer’s machine. This is

arguably the most important phase, because this is where

security is ultimately put into the code. There are a number of

techniques and tools that support the creation of secure code.

Static Code Analysis

Static Code Analysis analyzes the code base without running

it. Some tools scan for textual patterns, more advanced tools

parse the code and sometimes even build a model to analyze

how data flows through your application.

Static Analysis tools then apply rules to detect issues in the

code. Static Analysis can detect a multitude of known bad

coding practices and often suggests more secure alternatives.

Most Static Analysis tools are general purpose, but there’s also

a number of security specific analyzers.

In general, when these issues can be detected while the code

is being written, the issue can be corrected immediately, and

the developer is immediately confronted with an opportunity

to learn.

Credential and secret scanning

While locally testing the application, a developer may need

to connect to external systems, decrypt data, or store the

credentials for its service account. The encryption keys -

credentials and API keys - need to be stored securely, but they

regularly end up in source or configuration files.

When such files leave the developer’s workstation, they may

fall into the hands of others, and they may be able to leverage

these credentials to hack into your infrastructure.

To prevent this from happening, a special breed of static

analysis tool can analyze your local repository to prevent

you from accidentally sharing your secrets to the world.

Curated dependencies

In today’s modern applications we import more code from

other developers and organizations than we write ourselves.

We rely heavily on artifact repositories such as NPM, NuGet

and Ruby Gems. Recent security research has shown that

these public repositories offer interesting new ways to trick

your teams from running code they didn’t expect to run.

Each time a new dependency is pulled in, it should be vetted

to ensure it’s secure and you don’t want your build system to

accidentally pull in new, unexpected dependencies.

 https://azure.microsoft.com/en-us/resources/

3-ways-to-mitigate-risk-using-private-package-feeds/

?WT.mc_id=DOP-MVP-5001511

 https://jessehouwing.net/99-percent-of-code-isnt-yours/

 https://medium.com/@alex.birsan/dependency-confusion-

4a5d60fec610

Tools like npm audit and snyk will allow you to verify that

a dependency has no known security vulnerabilities.

Visual Studio has started highlighting problematic packages

in recent updates:

GitHub Codespaces

Setting up all these tools can be time-consuming and it’s easy

to make mistakes. It also creates a high barrier for people

outside of your team to contribute to your projects, whether

it is open source or inner source. It is even a high entry barrier

for new people joining your team.

Advances in Visual Studio and Visual Studio Code now allow

you to build easily extensible standard configurations for your

development environments1. Visual Studio has basically been

broken up into the backend, which manages, analyzes, and

compiles your code and the front-end, which handles the user

interactions.

GitHub CodeSpaces leverages this technology to run a full IDE

from your code repository. Because GitHub CodeSpaces runs

on a cloud VM outside your internal environment, it lowers the

security risks. Anyone who needs to contribute to the repo is

instantly transported into a ready-made environment that has

all the aforementioned tools installed and configured to help

them make their contribution secure.

Because CodeSpaces runs Visual Studio on a remote

container, you can even work from an iPad connected to a

much more powerful remote container, only paying for the

actual usage while the IDE is open. This even allows a casual

contributor to propose changes while helping them do it the

right way.

Visual Studio Live Share

With many developers being forced to work remotely, it has

become a lot harder to just scoot over to your coder-buddy at

the desk next to you to ask for quick feedback, pair or help you

debug. Regularly reviewing your code with another person is

one of the quickest ways to grow your own understanding and

1 https://code.visualstudio.com/docs/remote/containers

020 SECURITY

to find potential problems before they are committed to the

shared repository.

In the past we often used screen sharing and remote control

to collaborate, but using this has its disadvantages. Especially

when it comes to security and you give the other person full

control over your system by giving them remote control.

Visual Studio Live Share can be compared to Google Docs

for your code. It allows you to work in the same local

repository with multiple people at the same time, even with

multiple cursors simultaneously changing the same code file.

All participants can see the list of detected issues in the code

as well as the status of all unit tests, and you can even debug

code together. With Live Share you can essentially collaborate

and review remotely without having to commit the code and

pushing it to a remote repository.

It can even register who collaborated on the code when

you decide to commit. By enabling the liveshare.populate-

GitCoAuthors, the Source Control tab in VS Code will

automatically generate the "Co-authored-by" trailer in the

commit message, so hosts can attribute the collaborators

they worked with during a pair programming session.

Who you can collaborate with and what they are allowed to

do can be managed by GateKeeper2.

Storing phase

In the storing phase the engineer pushes code from his local

machine to source control. When using GitHub, storing the

source code consists of two phases. Committing the code to

your local Git repository, and pushing the code to the Git

repository that is also used by the rest of the development

team.

To ensure a secure process, a number of things can be done.

Required code review

To ensure the 4 (6/8) eyes principle on every code change,

generally the first occasion where you can do this is on code

push to the Git repository. By defining a simple branching

strategy where people create short-lived branches for their

code changes and protect the main branch from direct

check-ins with a branch policy, you can easily enforce that

someone other than the author reviews and approves changes

to the code base. With GitHub you can use the settings tab in

your repository to set these policies on the branches. You can

create different policies and apply them to different branches.

To apply the policy to all branches, specify the “Branch name

pattern”. Wildcards are allowed, so “*” will apply the policy to

all branches.

2 https://github.com/lostintangent/gatekeeper

XPRT. Magazine N°

11/2021

021

Validating code phase checks against the code base

Assuming that an engineer ran the checks described in the

code phase on his workstation is fine, but it does involve risks.

However, to make sure nothing slips through the cracks, you

can set up a Continuous Integration (CI) build. Running a CI

build after every push to the short-lived branch validates the

changes made in the short-lived branch, combined with the

code base where other engineers work. This practice gives

even more assurance. This build should include (at least) the

following code phase checks:

 compiling / syntax checking

 static code analysis

 unit tests

 credential and secret scanning.

When you use GitHub, you can use GitHub Actions to perform

the actions. GitHub also includes automated security scanning

for credentials on every check-in. When you check in a

credential by accident, you will be informed about this by

GitHub.

You can create a new action (or workflow) on the “Action” tab.

Depending on your repository you can use a default workflow

or you can create your own.

The workflow pipeline is created as code and added to your

repository. Changing this workflow will result in a code change

and thus it will be part of the branch policies on the repository.

Vulnerability and dependency scanning

Scanning your own software is one thing, but in modern

software development, over 70% of the software you deliver

is not written by your own development team (check out

version 9 of our magazine and read “99% of the code isn’t

yours). With the rise of Open Source Software and Package

Management Tooling, Artifact Repositories and Container

Registries, the use of software that was written by others

became mainstream.

Conceptually this is perfect. The less you have to do yourself,

the better it is. It makes people more productive and in many

cases, the people that wrote a specific Open Source Library

are more knowledgeable on the subject than you yourself.

However, using the software of others, open-source, or

purchased from a vendor, is a potentially dangerous practice.

The software that you use as part of your own software may

contain hazardous vulnerabilities that can be exploited.

GitHub integrated security scanning for vulnerabilities in

their repositories. When they find a vulnerability that is

solved in a newer version, they file a Pull Request with the

suggested fix. This is done by a tool called Dependabot

(https://dependabot.com/).

You can enable Dependabot on your GitHub repository using

the “Security” tab, click on “Enable Dependabot alerts”, and

pick the setting you need.

An alternative for Dependabot is NuKeeper, which provided

similar functionality (https://github.com/NuKeeperDotNet/

NuKeeper).

To learn more about integrating vulnerability scanning in

your pipeline, you can follow the lab “Managing Open-source

security and license with WhiteSource” on Azure DevOps Labs

(https://www.azuredevopslabs.com/labs/vstsextend/

whitesource/).

Credential and secret scanning

Of course, you are scanning your local repo for accidentally

committed credentials, but sometimes your scanning tool will

learn new patterns after the fact. GitHub Advanced security

now has automated scans to detect leaked credentials on push

and will keep monitoring your repository even afterwards.

If you are not scanning, be aware that many threat actors do.

They look at a wide range of interesting repositories and offer

GitHub-wide search patterns. It may take only five minutes

for your shared AWS key to be detected and exploited to

deploy miners or ransomware to your cloud environments.

When undetected by you, it may cost $60k within a couple

of days.3

When credentials are detected by GitHub, it will automatically

revoke them to prevent others from exploiting the key. GitHub

integrates with major cloud providers to provide this service.

Build phase

When code has been created on the local workstation and is

stored safely in source control, the delivery process can really

start. The software needs to be "packaged." Compare it with

an assembly line where products roll off the belt and are

packaged in a big box. This box is signed, sealed, and delivered

to the warehouse where it can be picked up for further

delivery. In essence, the build pipeline works in the same way.

During the coding and storing phase, we already ran several

checks that quickly provided feedback about the quality,

security, and stability of the code. In the build phase, we add

some more checks and validation and, eventually, package the

product:

 build activities from storing phases

 second stage - static code analysis

 vulnerability and dependency scanning

 license scanning

 securely storing the build artifact

 protecting the build history.

Set up a Continuous Integration pipeline on all your branches.

When engineers push code to a branch in source control, the

validation should start directly. On many occasions, the full

build only runs after merging the changes to the main branch.

Securely storing the Build Artifact

One of the main purposes of a build pipeline is to produce:

 an artifact that can eventually be deployed on an

environment;

 an artifact that creates an environment;

 a set of scripts that will set the required configuration.

