
XPRT.

PROUDLY PART OF XEBIA GROUP

Flight 1 to the cloud is now ready
for boarding

The Xpirit Learning Experience

Making Microservices easier
with Dapr

Treat your VM like a
Container

Magazine N° 10/2020
XPRT.

XPRT. M
agazine N° 10/2020 E

m
p

o
w

e
rin

g
 d

e
ve

lo
p

e
rs to

 d
rive b

u
sin

e
ss o

u
tco

m
e

s

Empowering developers
 to drive business
outcomes

HAVE YOU EVER WANTED TO EXPERIENCE WHAT IT’S LIKE
TO WORK IN A TEAM THAT PRACTICES REAL DEVOPS?
DO YOU WANT TO RUN A DEVOPS BOOTCAMP?
Then this is the event for you! You learn how to build software with immediate feedback loops
and push it to production, multiple times a day, without hesitation. You will be able to translate
everything into your daily practices and initiate your DevOps transformation based on experience
instead of text-book examples.

ACCELERATE DEVOPS ADOPTION WITH
THIS EXCLUSIVE DEVOPS EXPERIENCE

DO YOU WANT TO RUN A
DEVOPS BOOTCAMP?
CONTACT MAX FOR ALL
OPTIONS.
Max Verhorst / +31 (0)6 13 46 80 02 /
mverhorst@xpirit.com

mailto:mverhorst%40xpirit.com?subject=Xpirit%20DevOps%20Bootcamp

XPRT. Magazine N°

10/2020

Colofon

XPRT. Magazine No 10/2020

Editorial Office

Xpirit Netherlands BV

This magazine was made by

Alex de Groot, Alex Thissen,

Anne Meijer, Arjan van Bekkum,

Chris van Sluijsveld, Loek Duys,

Duncan Roosma, Erick Segaar,

Gill Cleeren, Pascal Naber,

Rob Bos, Geert van der Cruijsen,

Immanuel Kranendonk,

Jasper Gilhuis, Jesse Houwing,

Erik Oppedijk, Kees Verhaar,

Maira Camu, Manuel Riezebosch,

Reinier van Maanen, Marc Bruins,

Marcel de Vries, Natascha Former,

Sofie Wisse, Martijn van der Sijde,

Max Verhorst, Niels Nijveldt,

Michiel van Oudheusden,

Pieter Gheysens, Marc Duiker,

Sorin Pasa, René van Osnabrugge,

Roy Cornelissen, Sander Aernouts,

Thijs Limmen, Jordi Borghers,

Thomas Browet, Lesly Bernaola,

Pieter Nijs, Stéphane Eyskens,

Contact

Xpirit Netherlands BV

Laapersveld 27

1213 VB Hilversum

The Netherlands

+31 (0)35 538 19 21

mverhorst@xpirit.com

www.xpirit.com

Layout and Design

Studio OOM

www.studio-oom.nl

Translations

TechText

© Xpirit, All Right Reserved

Xpirit recognizes knowledge
exchange as prerequisite for

innovation. When in need
of support for sharing,

please contact Xpirit.
All Trademarks are property of

their respective owners.

 004 Stay Safe, Stay Home,
Stay Relevant, Challenge
Accepted!

 009 Encouraging Inner Source

 026 Making Microservices
easier with Dapr

 046 We are crossing
the border

 030 Data Modeling and
Partitioning in Azure
Cosmos DB

 043 Treat your VM like a
Container

 037 Feature toggles in favor
of continuous deployment

 021 The Xpirit Learning
Experience

INTRO

In this issue of XPRT. Magazine, our experts share
their knowledge about Digital Transformations &
Continuous Integration.

TRANSFORMATION

LEARNING VNEXT

TECH

CONTINUOUS INTEGRATION

WE ARE XPIRITIf you prefer the
digital version of

this magazine,
please scan the

qr-code.

013

017

026

053

 006 Sink or Swim? How do
you Survive a Forced Digital
Transformation?

 017 Flight 1 to the cloud is
now ready for boarding

 012 Running 30 year old
software as a cloud native
SaaS solution with Docker
and Kubernetes on Azure

mailto:mverhorst%40xpirit.com?subject=Xpirit%20DevOps%20Bootcamp

004 INTRO

Stay Safe, Stay Home,
Stay Relevant,
Challenge Accepted!
Just in time before the holiday starts, we are proud to present to you with the tenth edition
of our Xpirit magazine. It has been quite the journey since we presented you with our
first edition in early 2015 only a few months after we started our company. Sharing knowledge
is part of our DNA, and this is something that we are determined to keep doing.

Author Marcel de Vries (Chief Technical Officer)

The past few months have been extremely challenging for our talented team, while they needed to work fulltime from home

and at the same time be a fantastic parent, teacher, partner, and employee. Of course, this wasn’t easy, and yes, it took everyone

a lot of energy to make it work, but still, there is so much energy and passion left that the team was determined to deliver you

this magazine just before the start of the holiday season. What better time could we pick to bring you a series of articles of

new learnings, new technologies, and new insights in the way we can use technology and people to move our society forward.

In this edition, you will find a variety of articles from deeply technical to more inspirational. And that is where the magic lies,

combining the in-depth technical with the human side of our industry. We also received some great articles from well-known

industry influencers, of whom we find it a privilege to call them close friends. Leni Lobel, who is a renowned industry expert in

the domain of Cosmos DB was so kind as to write an exclusive article for this edition on Data Modeling and Partitioning in

Cosmos DB. And Martin Woodward, who recently moved from Microsoft to GitHub, and who provided us with his insights and

knowledge on how to successfully implement inner source in your company in order to manage shared code across various

teams.

It is with great pride that we are presenting you with this new edition of our magazine, even in these challenging times. We hope

you will all enjoy reading our knowledge and insights and that they will inspire you and help you in your career in the years to

come. Stay safe, stay healthy, and enjoy!

Get challenged and inspired...

We are Xpirit.
Together we drive change.

XPRT. Magazine N°

10/2020

005

006 TRANSFORMATION

Sink or Swim?
How do you Survive

a Forced Digital
Transformation?

Behind every digital transformation, there’s usually a solid, well-considered plan and matching
strategy. Due to COVID-19 and the suddenly changing economy, many companies feel forced to
digitize immediately. All of a sudden, everyone is expected to be able to work remotely. It requires

much effort to make everything work digitally, straight away.

Author Marcel de Vries

How do you survive such a forced digital
transformation?
Marcel de Vries, CTO, and founder of Xpirit, a subsidiary of

Xebia, the Dutch Powerhouse in Amsterdam, say’s,

“We compare the current situation somewhat with swimming

lessons. First, you carefully put your toe in the water to make

sure it’s not too cold, then suddenly you’re pushed into the

water, how well do you swim? The big question is, what is your

reaction when you have recovered from the initial shock?

Do you swim back to where you fell in, or do you adapt and

swim in the direction of the new environment? If you give it

some thought, swimming in the new direction turns out to be

better than you ever expected!” According to de Vries.

Many companies have spontaneously accelerated into a

digital transformation, with all employees forced to work

from home. They may have had a digital transformation plan

on their to-do-list but didn’t implement it. At moments like

this, decisions reached in crisis mode. Which generally take

weeks or even months, can have enormous, incalculable

consequences.

“On one hand, you immediately start with digital collaboration.

Think of using Zoom or Microsoft Teams. On the other hand,

you face the challenge of applying remote engineering.

Your engineers located throughout the country suddenly have

to bring software to production with their teams. How do you

do that when you are not near to a colleague? How do you do

that when you need to depend on the development software

in your company? How do you ensure that everyone can

access it safely and still stay compliant?”

Keeping their head above the water is currently a top priority

for every company. In a crisis like this, essential issues as risk

and compliance do not come first. In the past, you could easily

take the time to look at all possibilities, and companies are

now choosing business continuity. De Vries says: “It simply

takes too long to carry out an extensive risk assessment.

You need to immediately make sure that your entire business

does not come to a halt. You will solve problems later! That is

a logical choice if you are in crisis management mode.”

“Due to the current situation, there is also more leeway

for temporary solutions. It makes everything more fluid,

after which you can still do the remediation to fix it.

Adjust afterward and see what you should have done

differently or better. That’s exactly the right mode for

companies. Work-based on feedback and adjust!

We instructed companies to implement this model before

the crisis. It can still help them now be more efficient.

We know what it means to do a digital transformation.

We have been doing this for the past five years. We know

what’s involved. Let us help you optimize your current state

and help you accelerate. After all, you are now in the water,

so let us teach you how to swim the fastest and smartest.

That is what we do, and instead of planning for it, we now

can help you act on it right away.”

The IT Consultant as a lifeguard
According to de Vries, executing a so-called forced digital

transformation is a blessing in disguise. “Many companies had

cold feet for the transformation but are now thrown into the

deep at once, where they have to learn to swim immediately,

XPRT. Magazine N°

10/2020

so they’re forced to deploy their digital transformations faster.

Now that you’re in the water, it is instrumental that you learn

how to swim more efficiently or how to last longer if you swim

in a different direction. We have known the pool for a while...”

"We often encounter resistance and cold feet at
companies; at some point, you sometimes feel like
giving them a push. But of course, that would not
be appreciated."

Above all, companies should not think that they are already

there and absolutely should not go back to the ‘old’ way.

“You are already in the pool. Go for a swim and keep your

head above water. Please take advantage of it and start seeing

it as an opportunity. If you go back to the old way, all the

pressure and misery has been a waste of time. At banks and

insurance companies, we see that the new way is working.

Some of them already plan to downsize their offices.

Embrace what is good and only throw away what does not

work. Otherwise, there are many missed opportunities.

You also see change-oriented organizations. They are moving

ahead and taking advantage of what is currently happening.

These are the companies that emerge as digital winners.

Those are the organizations that say; it will never be as before.

It is wiser to go ahead and win the race. We are now swimming

anyway, so let’s aim to be first across the pool.”

"Our consultants enjoy entering this phase.
Beyond the resistance. You feel and experience
the pain at the moment, and you have to take
advantage of that."

Cost-saving, more safety, better compliance,
and cooperation; remote engineering
Many companies that have now taken the first deep dive into

digitization are currently confronted with high, unnecessary

costs and do not yet work efficiently. Their current

implementations are not designed to be compliant and still

have a high risk of not being implemented safely. The number

of cybersecurity attacks is currently unprecedented. It creates

enormous problems in the future that must be repaired.

“Before data is out on the street, it is better to assess and adapt

fast.

There are also many smarter ways to optimize collaboration.

It would be best if you adapted to the model of the high

performing IT organization, working in value streams,

according to DevOps. Secure and compliant by default.”

Says de Vries.

The costs for a digital transformation quickly recouped
Especially when you first start helping with the cost side of a

company. “Everyone will be confronted with high digitization

costs in the coming months. We can often quickly provide

insights on what can be done much cheaper and more

efficiently. Our Cloud assessment e.g., provides you with

advice on where you can save costs and which investments

you can or should make to earn back even more in the long

term.”

The choice for a digital transformation depends on
which angle one comes
De Vries says: “Is the goal cost optimization? Then we can do

a scan, looking at how you set up Cloud subscriptions, what

your cloud spend is, and how cloud native your software

architecture currently is. Based on this, we can advise you

on the measures to take that save costs. For example, by

adjusting your architecture, optimizing functionality, and

using the technology already there, we can make smart

changes to your software so that you can adopt native cloud

functionalities and no longer have to choose for expensive

options. Think about setting up more efficient plans for your

virtual machines or making some software that utilizes the

serverless capabilities of the cloud. In the cloud, you pay per

use. That’s different compared to the billing you have been

used to form your datacenter or hosting provider. We can also

show you exactly when you have recouped the investment.

Architectural changes can often be recouped in 3 months or

half a year, depending

on the size, of course.”

007

008 TRANSFORMATION

When it comes to collaboration, DevOps, and remote
engineering, you need to look at how teams can work
together more effectively and efficiently
If you are adopting DevOps tools like Azure DevOps or Github

as a service, it would be best to make your teams work smarter

together. Smart collaboration and ease of CI / CD setups are

a few examples. It’s the crucial moment you can embrace

DevOps principles. You will significantly increase your

efficiency by actually doing continuous deployment and

bringing your software to production several times a day.”

"Everything is going remote; there is no reason to be in the

office. Unfortunately, that is sometimes still in the minds of

people. Fortunately, we can do Everything remotely."

“Where one normally has a software development team in an

office, these developers now work from home. It is shifting

from local engineering to remote engineering. Offering many

opportunities, overlooked with an office mindset. You can

now have a larger talent pool you can draw from since locality

is not an issue. You can develop software 24/7 at lower labor

costs. Azure DevOps, GitHub, Visual Studio Online, and Azure

Cloud are useful services to support that. With this technology,

you can work worldwide. “The tooling for remote engineering

is simply available, but unfortunately, it is still not mainstream

for many companies. Today, hosting your software develop-

ment tools yourself is not efficient and productive anymore.

Just purchase the already available SaaS product, then you

don’t have to manage the infrastructure anymore yourself,

and you can use that time to create value for your customers.”

say’s de Vries.

Xpirit has been successful in setting up and guiding
companies towards the Cloud for more than five years
They have gained a lot of knowledge and experience in the

field of what does and does not work and learned a lot from it.

By learning from mistakes, they can protect customers from

this. “Everyone has the right to make their own mistakes, but

sometimes it is beneficial to know what you will encounter in

advance. The choice is yours. Do you want to experience it

first before you run into it, or do you learn it from someone

else?”

Xpirit is ideally suited to help with the knowledge injection you

need now. They do not pull it out of your hands, which creates

a dependency, but come to help with the knowledge that is

now needed to immediately start working faster and more

efficiently, after which your teams can all ‘swim themselves’.

Say’s De Vries: “Instead of taking everyone out of the water,

we will teach your team how to swim best in this pool.

Because of the experience we have gained over the years at

banks, insurance companies, and ISVs, we have gathered quite

some insights into what works and what doesn’t. e.g., the

compliance requirements and laws that come up every time.

We now know how to set up Azure in such an environment,

compliant with requirements, such as SOC 2 Type II, Cobit,

ISO and SOX, etc. We even made standard solutions for it.”