In any case, it is essential that we make sure that the artifact

is uniquely identifiable. This allows us to ensure that nobody

tampered with an artifact before it landed on production and

ensure that the code we produced is actually the code that

runs. Storing the artifact that the build pipeline produces is,

therefore, an essential task in a secure pipeline.

Within your build pipeline, you can produce two types of

artifacts:

 packages or containers that will be consumed by other

software and will not run by itself;

 software packages or containers that will be consumed by

the end-user or run a process.

When we build software packages, like NuGet packages,

NPM packages, PowerShell Modules or even containers, we

should immediately think of artifact repositories. We publish

our packages to a gallery or repository so that others can

consume them. We can either make this publicly available

(Open Source) or internally available (Inner Source). To be able

to store the artifact, the artifact needs to adhere to a number

of simple rules. For example, it needs to contain a unique

version and a manifest that describes the package.

To publish the package, the publisher requires authentication.

022 SECURITY

3 https://www.theregister.com/2017/11/14/dxc_github_aws_keys_leaked/

XPRT. Magazine N°

11/2021

023

This combination, versioned package and secure connection

will ensure the integrity of the package.

Strangely enough, when we deploy our website or application

to our production servers, we treat it differently. We build our

software in the pipeline and copy the files to production.

Sometimes we store an artifact on a network share or disk

before we release it. But storing it on a disk can allow others

to modify the package. Also, our versioning is not always

straightforward when it comes to our own files.

To ensure the integrity of our software, the build pipeline and

storage location of the artifacts need to be secure as well.

When using GitHub, you can upload the build artifacts on the

server. There is no way somebody can modify the package

on the server. By securing the pipeline and versioning the

packages, you drastically reduce the risks of insecure software.

In addition, uploading the artifacts GitHub also allows you to

use GitHub Package Repository to store your inner source

packages. You can even use the building GitHub Container

Registry to store your Docker images directly from your

workflow.

Deploy phase

The deployment phase is the phase where all the activities of

previous phases come together. Code that has been checked

by one or multiple teams has been transformed into packages

or deployable artifacts. During the deploy phase, the release

pipeline is the mechanism that is used to move things from a

protected, private environment to a location where others can

start using it.

Typically, a release pipeline is built up as follows:

 gather artifacts from one or more sources

 deploy infrastructure

 configure infrastructure

 validate infrastructure

 deploy application

 configure application

 validate application.

When we look at the activities mentioned above, there are a

number of things we need to ensure when we talk about a

secure pipeline.

Run dynamic security tests on infrastructure

Dynamic Application Security Testing (DAST) is a process of

testing an application or software product in an operating

state. This kind of testing is helpful for industry-standard

compliance and general security protections for evolving

projects. Good examples are scans for SQL injections,

cross-site scripting etc. When an application is deployed

multiple times a day, it is necessary to perform the security

checks every time instead of checking it once (like in the old

days). By using Automated Dynamics Security Testing tools,

you can automate these attacks.

A great tool to run Dynamic Security Tests is OWASP ZAP.

Find the OWASP ZAP task in either the GitHub4 or Azure

DevOps marketplace5.

GitHub allows you to easily enable scanning on common

vulnerabilities and coding errors. By using the security tab you

can create this workflow, which will run on every branch you

create. CodeQL is a semantic code analysis tool, and it allows

you to query your code to find vulnerabilities.

Run tests that require a deployed application

Although the software has been tested in the build phase,

preferably by running unit tests, you also need to run tests

that require a deployed application, i.e.. integration tests or

end-to-end tests.

GitHub offers GitHub action to integrate your own test

runners and allows you to run this as part of the deployment

process.

Monitor key metrics after deployment

When you have deployed your application, how do you

ensure it is running correctly? Of course you need to check

some fundamentals by running a smoke test, by checking

whether the application responds. But it is also wise to start

gathering metrics about the baselines of your application.

What is the response time, what is the CPU load? When you

know these baselines, you can check these metrics after a

new deployment and validate whether they are still the same

or at least did not deteriorate.

Set up secure endpoints to the target environment

Of course you need to check your own software for all kinds

of security issues. But the pipeline itself and the connection

to the target environment also needs to be secure. When you

deploy a new version of an application, you probably need

some sort of configuration in the application itself. You may

also need some secrets like passwords or access tokens to

deploy the application. Within Azure DevOps you can use

Service Connections to create a secure endpoint. In GitHub

you can store the publishing credentials in a GitHub Secret.

This way you ensure that the pipeline is the only way to deploy

an application. This simply uses a key-value pair where you

can use the name of the secret in the action workflow as an

environment variable.
4 https://github.com/marketplace/actions/owasp-zap-full-scan
5 https://marketplace.visualstudio.com/items?itemName=

CSE-DevOps.zap-scanner

Release phase
In contrast to what many people and companies think, the

release phase is not the same as the deploy phase. On many

occasions, it is still the case that deployment is equal to

releasing but by having this dependency, there is also an

implicit security risk. When releasing is like deployment, this

means that the moment you deploy the software, it becomes

available to your end-users. Because you probably need to

check a few things before allowing customers to start using

the software, the only way to do this is to plan for downtime.

A service window is usually the way to do this.

But restricting the release/deployment times to a strict release

window also limits the possibility of delivering new features,

or worse, security patches. We all know that waiting for an

appropriate time to roll out a security fix may imply a much

more significant risk.

Building your software and pipelines in such a way to allow

the software to be released, without impacting the target

environment, is not only the way forward for businesses to

deliver new features quickly to their customers, but it

dramatically reduces security risks because patching them is

a matter of starting a new deployment. When you use feature

toggles in your code, these can help in facilitating this.

Feature toggles allow you to disable or enable functionality.

If the toggle is “on”, users are allowed to use the new

functionality. If the toggle is “off”, the functionality cannot be

used. Feature toggles allow you to change the behavior of

the application without changing the code.

Conclusion
When you develop an application you should do this securely

by default. There are a lot of tools that can ease the life of

developers and increase security. Just implementing the tools

is not enough, you also need to understand why these tools

are needed and support them.

GitHub supports a lot of security features out of the box.

You need to secure the infrastructure, your software, but also

your delivery pipeline. Focus on shifting the security left in

your process.

024 SECURITY

René van Osnabrugge
ALM, DevOps, Continuous
Delivery, Initiator and Inspirator

xpirit.com/rene

Michiel van Oudheusden
Microsoft .NET consultant, developer,
architect. With a focus on ALM, VSTS,
DevOps, APIs, Azure, Containers and
everything around it

xpirit.com/michiel

Arjan van Bekkum
Consultant

xpirit.com/arjan

Jesse Houwing
Making software development
fun, Trainer, Coach, Tinkerer

xpirit.com/jesse

025

XPRT. Magazine N°

11/2021

Tyranny of the default
Every demo on GitHub Actions shows how easy it is to get

started: add a text file with some actions in it and you are good

to go. Unfortunately, this is highly insecure! To understand

why, you need to know what the attack vectors of your

workflow are and how you can guard yourself against them.

Let’s start with an introduction to GitHub Actions first.

By storing the dotnetcore.yml file in the right location, you

have added a new workflow that can be triggered on

events. There are a lot of events available, from the push event

in this example(1), to comments on an issue and closing of a

Pull Request.

GitHub Actions:
running them
securely
GitHub Actions1 are a powerful way of creating a pipeline to act on events in GitHub.
By creating a workflow file you run actions on code updates to build your application,
automate triaging tasks from issues, and loads of other helpful uses.

Author Rob Bos

Make your own Octocat: https://myoctocat.com/

1 https://github.com/features/actions

026 SECURITY

In the jobs(2) section you can create one

or more jobs that will run on a specific

runner that executes the steps(3) in

the sequential order within the file.

In this example the repository is

checked out(3) first, then a version of

the .NET Core tooling is installed(4) and

in the last step the .NET Core project is

built using the tools(5).

Know your GitHub Actions
When using GitHub Actions it is

important to understand what the

actions you use are doing. You can use

any action by leveraging the setup from

GitHub: the action identifier is the

organization or username that is hosting

the action, and the name of the

repository it is in.

In this example you can find both

actions in the ‘docker’ organization in

their own repositories. Adding the

action path to https://github.com/

straight to the action repo.

-name: Login to DockerHub

 uses: docker/login-action

 with:

 username: ${{ secrets.DOCKERHUB_

USERNAME }}

 password: ${{ secrets.DOCKERHUB_

TOKEN }}

- name: Build and push

 uses: docker/build-push-action

 with:

 push: true

 tags: user/app:latest

Having a valid action.yml in the

repository makes it useable for every

workflow. Using the action like this will

ensure that the workflows will always

download the latest available version

of the repository and execute the code

that is in it. This is also the greatest

downside of actions: the default is

already insecure! Anyone can create an

action like this and there is no process

that will check the action you are

using for quality or security issues.

Even limiting the actions people can use

in your organization, to only the actions

listed on the marketplace is insecure:

there is no process that checks whether

your action is doing malicious things.

The source of every action is public,

which also means that you can look at

the action repository and verify what

it is doing when it runs. You can check

whether it is sending your environment

variables over to their own API for

example, or logging your OS information

together with your IP-address.

What are the risks?
It is wonderful to able to use actions

that someone else already spent time

and effort to create, potentially saving

you a lot of time. However, this also

adds some risk to your repository, the

application you are creating and the

setup around it. To get some under-

standing of the risk we need to look at

the results of an attack on your work-

flows.