Adopt & Embrace
“Where are you now? Look back and decide what you want to

keep and what you want to throw away. Don’t go back to what

was. The only way is forward. It’s your chance. Go for it. With

our knowledge and expertise, we are happy to help you look

retrospectively at how the transformation has been for you

thus far and where the opportunities are for you. Companies

that say we want to, adopt and embrace, are the digital

winners of the future”, says de Vries.

Marcel de Vries
Chief Technical Officer

"You are the master of your own destiny and success in
life. It is all the result of your own actions and choices
made in life. Never blame others, but look at how your
own behavior and actions bring you where you are and
define who you are."

https://pages.xpirit.com/xpirit-customer-stories

https://xpirit.com/xpiriter/marcel-de-vries/

https://twitter.com/marcelv
https://www.linkedin.com/in/marcelv/
https://github.com/vriesmarcel
https://pages.xpirit.com/xpirit-customer-stories
https://xpirit.com/xpiriter/marcel-de-vries/

XPRT. Magazine N°

10/2020

009

Encouraging
Inner Source

There are many things that developers can argue about. Tabs vs spaces, vim vs emacs,
the position of ‘{‘ after an if statement – and don’t get us started on variable names.
However, one thing that unites developers is the love of solving problems and the joy you
get from a particularly well executed solution. I can’t remember the number of times
I’ve got a bit of code just right and I spend the next 10 minutes just switching a toggle on
and off to re-run that bit of code and delight in how well it works. This is usually the point
when you go show it off to your team-mates. The best software engineers love to share
and love to get better at the craft of writing software.

Author Martin Woodward (Director of Developer Relations - GitHub)

Many times, this is how open source

projects start. You work on a problem

at home, come up with a solution you

like so you post it to GitHub. Before you

know it, someone else looking for the

solution to a similar problem discovers

your solution and tells you about an

issue they found, and ideally a sugge-

sted fix that you can pull from them that

makes your code better.

If you think about open source projects,

it’s amazing that they work at all.

A collection of individuals around the

planet all working in different locations,

different timezones, often speaking

different languages and using the

software to solve a problem in different

applications all with different business

needs and different deadlines. And yet

it does. 99% of the applications we see

deployed today contain some open

source, and even more amazingly

80-90% of the code you ship is made up

of your open source dependencies with

10-20% being the code that you wrote.

But inside your organization, you also

have lots of shared code and shared

logic. It might be how you validate and

format customer reference numbers,

common logic for talking to in-house

developed services or Terraform code

used to deploy an application into

production. And yet often we find we

are better at sharing code with random

strangers on the internet than we are

with the team sitting upstairs in your

own company. This is why many leading

companies like Microsoft, Google, IBM,

NASA and more turn to inner source

practices to support sharing inside their

organizations.

What is ‘inner source’
Inner source is the sharing of know-

ledge, skills and code inside your

organization using open source style

workflows. Easy to say – but what does

that actually mean in practice?

It means providing systems inside your

organization to allow people to share

with each other. It can be as simple

as a file share or a SharePoint site, but

with modern tools we can do better

than that. For years we’ve had scalable

source control systems inside most

companies.

However these source control systems

are typically configured with restricted

read/write access. Only the teams who

need access to source control have it

and they typically guard that access

jealously. Inside a company, when a

developer gets access to source control

it traditionally was always read/write

access and there would be much

grumbling when the ‘dumb’ team from

across the building checked in some

change which broke your build and

stopped your team from being its usual

awesome self that day. It is a maxim of

any enterprise that the further a team

is from your team in the org chart or

geographically, the more likely they are

to do ‘dumb’ things. When you realise

this is true in every company and in

every team you work in you quickly

realise it can’t in fact be true – maybe

it’s communication challenges that are

to blame. Also, why are the processes

in place in your organization such that

a team is able to mistakenly block you

from working?

”Our new GitHub Verified Partner status shows that GitHub
and Xpirit work together to help customers both on the
GitHub platform as well as keeping our strong position in
Azure DevOps.”

010 TRANSFORMATION

By adopting open source style

collaboration inside the organization,

you set up a version control system

that is distributed. You have permissive

read access but keep write access

restricted to the maintainers of that

code (i.e. the same small core team

as before). Others in the company

can read the source code of everyone

else, take a fork of it and then send

over a pull-request if they would like to

suggest some changes and have them

reviewed by the team who maintain

that component. GitHub is obviously

particularly well suited to supporting

these types of workflows as you can set

your projects as private or shared with

anyone in your organization and then

easily control the behaviour of forks and

pull requests – note that this is still all

private to your organization. You are just

following the workflows of open source,

with the crucial difference that you are

not making the code public to your

competitors.

It turns out that inside our companies,

we also have many teams that are

geographically distributed. They are

working on different project and often

have different deadlines. There are

many more similarities and lessons we

can learn from working in the open

that we can apply to cross-company

collaboration with inner source.

It’s not just setting up version control

to allow sharing, and indeed to make it

so that sharing by default becomes the

norm inside the company. You want

to look at the contribution funnel to

understand how to inner source and

open source projects work, see

Figure 1: The Contribution Funnel.

With inner source and open source

projects, the vast majority of people will

just consume a shared component.

This is perfectly natural and to be

encouraged, however you want to

maximise the number of people coming

into the top of the contribution funnel.

Therefore discoverability is important –

how do people find shared components

inside your organization? Again, GitHub

has tooling built in to help this but if you

are implementing inner source using

other tooling then you need to pay

close attention to discoverability. Even if

you are using GitHub, are you providing

a clear ReadMe file that helps people

identify what the project is about and

help them find and consume the code

easily? Are they able to navigate the

code and scripts to find what they want

to re-use?

A small percentage of the consumers

contribute back time. That might be

telling you about issues / bugs, helping

document areas or even telling their

colleagues about your component and

advocating for it. Therefore you need

to think about how you help maximise

the number of people coming down

into that funnel. How do people find out

how to contribute time in a useful way

to you, what information do you need

to capture in a bug / issue etc, where

do you most need help? You also want

to be welcoming to these people as

they come in so that they feel part

invested in the project and the internal

community around it.

A small percentage of the people

contributing time will contribute code.

Again – how can you maximise that

funnel? You want to make sure that you

are responsive to pull requests, you

want to make sure any coding guide-

lines are documented so folks know

how you would like code contributed.

You want to make sure you have an

easily repeatable build environment

with clear and easy to reproduce

dependencies. Ideally you should also

have an automated CI build set up that

runs on every change but also runs

every time someone send over a

Figure 1: The Contribution Funnel

CONSUME / Use, fork, follow, favorite

CONTRIBUTE TIME / Log bugs, add documentation

CONTRIBUTE CODE / Bug fixes, tests, new features

XPRT. Magazine N°

10/2020

011

pull request with a suggested code

submission – that way the person

contributing code gets instant feedback

if the code compiles, passes your tests,

meets your quality bar and is ready for

human review.

And finally, of the people contributing

code, only a small percentage will help

maintain that code going forwards.

It may be that you want to strictly

control access to the list of maintainers

to people on your team – and that is

fine. But understand that if you choose

to do that then you are forcing the other

group to permanently work on a fork of

your codebase which means you will

end up with diverging codebases over

time. So you should ask yourselves

what is in the best interest of your

organization and your shareholders and

take the decisions about joint ownership

based on that. Remember – it’s not your

team that owns the code. You are paid

to maintain it on behalf of the company

and its shareholders who are the people

that own it.

Having all the tooling in place to

support inner source is great, but that

is no good unless you have the culture

in place to change how people work.

As we mentioned, developers naturally

love to share cool things so you

have that working in your favour.

However there are emotional barriers

in place that often hinder sharing.

People feel a strong sense of ‘owner-

ship’ of source code. Often times they

are worried about the judgement of

colleagues across the organization

about the quality of that code which

might make them hesitate to share it.

They might worry about their ability

to share knowledge with-in an

organization without getting intro

trouble. They might also not want to pay

the teamwork tax of communicating

with others or taking dependencies

on other teams that outside their

managers direct reporting line and

sphere of influence.

Therefore, as an organization you need

to strive to build an economy of sharing

with-in the company. You need to

positively encourage individuals and

teams that share and highlight their

achievements. You should also look at

your incentives for your engineering

teams. When rewarding them, do you

look at what impact they have had alone

or do you also look for evidence about

what impact they have had on other

teams and what work they have done

that has built on the work of others?

By making those questions part of your

core incentive model you not only

encourage teams to find opportunities

to work with each other you also

encourage them to highlight the fact

they have worked with other teams

rather than trying to take all the credit.

This ensures that all the people involved

feel that they have been recognised and

are getting rewarded.

By encouraging a culture in your

organization that rewards collaboration,

that allows developers and ops teams

to learn from each other and share best

practices you also build a culture that

has a growth mindset and that is always

looking to learn, to get better and to

improve. Not only is that exactly the

sort of place that I want to work, you’ll

find it’s the kind of company culture

that will attract and retain lots of high

performing talent. More importantly,

it definitely makes work a lot more fun

and rewarding. I highly encourage you

give inner source a try.

Martin Woodward
Director of Developer Relations, GitHub

”If you want to put a bit of sparkle into
your @GitHub Actions.”

At Xpirit we are extremely proud to announce

we achieved the first official github Verified Partner

status in Europe.

Don’t hesitate to contact us if you like to know

more about how we can help you transform your

organization towards DevOps!

https://twitter.com/martinwoodward
https://www.linkedin.com/in/martinwoodward/
https://github.com/martinwoodward

012 TRANSFORMATION

013

XPRT. Magazine N°

10/2020

Running 30 year old software
as a cloud native SaaS solution
with Docker and Kubernetes
on Azure
For over four decades, students aspiring to become seafarers on one of the world’s many ships,
either as a navigator on the ship’s bridge, or chief in the engine room, have studied and honed
their skills on Kongsberg’s simulators. Believing that knowledge is instrumental to safe and
cost-efficient operation, Kongsberg has strived to remove the limitations inherent in the students
operating environment to enable their customers, the instructors, and educators, to create any
training scenario. With the help of the simulators, the instructor can create the most vivid and
challenging experience for the students, such as groundings, collisions, communication blackouts,
system failures, or a hundred-year storm.

AuthorS Gullik Anthon Jensen (Technology Director @ Kongsberg Digital), Roy Cornelissen (Consultant @ Xpirit, working with

Kongsberg since 2017) & Sander Aernouts (Consultant @ Xpirit, working with Kongsberg since 2017)

The maritime industry is transforming, just like the transformation from sail to steam, or from the compass to GPS, the future

of the maritime industry is autonomous ships, green shift, and remote operations. The educators are not only faced with this

challenge of transformation but also the problem of digitalization. Students now take instant access to digital services for granted.

To bridge this gap, Kongsberg is deploying a new platform using cloud technology to deliver traditional simulation training

in a new and different way. By combining proven and loved simulators customers are confident and comfortable with and new

cloud-native technology, simulators become even more accessible anytime and anywhere for students. Students can now keep

building their competency outside the classroom and be as prepared as possible for the challenges that lie ahead.

We call this platform K-Sim Connect, a journey that started in 2017 by moving Kongsberg’s engine room simulator (ERS) to the

cloud. In this article, we will share the challenges we faced, the solutions that we have chosen, and the lessons we learned.

Moving a 30+-year-old software to the cloud
Kongsberg created the engine room simulator over 30 years ago and up until this point had only been installed on-site at

costumers. We aimed to bring the engine room simulator to the cloud without having to change it too much to enable both

on-site and simulation as a service delivery models.

Kongsberg’s engine room simulator simulates the engine room of a specific ship model. It thus allows students to learn, for

example, how to perform a cold start or emergency shutdown without physically being in the engine room of the ship.

Students perform a specific exercise, such as an emergency shutdown, and the simulator tracks their performance as part of

an assessment. Instructors use this assessment as a pass/fail criteria for classes and specific certifications.

1 https://azure.microsoft.com/en-us/support/legal/sla/api-management/v1_1/

Figure 1 shows a typical screen of the client application.

The engine room simulators consist of many of these screens.

Each screen represents specific controls that are in the actual

engine room of the simulated ship model. On a customer site,

these digital screens can be replaced by a physical replica of

the ship’s engine room to allow for an even more immersive

learning experience.

To understand what it takes to bring this simulator to the

cloud, you must understand the basics of how the engine

room simulator works.

The engine room simulator is a client/server application where

the simulation of the state of the ship’s engine room runs on

a server application (called simulator in figure 2). The students

connect to this server through a client application (see

Figure 1). First, the client and server perform a handshake

process to determine the range of ports used for further

communication. Next, the client and server exchange several

messages over this range of ports.

Figure 2: ERS topology (simplified)

Figure 2 assumes both applications run on a single computer.

Still, it is also possible for multiple clients to connect to a single

server in the same network as part of a collaborative exercise.

Since the engine room simulator has a client-server style

architecture and it already supports running a distributed

setup. So the most straight forward way of bringing the engine

room simulator to the cloud was only to move the server part

(simulator in Figure 3).

Figure 3: Moving the ERS to the cloud

The rest of this article will cover the three main challenges

we ran into bringing the 30+-year-old engine room simulator

to the cloud.

The 1st challenge: containerization
The engine room simulator was built over 30 years ago,

well before the age of containers. Our challenge was to run it

on-demand, and in the cloud, so we decided to put the

simulator in a Docker container. Containerization did,

however, pose some challenges, for example, the code used

low-level Win 32 API calls with C++, it uses arcane constructs

such as “/etc/services”, and relies on Windows Registry

settings. These Windows-specific constructs meant we had

to use Windows Server Core containers, which are some of

the largest Docker images that exist. Also, when we started in

2017, the Windows container community was small (it still is),

and official support in Docker related open source projects

was simply not there. But containers did fit our needs

perfectly, so we decided to try and use Windows containers to

bring Kongsberg’s engine room simulator into the cloud era.

The 2nd challenge: the internet
After successfully running the engine room simulator in a

Windows container, we faced another challenge.

Since Kongsberg built the engine room simulator well

before “the cloud” even existed, its distributed installation

option assumed that the clients and server were at least on

the same local area network (LAN), meaning that there are

no firewalls in the middle. This assumption posed a challenge

because the engine room simulator uses a proprietary

communication protocol that dynamically allocates ~200

ports as part of the initial handshake process.

014 TRANSFORMATION

Figure 1: engine room simulator screen

SimulatorUser Interface

Simulator

K-SIM Connect

User Interface

XPRT. Magazine N°

10/2020

015

Figure 4: Tunneling over HTTPS Websockets

To overcome this challenge, we needed the help of the

vendor, who made this communication protocol. They made

a specialized tunnel for us that tunneled all messages over

HTTPS using a single WebSocket connection. This tunnel

allowed us to connect the client and server application over

the internet.

The 3rd challenge: on-demand simulation
We were now technically able to run the engine room

simulator in the cloud and to connect to it over the internet.

But to run simulations as a service, we still needed a way for

students to start simulation anytime and anywhere using

the Azure cloud. There were several container orchestrators

available, but in 2017 already, Kubernetes had the largest

community and was getting adopted by the major cloud

vendors. However, when we started, Windows containers in

Kubernetes was still in beta. Windows containers in Kubernetes

became generally available in 1.15.0 (June 19th, 2019).

Initially, we chose AKS engine to provision our Kubernetes

cluster in Azure. AKS engine is the tool that Microsoft uses

under the hood to provision AKS clusters, and since we knew

Microsoft was working on supporting clusters with Windows

nodes, we felt this was the best approach available to us.

AKS engine generates the required templates and script to

provision a cluster, but you end up with VM’s that you have to

manage yourself.

Recently Microsoft started officially supporting multiple node

pools in AKS, which means that you can also have Windows

nodes, although the Windows part of this feature is still in

preview at the time of writing.

Figure 5 shows a simplified topology of how we utilize

Kubernetes to run simulations as a service in the cloud.

There are three main components involved in providing our

simulation as a service solution to the students.

We have a portal where the students can, amongst other

things, select an engine room model they want to train on

and choose an exercise they want to run. We have a WPF

application that runs on the student’s computer, starts the

simulator client, and configures it to connect to the simulator

running in the cloud. And we have a scheduler component

that creates the required Kubernetes resources to run the

simulator in the cloud and makes it accessible to the

simulator client running on the student’s computer. All three

components use a single SignalR Hub to communicate.

To start a new simulation in the cloud, a student will select

an exercise in the portal and request to run it. Doing this s

ends a message to our scheduler, which will then create all

required Kubernetes resources. The scheduler will then publish

a message to the WPF application on the student’s computer,

which starts the simulator client application and configures it

to connect to the simulator running in our Kubernetes cluster.

There is a lot more going on behind the scenes to run these

simulations in the cloud, but explaining all of that would be an

article on its own. Instead, we will share what we learned from

this journey.

Figure 5: Kubernetes topology (simplified)

Simulator

K-SIM Connect

User Interface

Websockets
HTTPS

Connect Portal

Student 1

Launch client & connect

Launch simulator

Ingress
Controller

P
u

b
lic

 IP

Create Pod
Create Service
Create Ingress
Return URL

Student n

SignalR Hub

Schedular

Service n Simulator Pod n

Service 1 Simulator Pod 1Ingress 1

Ingress n

Roy Cornelissen
Distributed architecture, mobile development, creative

”Software development is the creative art of problem
solving. Trying to squeeze more ‘productivity’ out of
developers by over formalizing and industrializing
processes is like asking Picasso to paint-by-number
because it yields more masterpieces faster.”

Sander Aernouts
Microsoft application lifecycle management (ALM)

”Start by doing what’s necessary; then do what’s
possible; and suddenly you are doing the impossible.”

016 TRANSFORMATION

What we learned
Besides the technical challenges we had to overcome, the

engine room simulator was surprisingly well suited to run in

the cloud. Its client-server architecture allowed us to move

the server to our Kubernetes cluster and move the client to

the student’s computer.

Windows containers are different from Linux containers.

Windows containers are simply a lot larger in size, especially

if you need the full Windows Server image like us. There are

also challenges with the Windows Server version you run on

your Kubernetes node and the Windows Server version of the

docker image, and these have to align to some level.

Using beta/preview versions of Kubernetes because we

needed Windows container support meant we did face some

technical difficulties, but Kubernetes itself works well with

Windows containers, especially after version 1.15.0. And the

concept of Kubernetes, scheduling container workloads

on-demand, is a perfect fit for the problem we had to solve:

running simulations on demand. So, we choose to work with

the restrictions and challenges that come with using beta/

preview features over building an orchestrator. We firmly

believed that official Windows support was on its way. So not

having to develop an orchestrator certainly paid off, especially

now that Kubernetes is officially supporting Windows nodes,

and Azure Kubernetes Service (AKS) is close to officially

supporting windows node pools as well.

It is possible to bring old software to the cloud and even

change the way you offer it to your customers without doing

a complete rewrite. Containerization with Windows containers

helped this transition even with software that is 30+ years old

and still allows Kongsberg to offer both models, on-demand

simulation, and on-site installation.

”Windows containers are different
from Linux containers.”

What the future holds
The global market already embraces the K-Sim Connect

platform and is in the early phase of adopting simulation

beyond the training centers and schools. What seemed like a

threat to the experienced instructors only a few years ago

has turned into enthusiasm and discussions about the

opportunities. Today the engine room simulator is our first

cloud simulator in operation, but we will not stop there.

We are already working on bringing navigation simulators and

applications like radar training, navigation, and maneuvering to

the cloud. Kongsberg is transforming the industry of maritime

simulation and training and is leading the way to the future.

Together with customers, students, instructors, legislators, and

even competitors, we will continue this journey in confidence

to unfold our collective future.

Gullik Anthon Jensen
Lead digital transformation Maritime Simulation,
Kongsberg Digital

“Today we are transforming the maritime training
industry by empowering every seafarer to acquire new
skills and competency, so they can build the future of
maritime industry.“

https://xpirit.com/xpiriter/roy-cornelissen/

https://xpirit.com/xpiriter/sander-aernouts/

https://www.linkedin.com/in/gullikjensen
https://twitter.com/roycornelissen
https://www.linkedin.com/in/roycornelissennl
https://www.github.com/roycornelissen
https://twitter.com/sanderaernouts
https://www.linkedin.com/in/sanderaernouts
https://github.com/sanderaernouts
https://xpirit.com/xpiriter/roy-cornelissen/
https://xpirit.com/xpiriter/sander-aernouts/

XPRT. Magazine N°

10/2020

017

The case
About a year ago, the management team of the fictional

airliner, “Not Invented Aire” (NI-Aire), decided it was time to

move their IT systems into Azure. They came to this decision

because of ever-increasing friction between development

teams and the datacenter operator. A few years ago, they

accepted that a dedicated operations team made all changes

to IT infrastructure and that it was acceptable for this to take

a few weeks to complete. Today, they are adopting ever more

DevOps practices. DevOps Teams must be enabled to deploy

both software and infrastructure changes whenever needed,

and sometimes they need changes multiple times per day.

Their datacenter operator is unable to comply with this need.

Fortunately, we can accomplish this by using Azure. So, all

teams are now moving their workloads into the cloud. Before

the migration started, NI-Aire workers had some questions:

 How do we connect with remaining on-premise systems?

 How do we deal with security and compliance?

 How can we share cloud knowledge and best-practices?

 How can we get insights into our Azure consumption?

How do we connect with remaining on-premise
systems?
Microsoft recommends using a Hub & Spoke architecture

to provide connectivity from cloud services to on-premise

systems. A Hub & Spoke architecture looks like the diagram

shown in Figure 1.

Instead of having to create a VPN connection from every

team’s subscription to the on-premise network, the Hub &

Spoke architecture uses a single connection from a shared

network, the Hub network. It uses Azure ExpressRoute1 to

create a link from the Hub network to the on premise

datacenter. The teams can then create their own (Spoke)

networks and connect them to the shared Hub network by

peering2 them.

In this example, two teams have peered a Virtual Network

with the Hub network. Each team uses dedicated Azure

subscriptions.

 Connectivity with on-premise systems

We solved the connectivity problem, but unfortunately, we

also introduced two new ones. One of the issues that arise

from adopting this architecture is the management of the

shared Hub network and the ExpressRoute connection;

which team owns these resources?

Flight 1 to the cloud
is now ready for
boarding
Migrating your company IT into the Azure cloud is a complicated and time-consuming process.
You need to think about many things such as: team collaboration, cost control, connectivity
to on-premise systems, governance and compliance, education on how to use the cloud, and
still facilitate efficient onboarding of DevOps teams. In this article, you will read about my
experiences in helping an airliner transform from using a classic datacenter into Azure.

Author Loek Duys

1 https://azure.microsoft.com/en-us/services/expressroute/
2 https://docs.microsoft.com/en-us/azure/virtual-network/virtual-network-peering-overview

On-premises network Hub virtual network

Platform team

Spoke virtual network

Product team 1

Spoke virtual network

Product team 2

Figure 1: Hub and Spoke architecture

https://azure.microsoft.com/en-us/services/expressroute/
https://docs.microsoft.com/en-us/azure/virtual-network/virtual-network-peering-overview

018 TRANSFORMATION

Another problem is the use of IP address ranges assigned to

the virtual networks. We need to make sure that teams don’t

use overlapping ranges, as this would create traffic routing

issues. Dealing with IP address ranges and subnets can be

complicated. So, ideally, we would like to help teams by

provisioning this bit of infrastructure for them. This way, they

don’t need to worry about this complexity.

Managing shared resources

To manage shared resources, NI-Aire chose to create a

separate team; named the Platform team. This team consists

of Product team members (part-time) and some dedicated

people. It is dedicated to facilitating the other teams (Product

teams) in their cloud migrations, not just by provisioning

shared infrastructure, but also by offering hands-on assistance,

sharing best-practices, and education in cloud concepts.

Costs for shared resources are divided across all teams equally.

Product teams can make changes to shared infrastructure by

making pull requests on the Infrastructure as Code definitions,

so the Platform team does not become a bottleneck and

ownership is shared between stakeholders.

Provisioning infrastructure for teams

The Platform team chose to use Azure Blueprints3 for required

infrastructure deployments. With Blueprints, we can use

Azure Blueprints to deploy resources, like virtual networks and

ExpressRoute, that adhere to the company’s standards and

requirements. The main difference between using Blueprints

and using regular ARM templates for deployments is that

Blueprints allow us to set up a specific environment.

For example, it enables us to create resources and resource

groups inside particular subscriptions.

How do we deal with security and compliance?
Coming from a situation in which the datacenter operator

managed virtual machines, DevOps teams needed some

guidance on operating the machines they used in the cloud.

For instance, they needed help with the automated installs

of anti-malware software and security patches. The Platform

team applies the ‘carrot & stick’ analogy.

The carrot

The ‘carrot’ entices Product teams to use tools provided by

the Platform team. For example, all Product teams are free to

choose how they deploy their infrastructure. But to help them,

the Platform team provides a set of validated ARM templates

they can use. For instance, they provide a template to deploy a

virtual machine preconfigured with an anti-malware extension.

The Platform team should provide hands-on assistance to the

Product teams.

The stick

When a Product team decides they would rather use

PowerShell to deploy their virtual machine, it should still have

anti-malware software. But what if they forget to add it?

This is where the ‘stick’ comes in. We use Azure Policies to

check whether all Azure resources comply with company

standards. For instance, we created a Policy that checks

whether anti-malware is deployed to all Windows virtual

machines. We combined the Policy with a remediation that

automatically deploys an anti-malware solution to a VM if

needed. A Policy can flag incompatible resources on the

dashboard, remediate incorrectly configured resources, or

prevent them from being deployed at all. We also use Policies

to enforce resource naming guidelines, to deny deployments

to unwanted Azure regions, and to apply role-based access

control policies (RBAC). The Platform team does not only

assign Azure resources, but they also assign Policies to

Product team subscriptions. They do this by using Azure

Blueprints, another nice feature of the Blueprints service.

 Dealing with security and compliance

How can we share cloud knowledge and best
practices?
If we’re not careful, the Platform team can quickly become a

bottleneck when all Product teams depend on them to share

knowledge of Azure services and deliver shared templates.

In reality, Product teamswill soon become familiar with the

Azure resources they use, so logically, it should be them

sharing their knowledge. This way, the Platform team only acts

as a knowledge broker, not as the ‘single source of knowledge’.

To give an example, at NI-Aire, Product team 1 wanted to use

Azure API Management, and Product team 2 was already using

it. The Platform team was aware of this, and connected the

two groups and urged them to cooperate. In the end, Team 2

produced an ARM template, and Team 1 was able to use this

for their deployments.

3 https://docs.microsoft.com/en-us/azure/governance/blueprints/overview

This Photo by Unknown Author and is licensed under CC BY-SA-N

https://docs.microsoft.com/en-us/azure/governance/blueprints/overview

Figure 2: Platform subscription

Figure 3: Collaboration on ARM templates

XPRT. Magazine N°

10/2020

019

Optimized use of resources

Having every team deploying resources can introduce another

problem: The software architecture requires API’s to run inside

a virtual network to allow communication with on-premise

systems. For security reasons, these back-end API’s cannot be

exposed to the internet directly. Currently, only one SKU of API

Management enables virtual network integration: Premium.

When compared to other Azure resources, the Premium SKU

of Azure API Management is relatively expensive. At this time, it

costs around €2300 per month. In terms of workload capacity,

the Premium tier is oversized. Therefore, if every Product team

would run an instance, NI-Aire would pay a lot of money for

many under-utilized resources.

Internal open-source

To mitigate the problem of under-utilized resources, the

Platform team deployed API Management into the same

subscription that runs the Hub virtual network (see Figure 1),

named the Platform Azure subscription (see Figure 2).

To deploy API Management, they used the ARM template

that Product team 2 created earlier, combined with additions

required by Product team 1. The problem of under-utilized

resources is now mitigated by sharing the resource amongst

Product teams. Again, this created another problem.

Who owns this resource? Will the Platform team be

responsible for fixing issues and dealing with outages?

This doesn’t fit well in the DevOps paradigm of ‘You build it,

you run it’. We need a way to enable Product teams to operate

API Management and other shared resources inside the

Platform Azure subscription while keeping the Platform team

in control over their Azure subscription.

At NI-Aire, we solved this issue by creating an ‘internal open-

source’ Azure DevOps repository to store ARM templates.

This repo contains ARM templates that are ‘pre-approved for

deployment’ by the Platform team. They comply with security

guidelines and other best practices. Any Product team can

change these templates by doing a pull-request. A member

from another team can then review the change and approve

it. Platform team members monitor changes periodically as

well. After the change is approved, a new version of the ARM

template will be made available for use by publishing it to a

package feed. Having Product team members as part of

the Platform team enables quick approval for changes.