A malicious actor can wreak havoc on

your application or its environment in

three different ways:

1. data theft

2. data integrity breaches

3. availability

Data theft
By working their way into your work-

flows, people could get access to the

code in your repository, but potentially

also to the environment your workflow

is running in. That environment could

be set up to have API keys available for

accessing services you need to build or

deploy your application, or have

certificates installed for code signing.

It could even have access to an

account on your cloud platform that

has administrative rights and could get

access to data or delete infrastructure

there. Limiting the access for the runner

that executes your workflow to the bare

minimum is key in preventing against

data theft.

When you run your workflow on hosted

runners2, it is GitHub’s responsibility to

keep them up to date with the latest

OS and tool updates. To make sure the

attack surface on them is as small as

possible, they will create a completely

new environment for each run and

clean up the environment after it is no

longer used.

If you run the workflows on private

runners3, taking all these security

measures is up to you. Keep in mind that

you are taking that responsibility when

you install a private runner. You need to

secure the OS, limit access the account

the workflow is running under to only

the things it needs access to (so do not

assign network admin permissions to

it!). You also need to keep the tools on

that machine up to date with all the

security patches.

Data integrity breaches
If a malicious actor has a way to get

into your workflow or execution

environment, they can also inject

malicious code into your application.

Most workflows create an artifact to

deploy into an environment and

store the artifacts in the pipeline

environment. A possibility is that the

attacker injects something into the

artifact and the deployment will then

deploy the malicious code for you!

The recent Solorigate4 attack is a

prime example of this type of attack.

Adding one malicious assembly before

the artifact was uploaded (and avoiding

a lot of different detection methods)

was the central point the attack was

executing.

Other examples of data integrity

breaches are poisoning your

dependency cache: there are a lot of

blogposts5 available explaining that you

need to verify the dependencies you are

using with, for example SHA512 hashes

of the commit6 to make sure you are not

unknowingly pulling in a newer version

of the dependency when you build your

application.

Something similar happens with typo

squatting attacks7: can you spot the

difference between using ‘npm install

crossenv’ and ‘npm install cross-env’?

An easy mistake to make, but if the first

one is a malicious copy of the package

2 https://docs.github.com/en/actions/using-github-hosted-runners/about-github-hosted-runners
3 https://docs.github.com/en/actions/hosting-your-own-runners
4 http://xpir.it/Solorigate
5 https://xpirit.com/99-of-code-isnt-yours/
6 https://w3c.github.io/webappsec-subresource-integrity/
7 https://snyk.io/blog/typosquatting-attacks/

027

XPRT. Magazine N°

11/2021

you need, with some bonus code

that executes at runtime, you might

be compromised before you know it!

These attacks are now getting even

more sophisticated by finding out the

names of internal packages you use

and host a malicious version on the

public repository site. Most package

tools have a default to check the public

hosted endpoints first. If the package is

not found there, it will try the same on

internal endpoints. Take a good look at

those configurations you are using.

Availability
An attack vector that seems less likely is

injecting something into your workflow

that will cause the workflow to stop

running. These days, most DevOps

teams are very dependent on their

pipelines to push code to production,

and they have a hard time getting

updates out if their pipelines are not

working anymore. To limit what

engineers have access to, everything is

locked down and only a service account

has access to production. What if

your application is down, or worse:

vulnerable to an attack? What if

someone can trigger your workflow

to be unable to execute, right at that

moment? Does your DevOps team

have a ‘break glass’ option8 to fix the

vulnerability without their pipelines?

Attack vectors
By pulling in the action from the

internet you are executing its code in

your environment: this can be a hosted

runner on GitHub’s infrastructure, or

your own runner in your own cloud

environment.

The code in the action can do multiple

things: it can send out your data, code

or environment setup (SSH Keys, locally

stored certificates, etc.) to an endpoint

of their own and exfiltrate data that

way. They can also try to get access to

your environment or your GitHub setup:

either the code in the repository itself

or even try to get administrative access

to the complete repository. They could

pull in extra dependencies in your

code, add other actions to your

workflow, or even misuse your action

runs with Bitcoin miners for their own

gain.

There are multiple ways to try and get

in. Every now and again GitHub has

‘Capture The Flag’ (CTF) events where

they invite the community to try out a

repository and gain access. From those

events they learn a lot about their setup

and ways to break the security around

the repository. A basic example of an

attack vector is the use of sending in a

Pull Request that alters the workflow

files itself by adding in a malicious

action. More sophisticated attacks

examples are adding JavaScript in the

issue comment that is being picked

up by the workflow and not handled

securely: the JavaScript is then executed

by logging it to the output for example

(helpful to see them in the logs) which

in turn enables the attacker to break out

of the action environment itself and run

a process on the runner environment.

With that setup someone can create a

new Pull Request for the repository that

added the next step of the attack by

writing code back into the repository.

From the CTF events we learn the new

ways to get access, and GitHub can try

to prevent those types of attack.

8 https://docs.microsoft.com/en-us/azure/active-directory/roles/security-emergency-access?WT.mc_id=AZ-MVP-5003719

028 SECURITY

Securing the actions you run
There are several measures you can take to secure your

actions. Just using the latest version of the action is not a

good idea: new code could have nasty side-effects like

introducing new vulnerabilities, as we have seen in the

previous paragraphs. The action repository might even be

taken over by a new maintainer with ill intent and still

compromise your setup. That is why running the action

(as displayed in every demo!) like this example is a bad idea:

- name: Login to DockerHub

 uses: docker/login-action

 with:

 username: ${{ secrets.DOCKERHUB_USERNAME }}

 password: ${{ secrets.DOCKERHUB_TOKEN }}

- name: Build and push

 uses: docker/build-push-action

 with:

 push: true

 tags: user/app:latest

Option 1: Version tags

You can add the version number of the action to the end of

the configuration, but there is no way to verify if it is still the

same code: the tag can be reused with new code changes in

it, so adding this does not add real security to it.

uses docker/login-action@v1

Option 2: At least start here

Start by verifying the actions you are running by looking into

the action’s repository. Have a sanity check on the code in the

repository and use the commit SHA from GitHub to add that at

the end of your action configuration:

name: Login to DockerHub

 uses: docker/login-action@

e2302b10ccc2c798f917336fe81ce41ea8dea0fd

 with:

 username: ${{ secrets.DOCKERHUB_USERNAME }}

 password: ${{ secrets.DOCKERHUB_TOKEN }}

- name: Build and push

 uses: docker/build-push-action@

0ec1157bb54f3e4676c823ef3497b53135ed39de

 with:

 push: true

 tags: user/app:latest

The commit SHA is immutable: if the code in the repository

changes, the SHA will be different. This is the only secure way

to know for sure that the code you are executing is the code

you have checked yourself and that you have approved the

risks that come from using it.

029

Staying up to date
Now that we are using the actions as securely as we can

(by checking what it is actually doing and making sure no

unseen changes can be added), the next question needs to

be answered: how do we still get updates?

Since there is no update feed on the marketplace, or a blog

that can be followed, I created a Twitter bot9 that will regularly

check for new or updated actions and will tweet them out.

Checking the used action versions in your workflow files

and updating them automatically can be done by using

Dependabot10: it will scan your workflow files on a schedule

and create a Pull Request for each updated action. This will

give you a chance to manually verify the incoming changes

and then accept the pull request.

Option 3: Forking the action repository

The ultimate security setup I have found is forking the action

repository to a specific organization for it. This way of working

was suggested previously in documentation, but has not

gained momentum.

Forking the repository gives you full control over the actions

as well as their updates. It also provides a clear audit trail of

the actions and secures you from actions being pulled by the

maintainer. Additionally, you have a backup if the action gets

deleted / renamed / moved to a different repository by the

publisher. Remember the availability issues that can occur?

This helps preventing that as well. You can now secure your

other organizations (or separate repositories) to only allow

actions being run from the forked repositories.

This is also an ideal strategy for enterprise organizations.

You can create a specific actions-organization in which you

fork all the actions you need. Then lock down the normal

organization(s) everyone is using to only allow actions from

the actions-organization. The setup would look like this:

Enable your DevOps engineers!
Do not lock out you DevOps engineers: it is part of the

DevOps way of working to let them take control over the tools

they use. Add an organization in which people can pull in new

actions to test with and validate their workflows, so they can

still use new actions that you have not forked yet. They take

ownership of the actions they want to use and fork the actions

themselves!

That way they have full autonomy and will not be waiting

for someone’s approval before they can test new actions or

updates.

XPRT. Magazine N°

11/2021

9 https://twitter.com/githubactions
10 https://docs.github.com/en/github/administering-a-repository/keeping-your-actions-up-to-date-with-dependabot

marketplace

marketplace

actions-organization

test-actions-
organization

actions-
organization

Only allow actions
from actions-
organzation

engineering01-
organization

engineering02-
organization

engineering03-
organization

Only allow actions
from test-actions-

organzation

test-organization

engineering01-organization

engineering02-organization

engineering03-organization

Only allow actions from
actions-organzation

Keeping your forks up to date
Now that you have secured your organization and made sure

you are not blocking your DevOps engineers by empowering

them to take control over the actions, you need a way to

update your forks (all of them). To make this as easy and still

secure as possible, I created the GitHub Fork Updater

repository11: a specific repository that has everything in it you

need. Fork it, add some configuration so that it can update

all repositories in that organization, and you are good to go!