The Platform team chose to use the Azure DevOps universal

package feed4 as the source to post and download ARM

templates, as it comes with built-in version support.

This process, which is shown in Figure 3, is designed to

enable teams to collaborate on Azure ARM templates,

without introducing a bottleneck.

Template repository

Over time, the shared ARM template repo grew to contain

lots of templates; for example, to deploy virtual networks and

ExpressRoute. This way, they can be used both by regular

deployments and Blueprint assignments. Over time, teams

added many useful templates:

 Virtual networks that provide connectivity between services

 Virtual machine with anti-malware software and automated

updates

 Log Analytics, with solutions that support VM updates

 Azure Key Vault, for application and deployment secrets

 Managed Identity, to securely connect between Azure

resources

 And, of course, API Management, to securely consolidate

and expose APIs.

The shared repository became the first place where Product

teams looked when they needed to deploy a new resource

into Azure. If the template wasn’t there yet, they would

contribute a new one to the repository.

4 https://docs.microsoft.com/en-us/azure/devops/artifacts/quickstarts/universal-packages

Platform Azure subscription

 Virtual Network

 ExpressRoute

 Api Management

Platform team

Createpull request Validates changes Reviews pull
requestApproves pull

request
Publishes new
templates package
version

Product team
member

CI Pipeline
Platform team

member

Member of
different team

CD Pipeline

https://docs.microsoft.com/en-us/azure/devops/artifacts/quickstarts/universal-packages

020 TRANSFORMATION

Education

Some of the NI-Aire team members had no prior experience

in working with the Azure cloud and needed technical training.

Again, the Platform team cannot become a bottleneck,

so they wrote a curriculum of online training they could take.

For example, Microsoft offers a free online introduction to

Azure5. Pluralsight also offers some excellent training for

various levels of expertise.

Of course, it is also essential for teams to learn from each

other. Product team members regularly held ‘Lunch and

Learn’ sessions, during which they would share something

they learned with the rest of the teams.

The Platform team created videos in which they explain

the ideas behind the tools. For example: ‘How network

connectivity works’ and ‘Why do we have an ‘Internal

open-source’ template repository?’. This way, how to get

started and quickly take off into the cloud can be explained

to new team members .

 Share cloud knowledge and best-practices

Conclusion
I believe that the key to a successful cloud migration is

to enable Product teams with a self-service platform.

They need to be able to autonomously provision well-

configured infrastructure in whatever way they see fit,

and to be able to efficiently collaborate with other teams.

With this article, I provided you with some insights into

how we solved these challenges at NI-Aire. If you need

help migrating your organization into the cloud, feel free

to reach out. We’ll help you board, so you can quickly

take off into the cloud.

5 https://docs.microsoft.com/en-us/learn/paths/azure-fundamentals/

Loek Duys
Cloud software architecture

”Ten years from now, there will be
no ten year old software.”

https://xpirit.com/xpiriter/loek-duys/

https://docs.microsoft.com/en-us/learn/paths/azure-fundamentals/
https://twitter.com/lduys
https://www.linkedin.com/in/loekd/
https://github.com/loekd
https://xpirit.com/xpiriter/loek-duys/

XPRT. Magazine N°

10/2020

021

The Xpirit Learning
Experience –
Beyond individual
learning
In this constantly changing world full of new technology and tools, training is an important
investment for companies and individuals. To stay up to date, and thus relevant, following training
is essential. But which training is the right choice? Because there is only so much budget, and
training is expensive. In many cases, video training is a great alternative. Platforms such as
Pluralsight, LinkedIn Learning or EdX provide many courses at very reasonable prices.
This training is great for gaining knowledge on a certain topic. However, it is rarely targeted at you,
or the challenges you and your team face on a day-to-day basis. Furthermore, these types of
training are targeted at the individual. Many companies are moving towards a DevOps Way of
working and want to train their teams as a whole. Usually the way to try to accomplish this is to
let all members of the team follow the same video training. While this improves the individual skills,
it does not improve the team skills. We found we had to cover some ground on this level as well,
and came up with the Xpirit Learning Experience.

Authors René van Osnabrugge & Rob Bos

In this article we will explain what we have learned as well as the journey towards this Learning Experience. How it started with

the organization of a worldwide event that led to local spinoffs and eventually to a learning experience.

Global DevOps Bootcamp as an ignition for the Xpirit Learning Experience
In 2017 we, Xpirit (together with Solidify), organized the first Global DevOps Bootcamp. The Global DevOps Bootcamp (GDBC)

is a global event, targeted at people who want to learn about DevOps. People joined a local venue at 25 locations worldwide to

participate in the bootcamp. Because we wanted to ensure everybody had the same learning experience, we created an event

out of the box. This means we provided keynotes on video, development machines provisioned in the cloud, all the necessary

infrastructure, lunch and content in the form of challenges.

Instead of letting people do these challenges alone, the first thing we asked participants to do was to create teams. Together they

could compete against their local competitors (other teams) and their global competitors (people in other venues), by providing

some simple game mechanics and a scoreboard.

This was a huge success, and 3 years later, in 2019, we organized the third edition of GDBC, with 10,000 participants and 95 local

venues. A lot has changed in terms of size and organization, but the concept still remains. We provide an event out of the box,

where teams compete to complete challenges.

One of the great feedback items we received in 2019 was the cooperation between people with different backgrounds and the

low threshold to get started. Since they had to work together, the team could be made up of different skills and maturity levels.

This meant that we had a mix of developers, engineers,

people who had never used the Azure Portal, never seen

Azure DevOps or who came from a different cloud provider to

see how things work in a DevOps setting. We even had scrum

masters joining us to help out the various groups!

Lessons learned

With GDBC we learned a number of things. We used that

information to make the edition of the following year even

better and applied these lessons learned in the Xpirit Learning

Experience.

People do not work together automatically

When you put five different people in a team and give them

each a user account, they start working alone. To overcome

this, we provided the team one user account, so they are more

inclined to work together. They still have an option to research

things on their own or in pairs (highly encouraged), but to act

with that information they need to use the shared account.

This enables the team members to work as an actual team,

where they need to communicate about the directions to the

solutions they are taking.

Without a why, people do not get it

In the first year we made the basic mistake of not providing

a good storyline. The challenges the teams needed to

complete were great, but the rationale was missing.

So the logical question arose, why is this relevant? Why should

I learn this? In the latest edition we changed this. We used a

virtual company, PartsUnlimited, and built a storyline.

This virtual company wants to move to the cloud to fight the

continuously increasing competition. Of course, this comes

with a set of common, as well as not so common challenges.

These challenges are based on what we see in the field at our

customers. These real-life examples and proposed solutions

made great material for the story of PartsUnlimited.

By creating a storyline, supported by videos with some

sketches, people gained a better understanding of the

rationale. By steering the choices towards a technology,

without providing all the answers, teams were more inclined

to research and find solutions.

Step-by-step Instructions have a reverse effect

Of course, it is great to follow a step-by-step instruction to

complete a certain task or challenge, but the question is:

Do people learn enough by following detailed instructions?

Our experience is that true learning does not happen by

following an instruction. You only learn by finding the solution

yourself. In GDBC we provide the teams with guidance

and links, so they can find the solution. Only after trying

themselves, the proctor can decide to give them a step-by-

step solution. For GDBC we created videos that show a

recording of these step-by-step approaches. We saw that

this made a huge difference in the behavior of the teams.

Don’t punish requests for help

Everybody likes a bit of competition. Because of the nature

of the Global DevOps Bootcamp, we created a Global

scoreboard where teams could see their ranking compared

to other teams all over the world. This brought out the best in

some teams, but we also saw the opposite. Teams were afraid

of asking for help, because that would cost them valuable

points. Since the event is about learning and not about

being the best, we made sure teams were not punished for

requesting help, but instead were motivated to do so.

By changing the mechanics of the scoreboard we made this

happen. For example, instead of deducting points when asking

for help, we gave points when a challenge was successfully

completed.

The Platform

While the first edition of the Global DevOps Bootcamp was

still very manual, the last edition was a complete self-service

experience. People received a user account, a custom-made

website with the challenges and they were guided through the

storyline. The platform behind this experience takes care of

starting and stopping challenges, causing disruptions or rolling

out fixes and doing validation. This platform became the

foundation of the Xpirit Learning Experience.

The Xpirit Learning Experience
After the last edition of GDBC we evaluated all our learning

experiences and feedback, and found that this way of learning,

learning by experience, is a great way to quickly get up to

speed with new technology. We started to refine our back-end

platform a bit more and created the Local DevOps Bootcamp.

This event is a replica of the Global DevOps Bootcamp.

The only difference is that it is not a globally but a locally

organized event. For example, to train some teams at one of

our customers. Again, this worked out really well, and it was

time to take it even one step further.

When one of our customers, Maersk, asked us to train their

development teams for their cloud transition, this was the

perfect opportunity to take this next step. Many of the people

already followed some individual training, but, as we saw

earlier, this training did not cover all Maersk-specific topics.

The teams needed to start working in a Maersk-specific

context, using the knowledge they gained through the

individual training courses. This is how the Xpirit Learning

Experience came to life.

The Xpirit Learning Experience follows the same principles

as the Global DevOps Bootcamp

 Learn as a team, and not as an individual

 Learn by doing, without the hassle of setting up all

pre-requisites

 Guide people through a storyline that explains the why

 Make it a full self-service experience

 Make it fun and engaging by using different formats

throughout the day.

022 LEARNING VNEXT

”Learning by experience, is a
great way to quickly get up to
speed with new technology.”

XPRT. Magazine N°

10/2020

023

The Experience

To make it a bit more tangible, let’s use the Maersk

implementation as an example and show what the Xpirit

Learning Experience can offer, regardless of the content.

Agenda

Let’s start by explaining the agenda:

 Global Keynotes

To set the context and inspire participants, we start the day

with a recorded Global Keynote. We have many great speakers

within Xpirit and have splendid connections throughout the

field. To cover the relevant topics for the learning experience,

we make sure to select a speaker that is a subject matter

expert on these topics. A recorded keynote makes it easier

to arrange schedules and logistics, but also allows the event

to be fully virtual.

 Local Keynote

In the local keynote, the organizational context can be further

expanded. Why are people in the room, what is the vision of

the company and what does the company expect to get out

of this? It also is an introduction to the challenges ahead.

 Divide in Teams

After the keynotes it is time to divide into different groups.

People can be physically together in a room, or use a virtual

channel to work together. In the case of Maersk we used

Microsoft Teams to put people together in a Teams channel.

 Work on challenges

When teams start working on the challenges, they should

be able to do so in a self-service mode. The proctor at hand

provides them with the URL of the challenges website and the

credentials to log in. This enables the people to do everything

themselves. They can look at the video content that guides

them through the storyline. They can start challenges, they

can automatically validate challenges and they can even fix

challenges by pressing a button. Each challenge has a step-by-

step instruction video attached, which they can use when they

get stuck. The Learning Experience platform takes care of this

by guiding them through the different challenges and allowing

them to follow the storyline.

 Learning Review

When a team completes a challenge, this is always followed

by a Learning Review. This will help the team to reflect and it

prepares them for the next challenges. In many cases we ask

the team to fill in a short form that answers a few simple ques-

tions. What have you learned, what would you do differently,

what would you do if this would happen?

 Share experience

After a set amount of time, we bring back the people and let

them share their experiences by using the learning review.

After that, they can start working on the next challenge.

Completing Challenges
Now that we have seen what concepts of the Learning Ex-

perience, let’s walk through a number of screens to give an

impression of how this looks.

After a team has received the URL and their credentials, they

can log in to a custom-made challenges portal. From here

they can go through the various modules. A module is a

chapter of our story in which we cover a specific topic, for

instance Cloud, Infrastructure as Code or Git. The Module

describes the rationale, the storyline, and always starts with a

funny sketch that sets the scene.

Each module consists of multiple challenges. The challenges

serve as different chapters in a module. Challenges are created

in such a way that the team accumulates knowledge from the

start. Instead of asking people to create a solution for the end

state, we let them experience why the end state is needed.

Let’s explain this by means of an example. Many companies

use a self-service portal to provision cloud resources. A logical

choice is to educate people on using the self-service portal.

However, that will not explain them WHY the self-service

portal is needed. By letting them walk the line, they come to

realize the rationale. In this case, people do not have rights to

execute scripts on production. So, a portal that automates this

for them is useful.

Within a challenge, the team needs to complete certain tasks

to successfully finish that challenge. The tasks describe a

specific problem that the team needs to overcome. The “Links

& Information” section contains all necessary resources the

team needs to fix the challenge. When all tasks have been

completed, the team can hit the [Validate Challenge] button.

This is where the platform kicks in again. The backend

validates whether all tasks have been completed successfully

and gives direct feedback to the team.

When a team is not able to complete the challenge, they

can watch the step-by-step video that guides them through

the process. When this is also not sufficient, the proctor can

enable the [Fix Challenge] button. This rolls out fixes to their

environment, so they look at a solution.

After that the team can fill in the Learning Review and prepare

for the next challenge.

Available content
The Learning Experience can be set up with any custom mo-

dules and challenges needed for your organization.

We currently have modules available for:

 Azure Fundamentals

 Azure Automation with ARM Templates and Terraform

 Git Fundamentals

 Observability and Monitoring

 Azure DevOps with repositories, work items, pipelines and

artefacts

 Site Reliability Engineering

024 LEARNING VNEXT

Virtual DevOps
Bootcamp
We also offer our Bootcamp as a

virtual event. We have great experiences

by providing virtual training and

Bootcamps. While many people are still

reluctant to try this, several customers

already told us their virtual experience

has been fantastic.

025

XPRT. Magazine N°

10/2020

Challenges
website

Service Bus Controle Plane Container Webshop Azure Azure DevOps
Enterprise

Application

Azure Active Directory

Every module starts with the fundamentals and builds up to

more advance topics. Of course, it is all set up to learn things

by doing them.

The platform
To make all this work, the platform that we created is quite

extensive as it can accommodate a global event like GDBC

with 10,000 people. To give you a brief insight, we will go

over the main elements of the platform.

On the right you can see the items we provision for each

team: a fully functioning DevOps environment that produces

a working web shop running on Azure, with an App Service

Front End and an Azure SQL database for storing the data.

In Azure DevOps a team project will be generated that has

the source code for the application as well as the CI/CD

pipeline. They even get their own Azure Artifact Feed and

service connections to Azure and Snyk Security Tooling, so

they have the same environment as they would have in a real

enterprise environment.

The left-hand part of the diagram shows the elements that

provide the platform that is used. The attendees can log in

to the Challenges Website and see their teams information,

read the backstory on why they need to do something,

and all the documentation and video training they need.

They can start, stop, validate a challenge and we even give

the proctors the option to fix their environment in case they

get stuck. For example: when they trigger a challenge to start,

the challenges website puts a message on the service bus.

The control plane will pick up this and schedule a pod with

the necessary docker containers and settings it needs to act

inside the team’s environment.

Using Docker gives us the flexibility to use any development

stack to act in the environment and makes sure we can

operate independently from other challenges and teams for

example.

Conclusion
The Xpirit Learning Experience is targeted at teams that want

to learn as a team. The content can be fully customized and

targeted at you and your organization. Because it is fully

self-service and uses video to guide teams through a storyline,

the training can be followed by small and large groups, and

can easily be run multiple times. This decreases the training

costs per person dramatically. People who followed GDBC or

one of the other Learning Experiences are very enthusiastic

about it. It teaches them something by doing it, without the

hassle of setting things up on a real live platform, with real life

scenarios.

René van Osnabrugge
ALM, DevOps, Continuous Delivery,
Initiator and Inspirator

”To truly innovate, do not optimize
what you do, but rethink what you
should do.”

Rob Bos

”Where do you want
to be?”

https://xpirit.com/xpiriter/rene-van-osnabrugge/

https://xpirit.com/xpiriter/rob/

https://twitter.com/renevo
https://nl.linkedin.com/in/renevanosnabrugge
http://github.com/renevanosnabrugge
https://twitter.com/robbos81
https://www.linkedin.com/in/bosrob/
https://github.com/rajbos/
https://xpirit.com/xpiriter/rene-van-osnabrugge/
https://xpirit.com/xpiriter/rob/

026 TECH

A few years ago being a full stack

developer meant that you were able

to do some frontend and backend

development. However, today a lot

more is required than programming

frontend and/or backend solutions.

Nowadays you also need to know your

fair share about cloud infrastructures,

network communications, security,

CICD tooling and other tools. Having to

spend a lot of time in all these domains

distracts you from the reason why we

went to autonomous teams: delivering

business value faster. Dapr (Distributed

APplication Runtime) is a new, open-

source project created by Microsoft

that tries to come up with an answer to

these problems.

Dapr focuses on providing developers

with tools that work on the cloud as

well as on edge, and make it easier to

build resilient microservices. It does

this by handling a number of things for

developers such as state management,

publish/subscribe, secret management,

service invocation, and it even has a

built-in actor model. Dapr wants to

create this in a way that works with

greenfield microservice landscapes, but

it can also be used in existing services

to remove external dependencies.

In addition, Dapr also works with any

programming language or developer

platform.

How does Dapr work?
Dapr is an open-source framework

for building resilient microservices.

It achieves this by providing developers

with a set of building blocks that can

be accessed over HTTP or gRPC.

Because it only depends on these

transport protocols, developers are

free to choose from any language to

develop their microservices.

These building blocks support the

fundamental features required by

developers to build microservices,

for instance service invocation, state

management, and publish/subscribe

messaging.

Dapr abstracts these building blocks

behind standard HTTP or gRPC calls,

as mentioned before. It does this by

providing your service with a sidecar

that is accessible over HTTP or gRPC.

A sidecar is a utility container in the Pod,

and its purpose is to support the main

container. Generally, the sidecar

container is reusable and can be paired

with numerous types of primary

Making Microservices
easier with Dapr

In today’s day and age, building software is all about how fast you can bring value to the market.
Microservices and autonomous teams that build and run these services are an excellent fit for

this goal because these teams have no dependencies on others for building and releasing their
software. Microservices can be hard to build, though. You may be taking away some complexity

of working together on the same solution with several teams, but they also add complexity in
several ways. One of these things is the fact that if your teams want to be autonomous, they will

need a lot of skills spanning a wide range of technologies.

Authors Chris van Sluijsveld & Geert van der Cruijsen

027

XPRT. Magazine N°

10/2020

containers. Because of this abstraction

behind a sidecar, you as a developer

don’t need to be bothered with

implementing plumbing logic, for

example, publishing an event on a

message bus. Your microservice just

makes a call to a local API exposed

by the Dapr sidecar to post an event

on a message bus. The actual imple-

mentation of the message bus is not

relevant to the microservice. It can

even be swapped over time. The Dapr

runtime/sidecar is configured with

information about which logical

implementation you want to use behind

the Dapr APIs.

This abstraction means that publishing

an event is as simple as making a call to

http://localhost:51987/v1.0/publish/

MyArticleEventTopic. Another example

is the use of persisted data. If you need

to store state inside your microservice,

you just make a call passing the

payload to the state-store running at

http://localhost:51987/v1.0/state.

Using Dapr

There are two ways to use Dapr.

The first way is to run it locally on your

machine. A prerequisite for this is the

availability of Docker. After installing

Docker, you install the Dapr CLI, and

after it has been initialized, it makes sure

that the Dapr runtime is available for

you to use.

The second way to use Dapr is to install

it in Kubernetes. You can use the Dapr

CLI installed locally to install Dapr into

your Kubernetes cluster. However, it is

advisable to install Dapr into your cluster

using the available Helm chart.

Programming with Dapr

While Dapr provides a nice abstraction

around the functionality implemented

under its API, there are also SDK’s

available to program. For example, to

implement the actor model in a

microservice you can use the provided

SDK.

What features does Dapr offer?
State Management

State Management is a core capability

of almost every service. Dapr provides

you with a very simple-to-use state

management API that allows you to do

either an Http GET or POST request

to retrieve or store key/value pairs into

storage. As a developer, you don’t have

to think about what type of storage is

underneath. Currently, Dapr supports

Redis, Azure CosmosDB, AWS

DynamoDB, GCP Cloud spanner,

and Cassandra.

You might think that storing data is not

that hard to implement yourself.

However, in a distributed application

there are several challenges you will

have to consider, for instance

consistency and resiliency. In addition

to removing these challenges, Dapr

offers a number of built-in retry policies,

including an exponential back-off

pattern. Consistency is also a

configuration option in which you can

choose between eventual consistency

and strong consistency. Eventual

consistency is the default option.

Secret Management

All applications and microservices need

secrets. Dapr offers an easy way for

developers to access and use secrets in

their microservice. Secret management

is performed in the same way as state

management, without the developer

knowing the underlying implementation

of the secret management. It can be

Azure Keyvault or Hashicorp Vault or

another supported secret store.

The developer just calls the local

secret API and Dapr takes care of the

abstraction to the actual secret provider.

Service Invocation

Calling other services from a service

is also a common scenario. Knowing

where each service is running can

become quite a burden. Dapr can also

take this problem out of your hands.

Dapr allows you to make calls to the

Dapr runtime on localhost using

HTTP such as GET http://localhost:

<daprPort>/v1.0/invoke/<appId>/

method/<method-name>. Dapr will

route this request to the Dapr runtime

of the other service and send back the

response from the service in a similar

way.

Like state management, Dapr adds

several features for performing service

invocations, which means that as a

developer, you don’t need to worry

about cross-cutting concerns such as

doing retries and enabling distributed

tracing over multiple services.

“Dapr is a portable, event-driven
runtime that makes it easy for
developers to build resilient,
microservice stateless and stateful
applications that run on the cloud
and edge and embraces the diversity
of languages and developer
frameworks.”

028 TECH

Publish / Subscribe

Publish / Subscribe is a common communication pattern in

event-driven architectures and microservices architectures.

The concept of publish/subscribe using Dapr is the same as

with state management & service invocation. You can make an

HTTP POST towards localhost to publish a message to a topic

like this: http://localhost:<daprPort>/v1.0/publish/<topic>

To subscribe, you first have to do an HTTP GET to your Dapr

runtime to let the Dapr runtime know you want to subscribe

http://localhost:<appPort>/dapr/subscribe with the topic in

the request body. After subscribing the Dapr runtime will do

a POST towards your service to deliver the messages POST

http://localhost:<appPort>/<topic>

Distributed Tracing

Finding problems in distributed applications is a difficult and

tedious task. Debugging through a monolithic application is

already hard, but adding multiple services in the mix makes

the puzzle so much harder.

Because Dapr handles all communication through the Dapr

sidecars, it is quite easy to collect all the telemetry data from

this communication and gather it at a central location.

Dapr can export all telemetry using the “Open Telemetry”

standard, so various tracing tools such as Jaeger, Zipkin,

and Application Insights can use it.

When you send this telemetry to one of these tracing tools,

it makes finding problems in communication a lot easier.

It also provides you with a good overview of how your app is

communicating, as seen in the following picture. You can get

these insights without writing any specific telemetry code

yourself, which makes it very easy to obtain insight into the

performance and logging of your microservices.

Chris van Sluijsveld
Digital disruptions using Microsoft Cloud Technology

”There is no room for complacency in the fast-moving
digital world.”

Geert van der Cruijsen
Digital Kickstarter, Enabler for companies to embrace
DevOps, Cloud & improve their engineering culture

029

Actors

‘Dapr Actors’ is an implementation of the virtual actor design

pattern. As with any software design pattern, the decision

whether to use a specific pattern is made on the basis of the

presence of a fitting software design problem.

Dapr actors are virtual, which means that their lifecycle is not

tied to their in-memory representation. When a Dapr actor is

first called with a message to its actorID, it is automatically

activated and an actor object is created. These objects are

removed, and garbage is collected after some period.

When the actor is called again, a new object is created with

the state of the previous actor object. Dapr uses the

configured state management to store the Dapr actor state.

Because the Dapr framework handles the state management

and the (re)activation of the actors, as a developer you don’t

need to implement this yourself.

Future / Conclusion
At the time of writing this article, Dapr is available as a

preview product. A lot of features are already available to try.

Dapr decreases the complexity of building microservices.

It provides a framework that abstracts the complexity delivered

by a distributed microservices application. Because Dapr

leverages containers and Kubernetes, it becomes portable

across cloud and edge computing.

Dapr provides an extensive set of building blocks, ranging

from service invocation and state management to pub/sub

messaging between services. It also provides a virtual actor

SDK, as well as distributed tracing between services. With the

growing active community of people using and extending

Dapr, more building blocks will become available in the future.

Starting with Dapr is quite simple. There is an extensive range

of samples to get you going. Since everything works with

HTTP, you can add it to almost any application written in any

language. Give it a try and see how Dapr can help you build

better microservice applications.

XPRT. Magazine N°

10/2020

+ 3

43,8 ms

682,6 ms 36,9 ms

1,1 s

678,1 ms

5 ms

/v1
OTHER

/daprint ...l/CallLocal
OTHER

ordergenerator orderapi shippingcostsservidce

loyaltyservidce

1
Instance

1
Instance

2
Instances

1
Instance

36 calls

38 calls

40 calls

40 calls

22 calls

83 calls

https://xpirit.com/xpiriter/chris-van-sluijsveld/

https://xpirit.com/xpiriter/geert-van-der-cruijsen/

https://twitter.com/CvSluijsveld
https://www.linkedin.com/in/cvs79
https://github.com/cvs79
https://twitter.com/geertvdc
https://www.linkedin.com/in/geertvandercruijsen
https://github.com/geertvdc
https://xpirit.com/xpiriter/chris-van-sluijsveld/
https://xpirit.com/xpiriter/geert-van-der-cruijsen/

030 TECH

031

XPRT. Magazine N°

10/2020

Data Modeling and
Partitioning in
Azure Cosmos DB
Azure Cosmos DB is a massively scalable NoSQL database that works very differently than
traditional relational database platforms. Rather than storing data as rows in a table with a defined
schema, Cosmos DB stores data as JSON documents in a container, and there’s no schema to
define. There’s much to learn, and for many newcomers to Cosmos DB, the learning process starts
with data modeling and partitioning. How should you structure your model? When should you
combine multiple entity types in a single container? Should you denormalize your entities?
What’s the best partition key for your data? In this article, I’ll explain the key strategies for modeling
and partitioning data effectively in Cosmos DB, so that you can achieve the best scale and
performance for your database.

Author Lenni Lobel (Microsoft Data Platform MVP)

Many of us are familiar with relational databases like SQL

Server and Oracle. But Cosmos DB is a NoSQL (non-relational)

database – which is very different, and there are new ways

to think about data modeling. To ease the learning curve,

we’ll use a real-world relational data model that you’ll feel

comfortable with, and then we’ll refactor it as a non-relational

data model for Cosmos DB.

First, there are many ways to describe Cosmos DB, but

for our purposes, we can define it as having two primary

characteristics: it is horizontally scalable, and it is non-

relational.

Horizontally scalable
In Cosmos DB, you store data in a single logical container.

But behind the container, Cosmos DB manages a cluster of

servers, and distributes the workload across multiple physical

machines. This is transparent to us – we never worry about

these back-end servers – we just work with the one container.

Cosmos DB, meanwhile, automatically maintains the cluster,

and dynamically adds more and more servers as needed,

to accommodate your growth. And this is the essence of

horizontal scale.

Each server has its own disk storage and CPU, just like any

machine. And that means that – effectively – you get

unlimited storage and unlimited throughput. There’s no

practical limit to the number of servers in the cluster, meaning

no limit on disk space or processing power for your Cosmos

DB container.

Non-relational
Think about how things work in the relational world, where

we store data in rows. We focus on how those rows get joined

along primary and foreign keys, and we rely on the database to

enforce constraints on those keys.

But in the non-relational world, we store data in documents

– that is JSON documents. Now there’s certainly nothing you

can store in a row that you can’t store in a JSON document, so

you could absolutely design a highly normalized data model

with documents that reference other documents on some key,

like so:

032 TECH

Unfortunately, this results in a very

inefficient design for Cosmos DB. Why?