The update works as follows:

1. On a schedule, check all repositories in the organization of

the fork using a workflow.

2. If there are updates, create an issue in the fork-updater

repository.

3. With the default GitHub notification setup, your engineers

will get notified of new issues.

4. They can check the issue and do the security check on the

incoming changes using a special link in the issue.

5. By adding a label on the issue, they will indicate that they

have validated the incoming changes and that they want to

pull them into the forked repository.

6. A workflow is triggered on the labeling of the issue and the

fork will be updated.

7. The issue is closed.

Summary
Using GitHub Actions from the market place is not secure by

default: there are no real checks on the code they are

executing, and it is up to you to verify whether the actions are

safe to use.

Empower your DevOps engineers to take ownership of the

actions by forking the repositories and doing the due

diligence on them to make sure they will not send out your

data to some unknown third party. This can be done by setting

up a secured configuration with additional organizations in

your GitHub account and forking all the actions you want to

use there. Keeping your forks up to date can be automated as

much as you can by leveraging the GitHub Fork Updater to

stay on top of changes. Always verify the incoming

changes!

030 SECURITY

Rob Bos
Consultant

xpirit.com/rob

11 https://github.com/rajbos/github-fork-updater

031

XPRT. Magazine N°

11/2021

Securing your
Dev’s Workstation
You don’t want to be the developer who infects the company with malware or be the source
of entry for an attacker. How do we stay secure and still have a happy CISO, complying with
Security Rules and regulations? (And of course, having a fully working DevOps workstation).

Author Erik Oppedijk

Down the rabbit hole
Let’s take a trip down the rabbit hole

what typically might occur after a data

breach/security incident. Management

or a CISO might ask you to remove the

Local Admin permissions from your

laptop.

Without Local Admin, installing and

updating some software is harder, so

we need to rely on a support team to

(quickly) package new software versions

for the developers. Of course, this slows

down as the support team isn’t able to

keep up with all packaged application

updates.

Then “they” find out that the developers

still run plenty of portable apps* (which

don’t require admin privileges to run).

This leads to a complete “Application

Allowlisting”** scenario, where only

a handful of approved applications is

allowed to run. Of course, this slows

down the developer productivity since

no compiled executable can be made

to run and any tool used must first be

allowed by the security team.

A solution is devised that the developers

should work from a VM or docker

container. This in turn can be used by

the developer for all kinds of things,

including day-to-day tasks like

reading his e-mail or installation of

non-work-related software.

Finally, “they” find out that the VM/

docker container with full access is

used by the developers for all kinds of

software. So, it is back to square one,

“they” require the removal of Local

Admin permissions from this VM/

docker… and we start again at the top.

Take a step back: Looking at risk
management
If we take a look at the developer

population, we can divide them into

several groups:

 Developers/Contributors to Code

(Low Privileged Accounts)

 Project/Pipeline administrators

(Medium/High Privileged Accounts)

 Production Access (High Privileged

Accounts)

We want to utilize Privileged Identity

Management (PIM) for the Medium/High

Privileged accounts and for production

access, so every time a user needs these

permissions, an elevation is required.

This would also be the group of people

working with the most sensitive secrets

and intellectual property/trade secrets.

This leaves the developer group with

access to the source code, which, in a

typical organization, does not contain

any military secrets or extremely

confidential source code. Our DevOps

pipeline and four-eyes principle on

check-in/merge already provides us

with a nice first defense line.

As we saw in “Down the rabbit hole”,

blocking (or also called Application

Allowlisting) isn’t working very well for

all developers, so we need to take

another approach: Detection.

* Portable Apps are executables that allow to be run from read only or non admin locations, just from a user folder.
Examples of this could be the user installation of Chrome, or tools like TeamViewer portable or 7-Zip portable.

** Application Allowlisting is only allowing certain applications to run, based on a hash value of the executable, any change
(by an attacker or software update) will invalidate the hash and cause the application to be blocked.

032 SECURITY

With Detection, the developers can run

all the things they want on their laptops,

with an advanced “Endpoint Detection

and Response (EDR)” tool available to

detect malicious behavior. The EDR tool

can spot suspicious processes/memory

injections and detect connections to

suspicious IP addresses. It works by

looking at unusual behavior on the

system.

With the EDR Tool in Detection mode,

developer productivity is not harmed as

it would be in the Block mode, which is

used for regular users.

The biggest risk usually consists of

unpatched software, which is often

targeted by phishing attacks. Our best

line of defense starts of course with

educating the developers by informing

them that they are the ones being

attacked.

One of the ways is to patch all software

on the developer’s machine, coupled

with the detection capability of an EDR,

which should provide a nice line of

defense.

Here come the auditors
The management/CISO go along with

the proposal on how to secure your

developer workstation, but quickly

they start asking questions such as:

 Is the IT auditor pleased with this

situation, how do the developers

keep their machines up to date, and

how does this fit in with the company

policies which disallow everything,

and more.

 How do we escape from this rabbit

hole?

 If we take a look at the international

ISO 27001 standard, there is a

separate chapter (14) about software

development in Annex A.1

 As with all standards, it is very

important to read them and to

understand the different terms

including: must, should, consider,

depend, appropriately, etc.

For instance, in A.14.2.6 Secure

Development Environment, we should

consider the sensitivity of the data, risk

assessments, business/legal require-

ments. Back to our original assumption:

If the developer is not working with live

production data, and is not working on

extremely valuable code, then we don’t

need to take the same steps we take to

protect our sensitive data/documents.

According to the standard, we need to

appropriately protect the environment,

and not constrain it at all costs!

We need to classify code as “internal“

and not as “top secret”, because the

secrets should not be accessible by

all developers. With the concept of

enterprise inner source (internal open

source), almost all source code should

not be sensitive. This allows you to

focus on the real sensitive pieces, like

the DevOps pipeline, or that single team

that manages the code of your trade

secrets.

Solutions
How do we solve our “problem”?

Training and awareness should always

be step number one, otherwise it is

like rearranging the deck chairs on

the Titanic. In addition, We need a

combination of tooling and processes.

Tooling

There are several tooling options

available to help remediate the problem:

 Identity Protection (AAD P2 feature);

 Privileged Identity Management

(AAD P2 feature);

 Defender for Endpoints (previously

known as Defender ATP, not to be

confused with Defender Antivirus

which is a completely different

product).

With Identity Protection we can specify

conditional access rules based on risky

behavior, e.g. a foreign logon location,

change of browser, or a sudden location

change during a session.

Privileged Identity Management is what

we need when we need to elevate our

permissions to perform a Medium or

High Privileged Action, this is the Least

Privileged concept: don’t run as a High

Privileged account by default.

The last one is Defender for Endpoints –

this is an Endpoint Detection &

Response (EDR) tool, which can detect

suspicious behavior on the machine,

like suspicious IP connections, running

process modifications, but also

vulnerable installed software.

EDR combines Alerting (and blocking/

quarantine) together with Vulnerability

Management capabilities to secure the

endpoints.

1 https://www.isms.online/iso-27001/annex-a-14-system-acquisition-development-and-maintenance/

XPRT. Magazine N°

11/2021

033

Processes

The following processes are relevant:

 marking the developers as Priority

investigation employees during SOC

alerts.

 patching and automatically inform the

developer on unpatched software and

packages.

 The Security Operations Center with

knowledge of development.

Whenever a security alert is processed

by the Security Operations Center

(SOC), the alerts for developers should

receive investigation priority over

regular users in the organization.

This ensures that suspicious behavior,

like packages/scripts downloading extra

content from the internet, is investigated

with priority.

The best line of defense is keeping the

machine up to date (See: background

on patching). Tools like Defender for

Endpoint can detect the vulnerable

software, so that a workflow or

preferably automation runs to directly

inform the developer of the issues on

his/her machine. This direct feedback

loop is much better than having a

monthly report being sent to the CISO

on the state of all machines.

The last success factor is having a SOC

team with development knowledge.

How else can a series of suspicious

activities followed by a flood of network

connections be attributed to an attack,

or just the test runner framework being

used?

Best practices: background on
patching and removing Local
Admin
We all know that we need to patch

our software, but only when we are

not right in the middle of a refactoring

session.

Combine this with running as a Local

Admin and we have a potential disaster

waiting to happen.

But what exactly is the impact of

removing Local Admin, according to

this research2, of the 192 critical

vulnerabilities on windows, 102 would

be stopped by removing Local Admin

permissions.

Applying system hardening (especially

blocking process creation from Office

or through WMI, very often used by

malware) is another best practice for

reducing the likelihood of spreading

attacks. Hardening steps can be

gathered from the Center for Internet

Security (www.cisecurity.org) or if

you’ve deployed that Endpoint

Detection and Response (EDR) product,

it will show you recommendations to

beef up the security of your system.

But if we look at the total of critical

vulnerabilities(192), only 2.5% is used in

the wild to take over machines. This still

leaves 5 critical items to fix, and they

can be fixed by patching your machine.

There is no excuse for not patching

your system.

Quick patching is the best defense

against almost all threats, so don’t delay

installing those patches for a long time.

Summary
Patching, patching, patching, just patch

your machines, no excuses! Combine

this with an alert system from the EDR

where you as the developer directly

receive the alert of out-of-date software

and missing OS updates.