Because again, Cosmos DB is horizon-

tally scalable, where documents that

you write to a container are very likely

to be stored across multiple physical

servers behind the scenes:

Although it is technically possible to

enforce relational constraints across

a cluster of servers, doing so would

have an enormous negative impact

on performance. And well, “speed and

performance” is the name of the game

in Cosmos DB, with comprehensive

SLAs on availability, throughput, latency,

and consistency. Reads and writes have

extremely low, single-digit millisecond

latency – meaning that they complete

within 9 milliseconds or less in most

cases. So, in order to deliver on these

performance guarantees, Cosmos DB

simply doesn’t support the concept of

joins, and can’t enforce relational

constraints across documents.

Suitable for relational workloads?
With no joins and no relational

constraints, the obvious question

becomes: “Is Cosmos DB suitable for

relational workloads?” And the answer

is, yes, of course it is. Otherwise, the

article would end right here.

And when you think about it, most

real-world use cases are relational.

But because Cosmos DB is horizontally

scalable and non-relational, we need to

use different techniques to materialize

relationships between entities. And this

means a whole new approach to desig-

ning your data model. In some cases,

the new methods are radically different,

and run contrary to best practices that

some of us have been living by for

decades.

Fortunately, and I hope by the end of

this article you’ll agree, while it is very

different, it’s not really very difficult. It’s

just that, again, you need to think about

things differently when designing your

data model for Cosmos DB.

WebStore relational model
Our sample database is for an

e-commerce web site that we’re calling

WebStore. Here is the relational data

model for WebStore in SQL Server:

This data model is relatively small,

but still representative of a typical

production model. It has one-to-many

relationships, like the ones from

Customer to CustomerAddress and

SalesOrder. There is also a one-to-one

relationship from Customer to

CustomerPassword, and the Product-

Tags table implements a many-to-

many relationship between Product

and ProductTag.

Container per table?
It’s very natural at first to think of a

container in Cosmos DB like a table.

Your first instinct may be to say, OK,

we have nine tables in our data model,

let’s create nine containers in Cosmos

DB.

Now you can certainly do this, but

again, this would be the worst possible

design, being horizontally scalable and

non-relational. Cosmos DB will expose

no way to join documents, or to enforce

relational constraints between them.

Therefore, this approach will not only

perform poorly, but it will be very

difficult to maintain and program

against.

What’s the answer? Let’s get there one

step at a time.

Embed vs. reference
Let’s start with customers and their

related entities. JSON is hierarchical,

so we don’t need separate documents

for every type. So now think about the

distinction between one-to-many and

one-to-few. It’s reasonable to impose

an upper limit on the number of

addresses a customer can have,

and there’s only one password per

customer, so we could combine all of

those into a single document.

XPRT. Magazine N°

10/2020

033

This has immediately solved the

problem of joining between customers

and their addresses, and passwords,

because that’s all “pre-joined” by

embedding the one-to-few relation ship

for addresses as a nested array, and the

one-to-one relationship for the

password as an embedded object.

Simply by embedding, we’ve reduced

three relational tables to a single

customer document.

{
 "id" : "...",
 "title" : "...",
 "firstName" : "...",
 "lastName" : "...",
 "emialAddress" : "...",
 "phoneNumber" : "...",
 "creationDate" : "...”,
 "addresses" : }
 {
 "addressLine1" : "...",
 "addressLine2" : "...",
 "city" : "...",
 "state" : "...",
 "country" : "...",
 "zipCode" : "..."
 }
],
 "password" : {
 "hash" : "...",
 "salt" : "...",
 }
}

On the other hand, we would certainly

not want an upper limit on the number

of sales orders per customer – ideally,

that is unbounded (while the maximum

document size is 2 MB). The orders will

be stored in separate documents,

referenced by customer ID.

The rules for when to embed and

when to reference are simple, as we’re

demonstrating. One-to-few and

one-to-one relationships often benefit

from embedding, while one-to-many

(particularly unbounded) and many-to-

many relation ships require that you

reference. Embedding is also useful

when all the entities are typically

queried and/or updated together

(for example, a customer profile with

addresses and password), while it’s

usually better to separate entities that

are most often queried and updated

separately (such as individual sales

orders).

The next – and arguably most important

– step is to choose a partition key for

the customer document. Making the

right choice requires that you under-

stand how partitioning works.

Understanding partitioning
When you create a container, you

supply a partition key. This is some

value in your documents that Cosmos

DB groups documents together by in

logical partitions. Each server in the

cluster is a physical partition that can

host any number of logical partitions,

each of which in turn stores any number

of documents with the same partition

key value. Again, we don’t think about

the physical partitions, we’re concerned

primarily with the logical partitions that

are based on the partition key that we

select.

All the documents in a logical partition

will always be stored on the same

physical partition; a logical partition will

never be spread across multiple servers

in the cluster. Ideally, therefore, you

want to choose a partition key whose

value will be known for most of your

typical queries. When the partition key is

known, then Cosmos DB can route your

query directly to the physical partition

where it knows all the documents that

can possibly satisfy the query are stored.

This is called a single-partition query.

If the partition key is now known, then

it’s a cross-partition query (also often

called a fan-out query). In this case,

Cosmos DB needs to visit every physical

partition and aggregate their results into

a single resultset for the query. This is

fine for occasional queries, but adds

unacceptable overhead for common

queries in a heavy workload.

You also want a partition key that results

in a uniform distribution of both storage

and throughput. A logical partition

can’t exceed 20 GB, but regardless, you

don’t want some logical partitions to be

huge and others very small. And from a

throughput perspective, you don’t want

some logical partitions to be heavily

accessed for reads and writes, and not

others. These “hot partition” situations

should always be avoided.

Choosing a partition key
With this understanding, we can select

a partition key for the customer

documents that we’ll store in a custo-

mer container. The question is always

the same: “What’s the most common

query?” For customers, we most often

want to query a customer by its ID,

like so:

SELECT * FROM c WHERE c.id =

'<custId>'

In this case, we want to choose the

id property itself as the partition key.

This means you’ll get only one

document in every logical partition,

which is fine. It’s desirable to use a

partition key that yields a large

spectrum of distinct values. You may

have thousands of logical partitions for

thousands of customers, but with only

one document each, you will achieve

a highly uniform distribution across the

physical partitions.

We’ll take a very different approach for

product categories. Users visiting the

website will typically want to view the

complete list of product categories.

Then, they’ll want to query for all the

product that belong to a category that

interests them, which is essentially a

query on the product category

container with no WHERE clause.

The problem though, is that would be

a cross-partition query, and we want to

get all our category documents using a

single-partition query.

The trick here is to add another

property called type to each product

category document, and set its value

to “category” in every document.

Then we can partition the product

category container on the type

property. This would store all the

category documents in a single logical

partition, and the following query could

retrieve them as a single-partition

query:

SELECT * FROM c WHERE c.type =

'category'

This same is true of tags; users will

typically want a full list of tags and

then drill to view the products

associated with interesting tags.

034 TECH

This is a typical pattern for short lookup

lists that are often retrieved all at once.

So that would be another container

for product tags, partitioned on a type

property where all the documents have

the same value “tag” in that property,

and then queried with:

SELECT * FROM c WHERE c.type =

'tag'

Many-to-many relationships
Now for the many-to-many relationship

between products and tags.

This can be modeled by embedding an

array of IDs on one side or the other;

we could either store a list of tag IDs in

each product, or a list of product IDs

in each tag. Since there will be fewer

products per tag than tags per product,

we’ll store tag IDs in each product

document, like so:

{
 "id" : "...",
 "categoryId" : "...",
 "sku" : "...",
 "name" : "...",
 "description" : "...",
 "price" : "...",
 "tagIds" : [
 "...",
 "...",
]
}

Once the user chooses a category, the

next typical query would be to retrieve

all the products in a given category by

category ID, like so:

SELECT * FROM c WHERE

c.categoryId = '<catId>'

To make this a single-partition query, we

want to partition the product contain

on the product category ID, and that

will store all the products for the same

category in the same logical partition.

Introduction denormalization
Now we have a new challenge, because

product documents hold just the

category ID and an array of tag IDs –

it doesn’t have the category and tag

names themselves. And we already

know that Cosmos DB won’t join related

documents together for us. So, if we

want to display the category and tag

names on the web page – which we

do – then we need to run additional

queries to get that information.

First, we need to query the product

category container to get the category

name, and then – for each product in

the category – we need to query the

product tag container to get all the tag

names.

We definitely need to avoid this,

and we’ll solve the problem using

denormalization. And that just means

that – unlike in a normalized data

model – we will duplicate information

as necessary in order to make it more

readily available for queries that need it.

That means that we’ll store a copy of

the category name, and copies of the

tag names, in each related product

document:

{
 "id" : "...",
 "categoryId" : "...",
 "categoryName" : "...",
 "sku" : "...",
 "name" : "...",
 "description" : "...",
 "price" : "...",
 "tags" : [
 {
 "id" : "...",
 "name’" : "..."
 },
 {
 "id" : "...",
 "name" : "..."
 }
]
}

Now we have everything we need to

display about a product self-contained

inside a single product document.

And that will work great, until of course,

there’s a category name or tag name is

changed. Because now we need a way

to cascade that name change to all the

related copies in order to keep our data

consistent.

Denormalizing with the Change
Feed
This is a perfect situation for the

Cosmos DB Change Feed, which is a

persistent log of all changes made to

any container. By subscribing to the

change feed on the category and tag

containers, we can respond to updates

and then propagate the change out to

all related product documents so that

everything remains in sync.

This can be achieved with a minimal

amount of code, and implemented out-

of-band with the main application by

deploying the change feed code to run

as an Azure function:

Any change to a category or tag name

triggers and Azure function to update

all related product documents.

This lets us maintain a denormalized

model that’s optimized to retrieve all

relevant information about a product

with one single-partition query.

Combining different types
The last part of our schema are the

customer orders and order details.

First, we’ll embed the details into each

order as a single document for the sales

order container, because that’s another

one-to-few relationship between

entities that are typically retrieved and

updated together.

It will be very common for customers to

retrieve their orders using the following

query:

SELECT * FROM c WHERE

c.customerId = '<custId>'

That makes the customer ID the best

choice for the partition key. But before

we jump to create another container for

sales orders, remember that we’re also

partitioning customers on the customer

Product Category Product Tag

Product

Azure Function

XPRT. Magazine N°

10/2020

035

ID in the customer container. And unlike

a relational database where tables have

defined schemas, Cosmos DB lets you

mix different types of documents in the

same container. And it makes sense to

do that when those different types share

the same partition key.

We’ll combine customer and sales

order documents in the same customer

container, which will require just a minor

tweak to the customer document.

We’ll need to add a customerId property

to hold a copy of the customer ID in

the id property. Then we can partition

on customerId which will be present in

both document types:

Notice that we’ve also added a type

property to distinguish between the

two types of documents. So now, there

is still only one customer document

per logical partition, but each logical

partition also includes the related orders

for that customer. And this kind of gets

us our joins back, because now we can

retrieve a customer and all their related

orders with the following single-

partition query:

SELECT * FROM c WHERE c.id =

'<custId>'

Denormalizing with a Stored
Procedure
Let’s wrap up with one more query to

retrieve our top customers; essentially, a

list of customers sorted descending by

order count. In the relational world, we

would just run a SELECT COUNT(*) on

the Order table with a GROUP BY on the

customer ID, and then sort descending

on that count.

But in Cosmos DB, the answer is once

again to denormalize. We’ll just add

a salesOrderCount property to each

customer document. Then our query

becomes as simple as:

SELECT * FROM c WHERE

c.type = 'customer’' ORDER BY

c.salesOrderCount DESC

Of course, we need to keep that

salesOrderCount property in sync;

each time we create a new sales order

document, we also need to increment

the salesOrderCount property in the

related customer document. We could

use the change feed like before, but

stored procedures are a better choice

when your updates are contained to a

single logical partition.

Partition Key
customerId

Two copies of CustomerID

{
 "id" : "...",
 "customerId" : "...",
 "type" : "customer",
 "orderDate" : "...",
 "shipDte" : "...",
 "details" : [

 {
 "sku" : "...",
 :
}

{
 "id" : "...",
 "customerId" : "...",
 "type" : "salesOrder",
 "title" : "...",
 "firstName" : "...",
 "lastName" : "...",
 "emailAddress" : "...",
 "phoneNumber" : "...",

 "creationDate" : "...",
 "addresses" : [
 {
 "addressLine1" : "...",
 :
}

036 TECH

In this case, the new sales order

document is being written to the same

logical partition as the related customer

document. We can write a stored

procedure in JavaScript that runs within

the Cosmos DB service which creates

the new sales order document and

updates the customer document with

the incremented sales order count.

The big advantage here is that stored

procedures in Cosmos DB run as a

transaction that succeeds or fails as a

whole. Both write operations will need

to complete successfully or they both

roll back. This guarantees consistency

between the salesOrderCount property

in the customer document and the

true number of related sales order

documents in the same logical partition.

One last thing to mention is that this

is a cross-partition query, unlike of

our previous examples, which were

all single-partition queries.

Remember again that cross-partition

queries aren’t necessarily evil, as long

as they aren’t very common. In our

case, this last query won’t run routinely

on the website; it’s more like a “back

office” query that an executive runs

every now and again to find the top

customers.

Summary
This article has walked you through

the steps to refactor a relational data

model as non-relational for Cosmos DB.

We collapsed multiple entities by

embedding, and we support

denormalization through the use of

the Change Feed and stored

procedures.

We also combined customer and sales

order documents in the same container,

because they are both partitioned on

the same value (customer ID). To wrap

up the design, we can also combine the

product category and product tag

documents in a single “product meta-

data” container, since they are both

partitioned on the same type property.

That brings us to our final design shown

below.

Using a combination of non-relational

modeling techniques, we’ve reduced

nine tables into just three containers,

where majority of queries run by the

application are all scoped to a single

logical partition. This article has given

you the information you need to

succeed in designing the optimal

non-relational data model for your

next Cosmos DB application.