Don’t run as admin by default on your

DevOps workstation, run as a normal

user, and make sure you can use that

Local Admin account to temporarily

elevate your permissions to Local

Admin. (Just make sure that you/the

developer cannot login with that

account).

Apply hardening on the system so that

for instance spawning processes from

Office Application or WMI (well-known

malware techniques) are blocked.

This is also known as Attack Surface

Reduction.

Enable monitoring software to help you

identity suspicious behavior, linked with

direct feedback to the developer.

The Endpoint Detection and Response

tools can also notify you of suspicious

actions.

Establish priority for security warnings

on developer machines and accounts in

the SOC team, so alerts are investigated

with high priority by a team of SOC

analysts with developer knowledge.

But the most important of all is

continuous training and awareness!

2 https://www.theregister.com/2021/03/17/microsoft_vulns_admin_rights/

Erik Oppedijk
Cloud Architect, Public Speaker
and Trainer

xpirit.com/erik

034 LEARNING

The idea behind the project
I started this project because I want to enable newcomers

to serverless technology to get up and running with Azure

Functions in a very low friction way. Learning new things can

be challenging, and frequently, the official documentation

alone is not enough to understand a new topic and put it into

practice.

The dual-channel delivery, lessons on GitHub and videos on

YouTube, is intentional because some people prefer watching

(or listening) to videos, while others prefer reading.

How it started
The Azure Functions University project started in October

2020. I have had quite some content on both GitHub and

YouTube for some years now, but most of that was intended

for intermediate or experienced users of Azure Functions.

Since there is a huge increase in people new to programming,

I want to help out that group and make it easy for them to

start with serverless technology.

I consider myself reasonably experienced with Azure

Functions. On the one hand, that’s good for the project, so

I can share a lot of what I know. But on the other hand, this

can be a pitfall because I'm likely to have assumptions on

topics that people new to serverless don't have. To prevent too

much bias from my side, I wanted someone relatively new to

the technology to co-create the content and co-host the live

streams. I was following Gwyneth Pena (US) on Twitter, and

since I really like her personality and the style of her videos,

I asked her to join. I was thrilled she said yes immediately.

Gwyneth was changing jobs right after we started, and she

couldn't help out for a while. I had to find others to help

create content and co-host the live streams. Luckily some

people reached out. There are now contributions from

Gabriela Martinez (Mexico), Christian Lechner (Germany),

and Stacy Cashmore (Netherlands).

Creating an
open source
learning
project
Azure Functions University is an educational project for learning about Azure Functions -
the Functions as a Service offering in Azure. The content is aimed at people who do not have
previous experience with serverless technology and want to learn by following exercises and
writing code.

Author Marc Duiker

Figure 1. First Azure Functions University video about HTTP triggers

XPRT. Magazine N°

11/2021

035

Figure 2. Azure Functions University GitHub repo

Curriculum
At this moment, the curriculum contains the following lessons:

 HTTP; How to do GET requests and use query string

parameters and do POST requests where the data is read

from the request body.

 Blob; How to use output and input bindings to read/write

data from/to Blob storage using different binding types, using

the BlobTrigger to start a function when a blob is written to

storage.

 Queue; How to use output bindings with various binding

types, using the QueueTrigger to start a function when a

message is put in a queue.

 Table; How to use output and input bindings to read/write

data from/to Table storage with various binding types.

 Deployment; How to deploy your Function App to Azure

using VSCode, Azure CLI, and GitHUb Actions.

 Configuration; Why and how to use app settings in your

Function App, using App Configuration service for easier

management for app settings across multiple resources.

 CosmosDB; How to use the output and input bindings to

read/write data from/to CosmosDB, using the Cosmos-

DBTrigger to start a function when a new document is added

to a collection, and using KeyVault to store the CosmosDB

connection string.

 Durable Functions I; Why using Durable Functions is bene-

ficial when dealing with multiple functions. This demonstra-

ted by using the function chaining pattern to illustrate how

orchestrations work.

I believe that consistency is key when creating educational

content. Therefore each lesson follows the same structure:

 there are several exercises written in markdown, including

code snippets;

 three types of call-outs are used: tips , observations and

questions ;

 a complete Function App project is available as reference;

 at the end of each lesson, there's a homework assignment.

All coding exercises use VSCode as the code editor because

this is a more beginner-friendly environment than Visual

Studio 2019.

Figure 3. The Azure Functions University playlist on YouTube

036 LEARNING

Although we started creating content for .NET functions,

we're now also accepting contributions for other languages.

TypeScript is the second language we have some lessons for

now.

Challenges
Creating quality content is hard, and it is very time-consuming.

For the first couple of lessons, I created most of the content

myself, which was hard to combine with a full-time job.

Since more people are helping now, it gets easier, although

reviewing the pull requests is a considerable effort. I want

to ensure the tone of the lessons remains constant and that

inclusive language is used. I now realize what it feels like to be

a maintainer of a small open source project.

The frequency between the lessons varies between two to

four weeks. Ideally, I’d like to have a livestream every other

week. However, planning is tricky since schedules and

priorities shift, not only mine but also the contributors.

This is voluntary work we all do in our free time, and

sometimes other things are more important, and that's OK.

Working on this project should be enjoyable, not stressful.

Keeping the lessons up-to-date is becoming a challenge right

now. The current .NET content is targeted for .NET Core 3.1.

Since Functions can now also be written in .NET 5, additional

content needs to be created soon to reflect this. The .NET

Core content will remain since .NET Core 3.1 has long-term

support, and I expect the content will remain relevant for a

while.

This brings us to another challenge, and that is the Azure

Functions University GitHub repository. At the moment, there

are eight lessons across two programming languages, .NET

Core and TypeScript. Sub-folders are used for each language

in order to keep everything tidy, but eventually, the source

code needs to be split into separate repositories for each

language/runtime. This will make the source code easier to

manage, and VSCode will be less confused about which

projects to run.

What's next?
There's a lot of progress to be made. First, there is still a lot

of new content to be written. Many topics have not been

touched yet, e.g., security, SignalR, EventGrid. There are also

content translations to the other languages that Azure

Functions supports. Some people did show interest in helping

out with Python and TypeScript, but it's still a long way to go

until that’s on the same level as the .NET lessons.

Secondly, I want to have better insight into how many people

are using the GitHub repo and how they experience it. I’ll be

looking into GitHub classroom to see if I can get a better grip

on the usage of the lessons. I prefer to have as little friction as

possible, because additional sign-up boundaries might prevent

people from using the material.

Will this project ever be finished? Not any time soon, I think.

The Azure Functions team recently presented their roadmap

for the next major releases. I expect plenty of opportunities

to create new lessons and help more people to use serverless

technology.

Help us!
We're always looking for contributors who can help create

content and co-host a live stream! Contributions can be new

lessons, additions to existing lessons, or 'translations' to other

programming languages (TypeScript, Python, PowerShell,

Java).

Please have a look at the existing issues to see if you can

contribute to those. If there is nothing to your liking, you can

submit a new issue. You don't need to be an expert on the

topic. We can work on the content together.

Links
YouTube playlist: https://bit.ly/az-func-uni-playlist

Azure Functions University GitHub repo:

http://bit.ly/az-func-uni

GitHub issue list: http://bit.ly/az-func-uni-issues

96
Stars on the

GitHub repo

650
YouTube

subscribers

>1850
Views of the first

lesson

Marc Duiker
Consultant

xpirit.com/marc

037

XPRT. Magazine N°

11/2021

Introducing
Xpirit Cloud-Native
Software
Development
At Xpirit, we believe that developing applications for the cloud is a new expertise that
requires more than just a thorough understanding of cloud capabilities. You also need
a specific way of working and a different mindset. It is essential to adopt the business
perspective to see how organizations can achieve their goals by using the cloud as an
enabler and an essential part of building software.

Authors Alex Thissen and Loek Duys

Looking at IT from a business
perspective
Modern high-performing organizations

make effective use of IT as part of doing

and running their business. The created

supporting software solutions require

a fast time-to-market to be relevant for

customers, companies and employees

alike. Quick feedback from end-users

and production systems enables an

adaptive approach to evolve ideas and

solutions to stay relevant. Looking at

software solutions from the business

perspective shows a couple of traits that

define modern, competitive solutions:

 Be cost efficient

A solution should have mostly

operational costs and no significant

capital expenditures, such as initial

investment in hardware. The resulting

operating model has low upfront

investments and scales the costs less

than proportional to the solution's use,

growth, and success.

 Differentiate on business essentials

You want to focus on the differentiating

parts of the solutions. Common

functionality and cross-cutting

concerns should be ready-to-use

building blocks. The custom-built

parts should be essential to business

to justify development.

 Effective operations and maintenance

Automation makes software solutions

effective in operation and easy to

maintain. Achieving full automation

eliminates any manual steps. It reduces

the risk of human errors and speeds

up development processes by avoiding

the availability of people needed to

perform actions.

 Enable autonomous teams

Teams combining business and IT

want to be in control of the solutions

they create and take full responsibility

for building and running it.

These decisions and actions also relate

to infrastructure, hosting, deploying

and releasing software. Self-service

provisioning gives teams the ability

to create all aspects and parts of the

software solution on-demand at any

time.

 Secure and compliant

Any solution must be secure and

compliant by default. A solution

architecture is designed with that in

mind. The build and release process

uses quality gates to automate security

and compliance checks on every

change of the solution.

 Provide business agility

Becoming agile means drastically

reducing the time from idea to

production and being able to adapt

as fast as possible to opportunities

and changing circumstances.

Again, automation helps to maintain

a high-quality state of the system,

allowing a release of functionality at

any given moment.

Cloud-native applications as the
new norm
Cloud-native applications are a perfect

fit for software solutions in modern

organizations. They have the mentioned

characteristics by making optimal use

of cloud capabilities. A cloud-native

application deeply integrates with

managed platform services in the cloud.

It leverages these as building blocks for

common functionality to focus on the

differentiating, custom-built parts.

038 XPIRIT

Additionally, teams can create auto-

mated pipelines for building and

releasing cloud-native applications

utilizing the high degree of automation

in the cloud. Based on the cloud’s

pay-as-you-use model it becomes

possible to take costs into consideration

when architecting a cloud-native

solution. The cloud also allows view the

costs during operation, so teams can

be in control of how much is spent on

running and see the effects of scaling

the applications.

The cloud allows on-demand provisio-

ning of resources, a team can use this to

automate the creation of environments.

These environments can range from

long lived in production to short lived

during testing and even for training

purposes. The cloud offers monitoring

facilities to observe the application

during operation and react to any

incidents.

Cocreating business solutions
Creating business solutions using

cloud-native applications should be

a joint effort between business

stake holders, domain experts, the

cloud engineers and developers.

The people with technical roles in the

team should acquire the necessary

insights into the domain. A thorough

understanding of the business and

domain logic is essential to build a

successful application. The business

stakeholders and domain experts need

to transfer that knowledge by working

inside the same team.

Cloud-native applications allows

everyone in the team to focus on those

differentiating, often complex parts of a

solution, as the less relevant parts take

less time to create. Also, as the entire

team gathers more knowledge, it can

quickly iterate to include new features,

refactor for maintainability, improve

performance and stability and fix any

issues.

Agile practices with DevOps
and SRE
Given how a team can utilize the

capabilities of the cloud to create

cloud-native applications, it can adopt

new practices and methodologies in

their way of working. The applications

align well with teams that practice

DevOps, Site Reliability Engineering

(SRE) and other agile practices, such as

Scrum. The applications facilitate a

blurring of the line between develop-

ment and operations. The teams

can both create and operate the

applications in full control and

autonomy. SRE becomes a matter of

using the cloud for global availability

and replication, self-healing capabilities

and applying resiliency patterns.

Identity and Access Management (IAM)

Dealing with security, accounts and

social identities in cloud solutions can

be challenging. It is a complex and

specific set of features that involves

practically every corner of your

application landscape. Strangely

enough, IAM is not part of an application

but is required nevertheless to offer

authentication and authorization

functionality. It is a cross-cutting

concern and essential to enable

creating secure cloud-native solutions

easily. Yet, this is often overlooked

when starting a transition to the cloud.

A modern organization needs a proper

cloud identity platform with IAM

facilities to provide secure access to its

applications and data. It will allow Single

Sign-on (SSO) to web applications for its

employees, customers and other users,

who no longer need multiple accounts

to login. Also, a cloud identity platform

gives control, insights and monitoring

capabilities for identity lifecycle

management.

Application modernization

Usually, companies already have an

existing landscape of applications,

where not all applications meet current

business requirements or standards

for software development.

Such applications can be modernized

to meet your ambition as a company.

Application modernization means more

than just lift-and-shift cloud migration.

It is an ideal moment to choose an

appropriate strategy for each

application to be refactored, rehosted

or rebuild on a new platform.

Our approach to determine the best

strategy for modernization includes the

following steps:

1. Identify current requirements,

challenges and goals

2. Perform functional and technical

decomposition of the current

application(s)

039

XPRT. Magazine N°

11/2021

3. Choose migration strategy per

functional area and component

4. Define alignment of the new solution

in future state architecture and

application landscape

5. Design and develop new application

parts as a cloud-native solution

Practice what you preach
From the very start Xpirit has been

providing help to companies, teams

and people who want to create

modern solutions based on the

Microsoft platform and development

tooling with agile practices. The focus

was mainly on consultancy and

coaching around the software

development process and using cloud

technology, and only partly on building

and implementing the solutions we

advise on.

Early 2021 we decided that we should

start offering additional services to our

customers and help design and create

cloud-native solutions and supporting

capabilities. These services cover four

areas:

1. Develop mission-critical applications:

greenfield development of cloud-

native solutions

2. Application modernization:

migration of existing applications

to become cloud-native

3. Establish cloud identity platform

4. Training and workshops to learn

practices, patterns and skills for

cloud-native development

Our services are geared towards helping

customers solve business problems

using modern, high-quality software

designed and built using cloud-native

technology. Our propositions are about

people: skilled DevOps engineers that

are experts in Microsoft Azure cloud

technology, the .NET development

platform and matching front-end

technology. They can act as a team to

build the solutions. Alternatively, they

can augment existing teams in a leading

role to provide cloud, DevOps and SRE

knowledge to build the solution and

train the team members while doing so.

As a multi-disciplinary team, they create

the new modernized, future-proof

cloud-native solution from scratch or

by modernizing existing ones. On top of

this, we can help deliver a cloud identity

platform using our experience and

expertise to complement the creation of

secure cloud-native solutions.

Let’s fly to the cloud
Xpirit is venturing into the cloud even

more by providing services to design

and create your business solutions

with cloud technology. We would

love to make you part of that flight

into the cloud. Whether you are a

customer or a new team member,

we are passionate about building the

best cloud-native solutions together

with you. Reach out and join us for a

journey into the future. You can

contact us at athissen@xpirit.com

or lduys@xpirit.com.

Alex Thissen
Architecture and coding

xpirit.com/alex

Loek Duys
Cloud software architecture

xpirit.com/loek

040 XPIRIT

Introducing
Xpirit DevOps

services
Xpirit is the authority on Microsoft consulting, ranging from DevOps and Cloud to
management consultancy and cloud-native software development. However, our

customers wanted more – more help from a great team of Microsoft experts in
every part of the lifecycle, be it advice, building or maintaining.

Authors Marc Bruins and Suraj Sewbalak

To satisfy this need, we started with a new label Xpirit DevOps services which started on 1 January 2021. At Xpirit DevOps services,

we believe that the existing managed services industry is about to be changed radically. Xpirit DevOps services is one of the

companies that is leading this change.

For example, instead of focusing on maximized SLA percentiles, we focus on SLA percentiles thar are as low as we can afford.

The lower the SLA, the more room there is for the teams to experiment, fail-fast, and innovate. This is in line with what the

industry is accelerating towards, as we move towards a lean organization by embracing cloud, agile and DevOps. We believe that

our managed services proposition is an enabler for your organization, not a blocker. Hence the name, Xpirit DevOps Services.

All the cloud experience from our consulting label allowed us to create a product that enables our customers safely inside the

cloud. This is ideal when you are migrating, or when you want to restructure your cloud usage. Our Azure landing zone provides a

safe place to land your workloads in the cloud. We offer a fully compliant and secure Azure in a box solution, with CI/CD pipelines,

four-eyes approval, cloud native resources, monitoring options, etc. And it goes without saying that our Xpirit DevOps services

also provide support. We have multiple, specialized solutions ranging from Government, Education, Data&AI and Business

applications.

In short, we want your DevOps teams

to have full control by embracing

DevOps, cloud and SRE, together with

all the experience from our customers

that allow us to build suitable products.

We are very happy to have already

onboarded a number of customers

and we are off to a good start.

We would love to have a talk with you

if this article has peeked your interest.

Let us know!

Marc Bruins
Architecture, Azure, mobile
development

xpirit.com/marc

Suraj Sewbalak
COO Xpirit DevOps services

xpirit.com/surai

041

The reliability
paradox:
Why less can
be more
You’ve made the change from on-premise to the cloud, and your application is running
like a charm. In true DevOps fashion you are focusing on building and running the app so
you’ve taken certain precautions: retry mechanisms, fast failovers and smart alerting rules
have been implemented. While the resilience of the system is improved, we should avoid
the mindset that we are completely in control of the system’s reliability.

Authors Geert van der Cruijsen and Casper Dijkstra

When we ask customers how

reliable their application should be,

expectations usually are around 100%.

That would be desirable indeed, but

is this really a target worth pursuing?

Which price are we willing to pay for

overly high availability targets? In order

to answer this question, we should get

some insight into the pros and cons

of tightening and loosening reliability

objectives. Are you focusing on the right

things? Who decides how reliable your

application should be? And is there a

drawback to too much reliability?

What is reliable software?
Modern applications are based on

multiple cloud components.

These typically come with a Service

Level Agreement (SLA) of three nines

(99.9%) or three and a half nines

(99.95%). Let’s focus on the interplay of

Azure App Service and an underlying

SQL database as an example.

Both services have a guaranteed

uptime of 99.95, so around 21 minutes

of downtime are allowed per month.

Our application needs both services

to behave correctly in order to be fully

reliable.

Since these components are

independent of each other, the App

Service can be down on Monday from

06:00 to 06:20 and Azure SQL database

can be down the ensuing day from

14:20 to 14:40. Because the services

can have outages at different times, the

compound SLA of multiple components

is of course lower than their individual

targets. Where they both satisfy their

own reliability target, the overarching

application may have a lower availability.

Then, all application components are

communicating through the network

of which we know that it is not always

reliable. Starting to think of it, there are

a lot of mechanical or human errors

or natural disasters that may incur entire

data centers outages. This means

that our systems have an inherent risk

of unavailability which has to be

(and usually is) endorsed by developers,

the business and its end-users.