Partition Key

type

Product Tag

Product Category

Product Meta

Partition Key

customerId

Partition Key

categoryId

Customer
[{Customer Address}]
{Customer Password}

Product
[{Product Tag}]

Sales Order
[{Order Detail}]

Customer

Product

Lenni Lobel
Microsoft Data Platform MVP

"Specialized in Microsoft-based solutions,
with experience that spans a variety of
business domains."

https://twitter.com/lennilobel
https://www.linkedin.com/in/lennilobel/
https://github.com/lennilobel

037

XPRT. Magazine N°

10/2020

Feature toggles in
favor of continuous
deployment
Why you want feature toggles and what type of toggle to use? Feature toggles or feature flags
are techniques for hiding feature implementations from your customer until you want your
customer to experience your new feature. This technique helps to overcome all kinds of
challenges during your software development. There are many different types of feature toggles
and different ways to implement them. Depending on whether you build your own toggles or
use a framework, a number of toggles will be provided out of the box. Many frameworks also
support your custom implementation of a feature toggle. However, before using and building
your own toggles, it is essential to understand a number of possible scenarios and when to use
a particular toggle. This article will provide insight into a variety of toggles and how to choose
the most suitable toggle for your requirements.

Author Erick Segaar

038 CONTINUOUS INTEGARTION

Feature toggle categories
Feature toggles come in different shapes and sizes, and the

implementation can be anything you want it to be. You can

categorize your toggle in one of the following categories, each

of which has its distinct purpose and criteria;

 Release, this toggle can change per release and usually has

a life span of days to weeks. Once the code is deployed, you

don’t want to flip it because it might activate unwished code

or unexpected behavior.

 Operations, this toggle can be anywhere from short- to

long-lived, often managed by an operations group in order

to have a way to control software in a tested and controlled

manner.

 Experiment, this toggle is short-lived, and due to the nature

of experiments, you don’t want it to be activated too long

because it will distort the results of your experiment with

other code changes.

 Permission, you're probably already using this toggle to

provide access to a cohort or targeted user to use a

closed-down part of your software. The life span can be

anywhere from short- to long-lived.

It is important to understand what you want to do with your

toggle and what category it belongs to. This will help you to

understand what you are implementing and why you are

implementing a specific piece of code.

The following overview shows the various categories

with examples of some of the most frequently used

implementation types.

Feature toggle categories

Separating deployment from release
Although you are in full control of everything required to

develop your application in an ideal situation, the reality is

that quite often you’re dependent on other teams, products,

or schedules. The way we manage this traditionally is to have

meetings and agreements with all teams and products

involved. We agree upon a plan to deliver a product to our

customers when everything is finished, tested, and 100% ok.

Despite the fact that this looks great on paper with some

helpful “Gantt charts", it could not be further from the truth.

Not only are we humans bad in planning complex work, but

our environment is also changing continuously, and we

might have time to develop this new feature now, but in two

weeks’ time something else is likely to be more important.

All this time, the constraints you have with other teams,

products, and schedules need to be managed, and this time

cannot be used to develop more new and exciting features.

By separating the deployment of features from exposure to

your customers, you can mitigate the dependencies between

the technical part and the business part; i.e. between the

technical phase of deploying and shipping the product, and

the business phase of exposing and releasing new features.

By separating these phases, you enable yourself to keep

developing and deploy functionality independently from other

teams or products because it is hidden from your end-users.

The functionality of an ON/OFF toggle is a typical operation

toggle that gives you the ability to enable or disable the

feature, and would be a simple way to implement. While

developing your functionality, you can use the ALWAYS-OFF

toggle from the release category because you don’t want your

feature to be activated by accident. But when your part of the

work is finished, use a more dynamic toggle to activate it when

the business is ready for it.

Code branch management
When you work on features, there can be quite a time gap

between start and finish. During the development phase we

are often tempted to create a separate branch that allows us

to develop in isolation. Branching protects you from changes

by others or other teams because they ’won’t reflect into

your branch until you update it. However, the biggest pitfall is

that you are also delaying yourself from receiving feedback on

your changes. You especially want constant feedback on

big and complex changes that take a lot of time. And you

certainly don’t want to wait until the end, when you finish your

significant changes and realize the product has changed too

much to easily integrate it back into the master version.

Using feature flags allows you to wrap the new application

functionality that is under development. Such functionality is

“hidden” by default. You can safely ship the feature, even with

the unfinished work, because it will stay dormant during

production. By using this approach, called “dark launch,” you

can release all your code at the end of each development

cycle. You no longer need to maintain any code branch across

multiple cycles because of the feature taking more than one

cycle to be completed. Just keep working on the master

following trunk-based development together with your team.

A complex branching strategy is often over-engineered with

only a few people that truly understand it. Prevent merging

issues and follow the continuous integration principle by

continuing to work on the master branch instead of hiding

your work in a separate branch. Use an ALWAYS ON/OFF

toggle until you are finished so you can keep in sync with your

colleagues and enable fast peer feedback by exposing your

changes.

Deploy

Incomplete code

Release time

Performance

related

Manual circuit

breakers

Testing scenarios

Dynamic (User or

request based)

Targeted users

Defining cohorts

Dynamic (User or

request based)

On

Percentage

Short lived Short to long-lived Medium to long-livedShort lived

Kill-switch

Precentage

Time Window

Claims

Cookies

OperationsRelease Experiment Permission

039

XPRT. Magazine N°

10/2020

Testing in production
When you develop a new feature, you want to shorten the

feedback cycle from your customer as fast as possible.

Knowing that you are building the right thing right is an

advantage you get with short development cycles and fast

customer feedback. You can start to experiment and validate

the hypothesis you think your customers want.

Feature flags allow you to grant early access to new

functionality in production. For example, you can limit the

access to only development team members or some

internal beta testers. This technique is called “Ring-based

deployment,” and provides users with the full-fidelity

production experience instead of a simulated or partial one

in a test environment. It gives you the much needed and fast

feedback without the need for a production-like environment.

After all, this is always a lot of trouble to set up and maintain,

especially when you are handling personal data and need to

be GDPR-compliant, which is a struggle many organizations

are facing these days.

Use a PERMISSION TOGGLE implementation to combine the

newly developed feature with your claims system to grant

specific groups access to the functionality being developed

quickly. First set it for your development team and later extend

it to early adapters.

Flighting
After weeks of developing, testing, and validating our test

environments, the time finally arrives to release the world-

changing feature to customers. To obtain full exposure, your

marketing team sent an email to your customers so they can

all try out your new feature. This scenario is not uncommon

in the industry. However, all too often the result consists of

unresponsive webpages or customers facing long queuing

or no experience at all. Correct estimations of the number

of customers hitting your new feature and the required

underlying resources are hard to make. And we ’don’t want

to show up on the news with negative publicity.

By using a flighting mechanism, you can incrementally roll out

new functionality to your end-customers. Start by targeting

a small percentage of your user population and gradually

increase that percentage over time, after you have gained

more confidence in the implementation and the use of your

feature. When something goes wrong, only a small part of

your customer base would be affected, and you can monitor

the capacity of your resources closely while ramping up the

number of customers.

A typical flighting lifecycle starts as an ALWAYS OFF toggle.

When the feature is complete and ready to be exposed to your

customers, you can either use a PERMISSION toggle, if you

want to control who gains access, or a PERCENTAGE toggle

which you can ramp from 5% to 100% in as many steps as you

feel comfortable.

Instant kill switch
Your feature is available to your customers, and suddenly an

unexpected behavior arises that is costing the enterprise

money every second it is enabled. The error could come from

a part you control or a dependency upon another service.

For example, a payment service that you are requesting for

different payment options from a specific bank is returning

status 500 and giving your customers no option to pay as a

result.

When you are dependent upon externally controlled services,

it is advisable to think about how you want your application

to react when that service is down or behaving unexpected-

ly. After all, they are just another product like your own, and

mistakes and unwanted responses will occur. But even when

your application is entirely under your control, you want to

think about how you want your application to react in case of

errors. For example, when the authentication service of Netflix

is down, they grant access to everyone instead of blocking

everyone. From their perspective, they made a mistake, and

the customer should not have to pay for it, which could also

lose them business and reputation.

Although the toggle implementation is just a simple ON/OFF

toggle, the mindset and duration of that toggle are different

compared to the “Separate Deployment from Release.”

This toggle is an operational toggle intended to be controlled

manually when production needs it. A potent addition to this

toggle is to combine it with a circuit breaker strategy.

Success

Fail [under threshold]

Fail

Fail [threshold reached]

Call / raise circuit open

Reset timeout

Success

Closed Open

Half-Open

”A BIG BANG can turn out painful!
Continuous Deployments ease the
transition.”

040 CONTINUOUS INTEGARTION

Whenever a dependency returns an unexpected response

within a timeframe, the circuit breaker will trigger, i.e. toggle

the feature toggle. Doing this will prevent your application

from being affected by errors from the external service,

and your customers will enjoy your service even though the

service will probably show a certain level of degraded

performance or lesser functionality, but to prevent it from

being offline. In addition, you can give the remote service

some breathing space to recover or start-up additional

instances without being hammered constantly by your

application. Every X-amount of time, the circuit breaker will

try one or two requests to check whether the external service

is recovered. When the result is positive, the circuit breaker

will close, meaning the toggle will flip again, and all traffic

will flow to the external service, once again enabling full

functionality for your customers.

Selective activation
Think of a scenario in which you are developing a new feature

for every web browser. A custom implementation is needed

and your feature is dependent upon that implementation

to work correctly. You prioritized Chrome to be the most

important and want to expose it to be enabled, but only for

customers with the correct version of Chrome.

The focus on one implementation allows you to receive

production feedback fast and quickly for the part of your

feature that is finished. Moreover, you can expand the list of

supported browsers in the future. You could also use this to

inform your customers of the browsers that you support

with additional functionality.

Implementation-wise this toggle will validate whether the

’visitor’s web browser version occurs in a list of values stored

in the feature toggle.

Life-span
While there are all kinds of toggles, you can use it in different

scenarios. The life-span can vary from short-lived to very

long-lived. One thing that all toggles have in common is the

way you implement the toggle and that you eventually need

to remove the toggle.

"Savvy teams view their Feature Toggles as
inventory, which comes with a cost, and work
to keep their inventory as low as possible."
Martin Fowler

We start with our original code, and we decide that we need

a feature toggle. Next, we create the toggle, we think about

where to place it on the correct level and implement it as an

ALWAYS OFF toggle. Now, everything is set up to hide the

development of your new feature, and you can start building

it. Eventually, you can change your ALWAYS OFF toggle to

become an ON/OFF toggle and flip the switch so people can

experience your new feature. When your feature is running the

way it should run, and it has not been turned off recently, you

have your ALWAYS ON toggle, and now you can start removing

the old feature resulting in the removal of your feature toggle.

Monitoring
In addition to the technical implementation, you want to

monitor your application and the usage of your feature tog-

gle. Every time you enable a feature, you should treat it as a

deployment. Have an increased awareness of exceptions and

watch your monitoring closely to identify unwanted behavior.

You want to know whether people are using your new feature

and how many people are using it. If nobody is using your

feature, it will not send any exceptions either.

Original code

ON

OFF

Adding toggle

ON

OFF

Building your feature

ON

OFF

Flip the toggle

ON

OFF

Always on

ON

OFF

Remove old feature Remove the toggle

Overview feature toggle implementation

041

XPRT. Magazine N°

10/2020

Number of users over time that use the toggle

In the diagram above, you can see that the initial deployment

enabled our new feature, and we see an increase in the

number of users, limited to a particular control group.

Upon finding a bug, we close the feature down to solve it.

We fix the bug and re-deploy it and see the same control

group as an increasing activity. When we feel more confident,

we extend the feature to be available to more customers.

Eventually, the toggle is running in production for a time,

and you remove the feature.

Smells and pitfalls
The opportunities provided by feature toggles make you

think that this must be a silver bullet! Well, not exactly.

Feature toggles are a means to an end and not a goal in

itself. By not understanding the use and complexity of

feature toggles, you could do serious harm to your product.

The following section contains an unordered set of smells

and pitfalls that can help you recognize and understand

the risky situations we experienced during our years of

development.

Too many feature toggles

It is difficult to explain exactly what number is too many, but

this is a sign that something is not right in your understanding

or implementation. The amount can differ per product, team,

and experience. Keep track of all your toggles and keep the

number limited.

Fine-grained feature toggles

Fine-grained toggles give you a lot of control but also give you

many toggle combinations to test alone and in combination.

Keep toggles on entire features and keep them simple.

The fewer combinations you need to validate, the less prone

you are to making errors.

“The absence of errors is
not good enough.”

042 CONTINUOUS INTEGARTION

1 https://en.wikipedia.org/wiki/Strategy_pattern

Toggle on technical capabilities instead of business process

Feature toggles should be easy to translate to business

processes and capabilities. When you are implementing

technical toggles, they should end up in the hands of your

operator, or they should be very short-lived.

Same toggle used in multiple places

Toggles that are used in multiple places and that don’t have

having a single place of entry could indicate that you need to

place your toggle on a higher level, or maybe you need a

strategy pattern1 to inject behavior. This helps you to keep

a clear overview of where a toggle is used and reduces the

number of code paths.

Forgetting to describe what your toggle does

A description like: “This toggle routes traffic to the new score

calculator engine, when the toggle is off, the old legacy one

will be used and can cause latency bugs to appear.” It will work

so much better than a description like ft-calc-engine.

”A good convention is to enable existing or
legacy behavior when a Feature Flag is Off
and new or future behavior when it’s On.”
Martin Fowler

Toggles are technical debt

All toggles are by nature technical debt and should be treated

as such. They should be removed when they are no longer

needed. The removal of toggles is a continuous part of

refactoring your code and the cost you are paying for using

feature toggles.

Launching blindly

Launching blindly is nothing more than throwing your

application over the fence. Even when you deploy, turning

a toggle on or off without some kind of monitoring is

irresponsible, and you won’t know whether the deployment

succeeded.

Unseparated Control

When you manage your toggles from the same product you

are controlling, toggle management might be unresponsive

when a toggle enables and is harmful to memory or CPU.

However, you cannot turn it off now.

Long-lived toggles

By nature, long-lived toggles present technical debt and

should be removed. The longer a toggle is in your system,

the higher the risk of combining multiple toggles, adding com-

plexity to your code path.

Re-using a feature toggle

A feature toggle ’shouldn’t be re-used, it’s a one-time

implementation with history and auditing. Once it is

refactored out, you should not re-use the name because

this would only create confusion.

Conclusion
In this article, I have tried to provide an overview of a variety

of scenarios for applying feature toggling. There are many

more scenarios and they often involve chaos engineering

(i.e. the discipline of experimenting on a software system

in production in order to build confidence in the system’s

capability to withstand turbulent and unexpected conditions).

Although it is almost a textbook explanation of how to use

feature toggles, I often see this technique misused and thus it

undermines the confidence of the team and product owner.

As a result, they maintain the status quo of releasing once a

month or even less frequently. I deliberately stayed away

from the technical implementation; this depends heavily on

the framework you choose to work with or build your own.

If you want to have a starting point, you can take a look at

“Azure Application Configuration Feature management2.”

This gives you a number of out-of-the-box toggles, local use

of feature toggles, as well as a good cloud platform to run it

for you“. The take-away of this article is that feature toggles

are business-driven, allowing you to separate the use of

functionality from its technical deployment. Using the mantra,

“A BIG BANG can turn out painful! Continuous Deployments

ease the transition “ Use this to your advantage and use the

‘smells and pitfalls’ to help you recognize a hard to maintain

set-up or an error-prone method.

Context

+Contextinterface()

StrategyStrategy

ConcreteStrategyAC oncreteStrategyB ConcreteStrategyC

+Algorithminterface()

+Algorithminterface() +Algorithminterface()+ Algorithminterface()

Erick Segaar
Coaching, analytical Scrum, CI/CD, ALM,
People-first Mindset

"I have never tried that before, so I think I should
definitely be able to do that."

https://xpirit.com/xpiriter/erick-segaar/

https://en.wikipedia.org/wiki/Strategy_pattern
https://twitter.com/segaarerick
https://nl.linkedin.com/in/ericksegaar
https://github.com/ericksegaar
https://xpirit.com/xpiriter/erick-segaar/

XPRT. Magazine N°

10/2020

043

Machine Images
The beauty of machine images is that they enable you to

create Virtual Machines in a repeatable manner and add new

instances in a minimum of time. Both Azure and AWS have

the so-called notion of images: Managed Image on Azure and

Amazon Machine Image (or: AMI) on AWS. Deploying new VMs

(or EC2 Instances) using images is already possible with the

given infrastructure. You can even take this a step further by

deploying Virtual Machine Scale Set or use AWS Auto Scaling

to create and destroy instances on demand.

Build Your Own
For speeding up and stabilizing deployment it is best to create

your own hand-rolled images with

customizations that you need in every instance. The normal

procedure for creating such an image is:

1. Spin up a fresh VM

2. Perform your customizations, either remote or from login

3. Generalize the machine (sysprep for Windows)

4. Shutdown the VM

5. Capture the disk.

Packer helps you by automating this process. By doing so, it

enables you to set up a CI/CD pipeline which ensures that the

image is build, stored, and deployed on the cloud provider of

your choice.

Packer uses packer templates, which contain all the

configuration and instructions to build an image.

Building images like this is like adding layers to a docker

image, except for the storage part. You can even reuse

your custom image to be used as the input of another

packer build.

Builders
The template contains the builders with the configuration for

the target platform(s) on which you want to create an image.

This article will show you how to do this for both Azure and

AWS. On Azure you use the 'azure-arm' builder and on AWS

the 'AMI builder'. In short: the builder is the configuration for

your target platform for the intermediary VM that is used, and

the target location of the image that is the build output.

Provisioners
The other part of the template is about the provisioners.

Provisioners are the things you use to interact with the VM.

For example, it can execute some script running inside the

VM to install some software. Another provisioner will copy

some content to the VM or download it from the VM. In short,

provisioners are about customizing the intermediate VM from

which the final image is built.

Installing software
The first thing you want to do when building a Windows

Server image is to install the package manager, for instance

chocolatey or winget. Having a package manager at your

fingertips will greatly reduce the time and effort spent on

hand-rolling installation scripts.

For now we will use chocolatey, but the idea is the same

for winget. To install chocolatey you just follow the regular

installation instructions from the chocolatey website

https://chocolatey.org/install. Put that in a script and invoke

it from a provisioner.

iex ((New-Object System.Net.WebClient)
 .DownloadString('https:./chocolatey.org/install.ps1'))
Install-Chocolatey.ps1

"provisioners": [{
 "type": "powershell",
 "scripts": [
 "{{ template_dir }}/Install-Chocolatey.ps1"
]
}]

packer-template.json

Treat your VM
like a Container
In the current days of serverless and k8s, you may forget about the dark corners in the
cloud that are filled with legacy and cloud-not-so-native applications. Automatic deployments
are the norm nowadays, and Infrastructure as Code (IaC) has been on the rise. What if we told
you that it is possible to do the same for your age-old applications and get almost the same
benefits?

Authors Manuel Riezebosch & Arjan van Bekkum

https://chocolatey.org/install

044 CONTINUOUS INTEGARTION

After that, most installation scripts will look like this:

choco install awscli -y

It is tempting to put all these installations in an inline script in

the packer template. However, we have found it valuable to

put these small snippets into self-contained files. Here you can

include additional validation for the expected application or

configuration to be present (apart from the exit-code), or you

can also include these in separate files.

For example, when you need sqlcmd on your image and you

install the following package:

choco install sqlserver-cmdlineutils -y

Install-SqlCmd.ps1

You then validate that the command is actually available on

the VM:

if (!(Get-Command sqlcmd)) {
 exit 1;
}

Validate-SqlCmd.ps1

These are the unit tests of your packer build!

Generalize
To deploy a Windows image to different PCs, you first need

to generalize the image to remove computer-specific

information such as installed drivers and the computer

security identifier (SID).

Sysprep (System Preparation) prepares a Windows installation

(Windows client and Windows Server) for imaging, allowing

you to capture a customized installation. Sysprep removes

PC-specific information from a Windows installation,

”generalizing” the installation so it can be installed on different

PCs.

The following provisioner is often used as the last step in the

Packer template to generalize the Azure VM before the image

is captured:

{
 "type": "powershell",
 "inline": [
 "if(Test-Path $Env:SystemRoot\\windows\\system32\\

Sysprep\\unattend.xml){ rm $Env:SystemRoot\\
windows\\system32\\Sysprep\\unattend.xml -Force}",

 "& $env:SystemRoot\\System32\\Sysprep\\
Sysprep.exe /oobe /generalize /quiet /
quit",

 "while($true) { $imageState = Get-
ItemProperty

HKLM:\\SOFTWARE\\Microsoft\\Windows\\CurrentVersion\\
Setup\\State | Select ImageState; if($imageState.
ImageState -ne 'IMAGE_STATE_GENERALIZE_RESEAL_TO_OOBE')
{ Write-Output $imageState.ImageState; Start-Sleep -s
10 } else { break } }"
]

}

Full script: https://bit.ly/xprt-packer

Amazon provides the following scripts in the EC2 instances:

{
 "type": "powershell",
 "inline": [
 "C:/ProgramData/Amazon/EC2-Windows/Launch/

Scripts/InitializeInstance.ps1 -Schedule",
 "C:/ProgramData/Amazon/EC2-Windows/Launch/

Scripts/SysprepInstance.ps1 -NoShutdown"
]
 }

Initialize and generalize an EC2 instance

https://docs.microsoft.com/en-us/windows-hardware/

manufacture/desktop/sysprep--system-preparation--overview

Deploy
After the image has been created, Packer stores the image

in the Shared Image Gallery on Azure, or in the EC2 Console

in AWS. From here on the work for Packer is done. Now the

image is available in the cloud provider you use, and you can

create new VMs from it!

An example script for creating a VM from either a Shared Ima-

ge Gallery or Managed Image directly on Azure would be:
az vm create \
 -n MyVm \
 -g MyResourceGroup \
 .-image /subscriptions/xxx/resourceGroups/xxx/
providers/Microsoft.Compute/galleries/xxx/images/xxx

az vm create \
 -n MyVm \
 -g MyResourceGroup \
 .-image
 /subscriptions/xxx/resourceGroups/xxx/providers/
Microsoft.Compute/images/xxx

On AWS you use a Cloudformation yaml file to deploy the

created AMI file as an EC2 Instance. In the file, set the id of

the created AMI as the imageid option.

https://docs.aws.amazon.com/AWSCloudFormation/latest/

UserGuide/aws-properties-ec2-instance.html

CI/CD
Since we now have a fully automated build process for

creating machine images, it's quite easy to set up a build

pipeline like we're used to doing for software development.

Azure Pipelines
The most convenient way to build from an Azure DevOps

pipeline is to install and use the packer extension. First of all

there is a task to download a specific or, when not specified,

latest version of Packer and put it on the path.

- task: riezebosch.Packer.PackerTool.PackerTool@0
 displayName: Download packer

Then there is the second task of executing packer commands

and using a service connection to provide Packer with the

credentials for the selected cloud provider.

https://bit.ly/xprt-packer
https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/sysprep--system-preparation--overview
https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/sysprep--system-preparation--overview
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-ec2-instance.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-ec2-instance.html

XPRT. Magazine N°

10/2020

045

- task: riezebosch.Packer.Packer.Packer@1
 displayName: Packer build
 inputs:
 azureSubscription: $(serviceConnection)
 templatePath: packer.json
 force: true
 variables: |
 resource_group=$(resource_group)

AWS CodeBuild
You can use Linux containers to build source from a git

repository on AWS CodeBuild. You can use a .yaml file to

set up a build definition just like in a git repository in Azure

DevOps. A build definition on AWS consists of several phases,

for example 'install', 'pre-build' and 'build'. Before we can build

the packer json file, we need to install Packer on the Linux

container.

pre_build:

pre_build:
 commands:
 - curl -sS -o packer.zip
https:./releases.hashicorp.com/packer/1.5.1/
packer_1.5.1_linux_amd64.zip
 - unzip packer.zip
 - mkdir -p /usr/local/bin
 - mv packer /usr/local/bin

After installing Packer we can use the packer command line to

build the Amazon Machine Image (AMI). A packer EC2 instance

will start, based on the packer.json file provided in the build

definition. This EC2 instance will execute all the scripts and

files in the provider section of the packer file. To build the

packer file, add the following lines to the yaml file.

 build:
 commands:
 - packer validate packer.json
 - packer build packer.json

That’s it
If you treat the infrastructure like code, then you can set up

a fully functioning deployment pipeline to create managed

images and deploy virtual machines from this. By doing so,

you can put all sorts of programming practices in place, for

instance pull request validation and automated smoke testing.

Ultimately, you will end up with an environment in which all

servers are immutable and disposable. When you can recreate

or update VM's with the push of a button, no one should really

care about specific instances. Each VM will be the same

on each environment, and deployments will be repeatable.

Manuel Riezebosch
ALM/Cloud/Docker/Git/TDD

”Automate all the things!”

Arjan van Bekkum

”To really make a difference you have got
to stand out in the crowd.”

https://xpirit.com/xpiriter/manuel-riezebosch/

https://xpirit.com/xpiriter/arjan-van-bekkum/

https://twitter.com/MRiezebosch
https://www.linkedin.com/in/manuel-riezebosch-1251886/
https://github.com/riezebosch
https://twitter.com/arjanvanbekkum
https://www.linkedin.com/in/arjan-van-bekkum-2336513/
https://github.com/arjanvanbekkum/
https://xpirit.com/xpiriter/manuel-riezebosch/
https://xpirit.com/xpiriter/arjan-van-bekkum/

046 WE ARE XPIRIT

Our previous experiences in the

consultancy business had given us a

clear understanding what we didn’t

want to do and which core values were

crucial to get started. Being both heavily

involved as Microsoft Most Valuable

Professionals (MVPs) in the developer

community, we came into contact with

many consultants from Xpirit in

The Netherlands. It was obvious that

Xpirit shared the same core values

when doing business with customers,

and more importantly, they had the

same vision of how to grow a culture

of innovation, knowledge sharing, and

collaboration. The most important

assets in every consultancy business are

the people, eager to learn and ready to

rise above themselves.

It still took a while to officially launch

our business in Belgium and to define

the rules of engagement. But once we

started, we never looked back and

we’re very happy to have chosen the

path of extending the Xpirit brand and

the cooperation across the border.

Being able to rely on an existing

business partner has proven its value.

Over the nearly two years that we have

been in business now, we have grown

into a local team of seven consultants

without having a specific plan for

growth. The people who joined in the

beginning were all from within our own

network, people whom we could trust

and who showed the technical skills

that we instantly needed for our

customers. This journey to add people

to our team and to keep everyone

happy has been the biggest challenge,

and we have learned a lot about the

different personalities in our team.

Technical expertise is one important

asset to make a difference, but we

noticed that it’s even more important to

have the right mindset and to fit into the

team as a team player. In the end, we

want to build a long-lasting relationship

with everyone who joins Xpirit Belgium.

The last couple of months have been

quite different with the ongoing

Covid-19 situation and we miss the

in-person events to keep up-to-date

with each other but we feel that we

are ready to take the next step and

welcome extra people to our team.

And so, for the first time, Xpirit Belgium

is officially hiring and we are looking for

new talent!

Xpirit won the Microsoft Global DevOps

Partner Award of the Year in 2018 and

still employs the most Microsoft MVPs

within one single company worldwide,

in addition to two Microsoft Regional

Directors. A few months ago, Xpirit also

achieved the GitHub Verified status

which enables our customers to apply

DevOps practices in all areas.

We are crossing
the border
Xpirit Belgium was founded in November 2018, but the initial idea of starting a new consultancy
company was already coined many months before. My partner in crime Gill Cleeren was
still working as an employee when we made plans to join forces to build something new.
For many years I had already been running a one-man show as a freelance Application Lifecycle
Management consultant and was longing for a collaboration to realize something bigger,
together with a strong team
of people.

Authors Pieter Gheysens & Gill Cleeren

https://xpirit.com/xpiriter/pieter-gheysens/

https://xpirit.com/xpiriter/gill-cleeren/

https://xpirit.com/xpiriter/pieter-gheysens/
https://xpirit.com/xpiriter/gill-cleeren/

Do you want to become part of a team
that is constantly learning, challenging

the status quo, sharing experiences,
driving change and having fun?

We are looking for highly motivated people to strengthen

our team of Azure Cloud and DevOps consultants.

Get into contact with us and let’s grab a coffee to discuss the next step

in your career! Our consultants in Belgium and The Netherlands are the

best you can find in the industry and they would love to have a conversation

on how you can start your journey to be part of the best of the best

in the Microsoft technology space. Are you ready to make the jump

and move up to the next level?

xpirit.com/careers

We Are Hiring

https://xpirit.com/careers

www.xpirit.com

If you prefer the digital
version of this magazine,
please scan the qr-code.

Think ahead.
Act now.