We should therefore expect that each

modern application exhibits some

degree of unreliability. But this does not

have to stress us out. We will see that

the impact of these (often short-lived)

outages is smaller than commonly

thought.

XPRT. Magazine N°

11/2021

App Service:

99.95%

SQL Azure:

99.95%

There are architecture patterns that

could be used to minimize user impact

on certain issues.

Should we start paying significantly

more on data redundancy offerings

(like Geo-zone-redundant storages) to

reduce our unreliability to an absolute

minimum? We think that this should

always be a business decision focusing

on the business impact of certain

failures.

Certain failures in our application can

occur without the user being impacted,

how important are these issues?

We should not aim for perfection,

but find the correlation between

unreliability and user satisfaction.

To find out, we should dive into the

impact of failures – when does it

actually matter?

Embracing the risk of failures
Aiming for higher reliability targets may

seem like a reasonable (and ambitious)

goal to pursue for product owners.

We want to convey that setting higher

targets is not always the right thing to

do, and there may be high and

concealed costs. If we want to improve

the reliability of our system from 99.9%

to 99.95%, and the application

generates an annual revenue of

€500.000, then a reasonable estimation

of the additional revenue is only €250.

Moreover, there are many scenarios in

which small unreliabilities do not bring

about any noticeable consequences.

When your LinkedIn feed is rendered

incredibly slow, you probably press F5

and the problem is already over.

There are many scenarios where neither

economical nor user satisfaction factors

run the risk of being drastically reduced.

Let's focus on a warehouse example

involving availability!

Example scenario:
Warehouse solution
You’re building software to handle all

incoming orders that need to be

collected in the warehouse by robots.

This process is a key process within

your business, so it should never be

interrupted. If the robots stop working,

trucks can’t leave on time and

customers won’t be happy because

their packages are late. So how reliable

should things be? Our robots should

never run out of work. This is a good

business impact that we could

measure. But what happens when

communication to the robots fails?

Communication to the robots is super

important, so our initial thoughts might

be that we should do everything in our

power to make this super reliable, but

what if the robot can store up to 10

orders in advance? If each order takes

about 30 seconds to complete, you

have 5 full minutes before a robot runs

out of work. So when looking at

reliability, we should aim for a solution

that focuses on achieving this business

result instead of solely measuring

which percentage of the messages to

the robots were sent successfully.

It goes without saying that end-users

care about reliability. However, we

should form a realistic picture about

which expectations customers have

in mind about the application.

When the effect of enhancing the

reliability from three to four nines

(99.9 to 99.99 percent) gets

obfuscated by the unreliability of

external factors (causing extra reliability

to go unnoticed), then we can

reasonably be reluctant to improve the

reliability. Spending time on either rapid

new feature development, lower latency

or reducing accumulated technical debt

would have been more fruitful for our

end-users. The key things to monitor

should be focused on user and business

impact rather than technical errors.

Full reliability is overachieving, a single

database failure is catastrophic and this

uncertainty leads to imminent stress

among your employees. There are ways

to improve the reliability, but this should

always be a conversation between the

business owner and the engineering

teams that build and manage the

application.

Defining objectives that customers
care about
Instead of focusing on overly high

reliability targets, we should use our

experience and common sense to

contemplate which level of service we

want to provide to our customers.

The well-known service level

agreements (SLAs) are backed up by

service level indicators (SLIs) and

objectives (SLOs).

While any measurable quantity can

be promoted to an indicator, we

recommend choosing just a few good

probes. These should encapsulate

what users deem important in the

application and it’s usually a good idea

to start working backwards from

customer experience to SLIs rather

than setting objectives based on

042 DEVOPS

Generator
failure

Weather
related

Water, heat or
crac failure

(https://www.365datacenters.com/portfolio-items/overcoming-causes-data-center-outages/)

Accidental /
human error

IT equipment
failure

UPS failure
(battery)

The cause of
unplanned outages

Human & mechanical

88%

12%
Weather related

Other

5%
5%

10%

12%

15% 24%

29%

XPRT. Magazine N°

11/2021

043

accumulated data. Google advocates

that the most useful indicators of your

system’s health are: Latency, Traffic,

Errors and Saturation, which they’ve

coined golden signals of monitoring.

What these indicators have in common

is that all of them pertain to internal

structures of your application.

The trick is to not lose ourselves in the

anomalies of our internal system, but to

get involved in the translation process to

our end-users. For instance, the errors

indicator does not always map directly

on the user experience, but it’s a fair

bet that the following Service Level

Indicators are strongly correlated with

user satisfaction:

 latency (nobody wants to wait

2 seconds for each HTTP request);

 availability (2% downtime is simply too

much);

 throughput (it shouldn’t take too long

to upload pictures);

 correctness (your shopping cart

should show your selected items).

Now it’s time to form objectives for

these indicators to trace how much

unreliability can reasonably be tolerated,

and unsurprisingly, we’ll look at the

impact on customers. A frequently

made mistake is to form objectives

based on averages. This is problematic

because distributions of our indicators

are usually right-skewed, where the

first 1% of the users have slightly better

behavior, and the last 1% have incredibly

slow responses of multiple seconds.

(Source: www.lognormal.com)

The risk of a far-reaching right tail is a

valid concern, and in our experience it

is useful to create objectives for high

percentiles (e.g. 95%, 99% or even

99.9%) rather than for averages. This is

based on the line of reasoning that

every user has a good experience

when the worst-case scenarios have

reasonable experiences.

While the indicators are usually the

same for different systems, objectives

are where variation comes into play.

Our objectives are reflected in the

SLA and this sets expectations for the

customers, and they may or may not

select our service based on them.

Customers have different expectations

about user-facing systems (webshops,

social media) compared to archiving

systems and, to name another, big data

processing systems like Apache Spark.

SLI SLO SLA

Latency 95% of requests should be served within 100ms within 150ms

 99% of requests should be served within 300ms within 400ms

Availability 99.95% uptime per month 99.9% uptime per month

28,000

21,00

14,00

7,000

0
1 2 3 4 5 6 7 8 9 10 11 12

Load Time (sec)

044 DEVOPS

While end-users certainly care about

these indicators, there is not always a

trivial mapping function of these

indicators to customer experience.

What would provide more insight is to

look at this through a functional angle,

i.e., how do the application users

experience the application?

Spending excessive amounts of time

on optimizing the reliability of the

system means less time for rapid

feature innovation, automation and

experimentation.

A good example would be Outlook

versus Youtube. The first application is

used by businesses throughout the

world for communication, and they

expect the service to have a high

availability. Youtube on the other hand

is not used for critical purposes.

While users may be somewhat annoyed

by a lower uptime, this is probably

outweighed by the positive experience

of rapid bug fixes and new features.

Google has also set lower reliability

targets on Youtube versus Gmail for

similar reasons.

At this point we should have a

feeling for setting reasonable SLOs.

What should we do next? The next

step is to find a perfect balance

between reliability and innovation!

Finding the sweet spot between
reliability and innovation
Error budgets are based on the idea

that a certain amount of unreliability

is acceptable. For instance, Azure

SQL strives for an availability target of

99.95%, which means that they are

permitted to have a downtime of

21.6 minutes per month. These 21.6

minutes constitute their monthly error

budget. Where traditionally outages

would have been stressful events

in need of immediate investigation,

modern Site Reliability Engineering

principles state that everything is under

control as long as the error budget has

not been burnt. Likewise, we can

(and should!) form error budgets for

microservices that we maintain.

This illustration shows the acceptable

burn-rate (the blue line) and two

unacceptably high burn rates (+25%

and +50% slopes). On the other hand,

the green line denotes a more positive

trend: a burn-rate at which we would

easily satisfy our objective. Now let’s

take a look at our real error budget

burning - the purple line. During the

first two weeks we’re gradually

spending a little bit of the error budget.

Then, due to a Daylight Saving bug on

day 14, an excessive amount of error

budget is spent, stopping at our

acceptable burn-down rate. This means

that we have to be more careful at this

point, and we decide to reduce our

release velocity. After a week (day 21)

we notice that we’re doing way better

than the blue line, we can actually

embrace more risk again.

Without an error budget, the business

would have probably thought that

we’re not delivering enough value - the

system was unreliable for quite a while!

The change of philosophy with an error

budget has noticeable advantages.

Engineering teams can safely deploy

and stay focused on what they were

doing, and nobody is alerted when a

fraction of the error budget is scorched.

More intriguingly, we may even claim

that most of the error budget should be

used and this provides an excellent

opportunity to experiment. Nowadays,

it is even considered a best practice

among Site Reliability Engineers to not

aim for a significantly higher availability

than our target, since this creates false

expectations for the future.

The error budget reminds us that

unreliability is not always undesirable.

In fact, it even provides a minimal

amount of monthly downtime

(of course lower than the SLO target).

If we haven’t burnt any error budget,

we simply haven’t taken enough risks

and customers will start to rely on their

experience that the system is always

reliable (which means they will be more

bothered by future issues…)

Actionable metrics as a
conversation between business
& engineering
What we find a great benefit of Service

Level Objectives and Error Budgets is

that these create realistic expectations

about the system that engineers and

the product owner have agreed upon.

Moreover, it removes a great deal of

subjectivity out of any conversation on

the application’s health: we know

exactly how much failure is permitted

while keeping the end-users satisfied

with the product

Aiming for overly high reliability

targets has another issue: it is at odds

with the desire for new features.

Feature development is pretty

dangerous from a reliability point of

view:

 the complexity of the product

increases with each new feature;

 in fact, each code change comes

with implicit risks and changes the

(assumed reliable) state of production.

While development teams are evaluated

on their feature development velocity,

tension can arise between business and

engineering teams. An error budget

is a very effective means to establish

a balance between reliability and

innovation. When the error budget is on

track, we should not hesitate to develop

and deploy. The system behaves as

expected, and our end-users are

certainly happy when new features

become available quickly!

When we’re on track for our objectives,

we should feel encouraged to

experiment. The risk of incurred

unreliability is outweighed by the value

0 7 14 21 28

100% error
budget
remaining

Error budget

Very fast burn rate
Fast burn rate
Slow burn rate
Real scenario, satisfying SLO
Desired burn rate

XPRT. Magazine N°

11/2021

045

provided to users by our experiments (or to the development team by automating

recurring tasks).

Let’s take a look at new technologies. These often have the potential of adding a

lot of value to the application, but they involve a risk for the reliability of the system.

Let’s give some concrete examples:

Getting started with reliability engineering in your application!
We have shown examples of SLOs raising expectations about the system’s

functioning and that loosening SLOs can have advantages. Error budgets help us

to assess how much time we can spend on innovation versus improving reliability.

Expecting full reliability comes at undesirable costs, of which we highlighted:

 Increased stress among employees:

 – When the system is not behaving perfectly (even when nobody is using the

application at that time).

 – Resistance against feature development - what if something breaks on

production?

Potentially interesting
experiment/improvement

Could provide value Risk for
reliability

More rapid feature
development

– Users can get preview
features faster

– Bugs are more easily
introduced

– Rollbacks

Migration from ARM to
newer Infrastructure-as-Code
frameworks

– Easier code changes
– Better maintainability
– Unit tests can be written

for the infrastructure

– Not sure whether first
deployments are successful

– Downtime

Chaos engineering on
production

– Expose vulnerabilities in
the system

– Rigorously test alerting
scheme that is in place

– Better understanding of
strong and weak spots of
our application reliability

– Chaos is invoked for a
subset of the users

– Reliability will certainly be
lower than without chaos
engineering tool

Being encouraged to experiment, we know when we are allowed to embrace risk for

the greater good!

 Customer expectations:

 – Usually not as high as commonly

thought.

 – They tolerate occasional hiccups in

the system.

 The tradeoff between reliability and

innovation:

 – The business and end-users not only

care about reliability, but also about

other aspects.

 – Setting reasonable reliability targets

allows us to make smart tradeoffs.

 – Being on track for these targets

means that we can embrace risks

and experiment (to use new

technologies, automate things,

deploy faster et cetera), all of which

may increase productivity and user

satisfaction.

We hope that this article helps as a

conversation starter for many

organizations in order to make

engineers and business work together

in terms of thinking about reliability and

how they can work together on making

the right decisions for building an

application that is as reliable as

required.

Geert van der Cruijsen
Digital Kickstarter, Enabler for
companies to embrace DevOps,
Cloud & improve their
engineering culture

xpirit.com/geert

Casper Dijkstra
Cloud Engineer

xpirit.com/casper

046 DEVOPS

Measuring output
Simply put, productivity indicates how efficiently you produce,

usually measured by output. But is it that simple? In software

development, this way of thinking has many pitfalls. For a long

time, it hasn’t been easy to measure productivity correctly.

Does the number of tickets, lines of code, or deployments per

day provide a good indication of how productive an individual

is? Marcel doesn't think so: “If you look at how much code

was written, that simply reflects how busy someone was, but

it says nothing about the usefulness and quality of what was

delivered. If someone solves a problem in ten lines instead of

twenty, that can be considered as a more efficient solution,

but is that really the case? And more importantly, you get what

you measure. When people know they are measured by the

number of deployments, they will deploy more often, but what

do they deploy and does it solve the business need?”

“Developer productivity is an elusive
concept. You cannot think in terms
of numbers. The only things you
know, without diving in deep, are if
the software solves the problem it's
supposed to, and the time it took to
get from idea to solution.”
– Marcel de Vries, CTO Xpirit

The importance of gaining insight
The reason that developer productivity is receiving more

attention is twofold. On the one hand, the demand for

software is greater than the supply. On the other hand, strict

compliance and security requirements negatively impact

productivity. To overcome these challenges, organizations

require insight into the factors that affect productivity.

Marcel adds: “The industry needs to change too. Instead of

seeing software developers as an extra set of hands, I would

like organizations to realize what we can contribute to the

envisioning of business solutions. However, we also have a

part in that. Developers often portray themselves as nerds who

can't communicate. An image that doesn't fit the industry’s

current state and does our profession a disservice. We also

need to change the stereotype. If you, as a developer, struggle

to communicate, it’s up to you to learn.”

Taking a holistic approach
We cannot measure productivity with one single metric.

The SPACE framework takes a much-needed holistic

approach by using five factors: satisfaction, performance,

activity, communication, and efficiency. Marcel elaborates:

“Unlike DORA, which focuses on organizational indicators

that show the success of DevOps, SPACE enables us to look

at productivity from multiple dimensions that in relationship

to each other can help us decode the actual productivity

factors in your business context.”

Xpirit embraces
SPACE framework to
measure developer
productivity
Developed by Microsoft and GitHub and embraced by Xpirit, the new SPACE framework
provides guidance to an industry challenge: measuring developer productivity. Why is a
greater understanding of what affects software developers' productivity levels needed?
Marcel de Vries, CTO of Xpirit, elaborates on the framework's usability and shares his view
on productivity.

Author Marcel de Vries

The first factor that SPACE addresses is satisfaction.

Marcel elaborates: “Delivering software is a creative

profession that requires a particular mindset. People must

feel good about themselves, both in business and in life, to

deliver. That’s why, at Xpirit, we operate ‘people first.’

We pay attention to each others' wellbeing, learn from each

other, voice our appreciation, and make sure we all feel safe

in a group.”

The second factor is performance. Instead of using this as

a standalone metric, SPACE relates it to the other factors to

produce a balanced outcome. Marcel: “The risk of measuring

performance is that by measuring, you are already influencing

productivity, which brings us back to the importance of

making people feel safe. Additionally, you need to understand

what you are measuring and if this is all-encompassing.”

SPACE also focuses on communications and collaboration.

According to Marcel, leadership has a significant role to

play in this: “Leaders need to stimulate concepts like pair

programming, mob programming and start create stable

teams that get work done. We also need to move away from

a traditional project-based approach where you create a

temporary organization that the moment it becomes

productive is destroyed, since the project is ended.”

On communication, Marcel laughingly says: “When software

developers are asked to improve communication, our default

is to build a new app or platform. That is unfortunately

inherent to our profession, but of course not what we need.”

Finding your flow
The pandemic helped us see the benefits of working online,

such as more equality and less travel. But, it also introduced us

to a new downside. The threshold to disturb someone while

working lowered, making it more challenging to stay in your

flow. Marcel believes we have to learn to switch off and go into

focus mode. “It’s ok not to answer your phone because you

are busy writing code and stay in your flow! It is commonly

known that task switching is the killer of productivity. To get

back in your flow can take up to hours!”

When asked how to get into your flow, Marcel jokingly

answers: “According to the Ballmer peak, a blood alcohol

concentration between 0.129 and 0.138 % confers

superhuman programming ability.” He continues: “Being in the

flow is different for everyone. From listening to music while

coding, isolating yourself completely, or finding inspiration in

an article. It's a unique state of mind in which your thoughts

become code. You forget about eating, drinking, and time.

All that matters is writing amazing code. If this only happens

once every month, overall productivity might be considered

low. Nonetheless, the quality of work you produce in your flow

is unmatchable.”

Xpirit and the SPACE framework
For a concluding reflection on productivity, Marcel cites his

experience: “In our everyday work with customers, we come

across many silos, which is not surprising, since operational

excellence dictates dividing your business into departments.

But, by doing that, you create delays in the process because

you interrupt the flow. You can overcome that with Agile

and DevOps. If you look at the measurements in the

SPACE framework you can see that those ways of work can

contribute significantly to higher productivity. The SPACE

framework gives us an even better understanding of what

factors increase or decrease productivity in your business.

We use the framework to measure productivity, create

dashboards and generate insights. We then observe your way

of working, identify the indicators that influence productivity,

and take an active, targeted approach to improve.”

We’ll elaborate on the SPACE framework in a series of

blogposts, each covering one of the five dimensions during

the coming weeks. Be sure to check the Xpirit website to

stay tuned!

SPACE is the acronym for Satisfaction & well-being, Performance,
Activity, Communication and collaboration, and Efficiency and flow.
Each of these dimensions is key to understanding and measuring
productivity, according to the researchers. For each of them, the
framework suggests a number of distinct metrics that apply to
different levels, including individual-, team- or group-, and system-
level. Interestingly, SPACE does not advocate for using all of the
metrics at once, rather to carefully select a reduced set of metrics
that span across all three levels and capture different productivity
dimensions. The full article outlining the SPACE framework has
been published at https://queue.acm.org/.

Marcel de Vries
Chief Technical Officer

xpirit.com/marcel

www.xpirit.com

If you prefer the digital
version of this magazine,
please scan the qr-code.

Together we
drive change.

