
Xpirit

Other articles are: ■ Release management, from technical to functional practice ■ Infrastructure as Code ■ Exploring
the Microsoft Bot Framework ■ Continuous Delivery 3.0 for Mobile apps ■ Extending your Build and Release pipeline
■ Technical Debt in your Application Lifecycle ■ Doing Testing Right and at the Speed of Light ■ Containers on the
Microsoft platform: the full picture ■ Conquer the world with Azure Machine Learning

Think ahead. Act now.

Magazine3
Speed is the new currency!

Joseph Hill
Mobile Innovation

Don’t wait for the perfect app

René van Osnabrugge
Continuous Delivery 3.0

The next ‘next step’

Alex de Groot
How to accelerate

your choices using data

Edition:
Xpirit Netherlands BV

No. 3 • October 2016

Editorial Office:
Xpirit Netherlands BV

This magazine was made with the help

of Pascal Greuter, René van

Osnabrugge, Marcel de Vries, Pascal

Naber, Peter Groenewegen, Joseph Hill,

Chris van Sluijsveld, Geert van der

Cruijssen, Jesse Houwing, Jasper

Gilhuis, Erik Swets, Viktor Clerc, Alex

Thissen, Loek Duys en Alex de Groot.

Contact:
Xpirit Netherlands BV

Utrechtseweg 49

1213 TL Hilversum

The Netherlands

Phone: +31 (0)35 538 19 21

E-mail: pgreuter@xpirit.com

Layout and Design:
Reclamebureau Bij Dageraad

Winterswijk

www.bijdageraad.nl

Copywriter:
TechText

©2016 All rights reserved.

No part of the contents of this maga-

zine may be reproduced or transmitted

in any form or by any means without

the written permission of the Xpirit

Netherlands BV.

All trademarks are property of their

respective owners.

PASCAL GREUTER

MANAGING DIRECTOR
XPIRIT

Welcome to
Xpirit magazine #3!
Time is passing at the speed of light, and the good news is: at Xpirit we’re ahead of time.

While our company is soon celebrating its second birthday, our team of professionals is

boasting a collective experience of decades. Experience that is based on the interesting

and challenging projects we’re involved in, and that reaches out to the forefront of market

developments. Experience that we’d like to share with you. In workshops, in team meetings,

during events, and last but not least, in this magazine.

This third edition of our magazine once again shows our close collaboration with Microsoft

and naturally you’ll find a lot of information on the role of Microsoft’s Visual Studio Team

Services, Team Foundation Server, the MS Bot Framework, the use of Containers on the

Azure platform, as well as Azure Machine Learning. Because time is a key factor in your

success, we’re paying special attention to how you can apply your tooling in implementing

continuous delivery and testing. In fact, we’ve entered the age of Continuous Delivery 3.0.

As Microsoft’s Joseph Hill explains in his article: you can’t wait for the perfect app. There’s

thousands of companies out there that started out with apps that appeared to be marginal,

and then evolved into huge success stories. And as for making your app perfect before

launching it, there’s an article on embedding testing activities in the development pipeline.

Early and ongoing, continuous testing allows you to reduce time to market and outpace

your competitors. At the same time you make sure that your app is free of bugs and faults

that could lose you customers. For that matter, feature toggles can be a valuable aspect

of testing, and that’s why you’ll find a number of articles covering feature toggles.

The development pipeline is also covered in terms of Infrastructure as

Code, the MS build and release engine, and the separation of deploy

and release. This separation makes business more independent of the

IT department when it comes to releasing functionality to end-users.

Our focus is on the optimization of the development pipeline with the latest methods and

tools, but we’ve also taken a brief look at how you can optimize your choices using big data,

how you can avoid being held back by history, and how you can reduce technical debt in

order to minimize risks and achieve greater results.

Please enjoy and benefit from this issue. If you prefer the digital version

of this magazine, please visit our website at: http://xpirit.com/magazine

or use the qr-code.

Speed
is the new
currency

 page 3

Xpir i t Magaz ine
page 4

Table of contents

■ Welcome to Xpirit Magazine .3
■ Table of contents .4

CONTINUOUS DELIVERY 3.0
■ Continuous Delivery 3.0 - The next ‘next step’ .5
■ Release management, from technical to functional practice .8
■ Infrastructure as Code .12

MOBILE
■ Mobile Innovation - Don’t wait for the ‘perfect’ app .18
■ Exploring the Microsoft Bot Framework .20
■ Continuous Delivery 3.0 for Mobile apps .23

ALM
■ Extending your Build and Release pipeline .28
■ Technical Debt you application Lifecycle .33
■ Doing testing right .35

CLOUD
■ Containers on the Microsoft platform: the full picture .40
■ Conquer the world with Azure Machine Learning .45
■ How to accelerate your choices using data .48

ALM
M

OBILE
CLOUD

CONTINUOUS
DELIVERY 3.0

CO
NT

IN
UO

US
DE

LI
VE

RY
 3

.0
M

OB
IL

E
AL

M
CL

OU
D

 page 5

Think ahead. Act now.

Continuous Delivery 3.0:
The next ‘next step’
“Continuous Delivery is the logical evolution of Agile1” - this statement was written by Kurt Bittner in 2013 in a report
of Forrester. Back in those days Continuous Delivery was not yet as far in the hype cycle as today. In the Application
Development hype cycle that Gartner presented in 20152, Continuous Delivery was on the rise and nowadays it is in
every year plan of any IT-related company.
But what exactly is Continuous Delivery, and what does Continuous Delivery 3.0 add to this concept and what does it
have in common with Digital Disruption. In this article you will find answers to these questions and learn why it is
important to look beyond the hype cycle.

Continuous Delivery
Continuous Delivery is the fulfillment of the Agile promise. With
over 95% of companies practising Agile3, it is a logical and required
step for most companies to look further. Agile brought us the
benefits of being able to produce high-quality software produced
in a matter of weeks. But the next challenge, delivering the
software and delivering business value to the customers, proved
to be a whole different ball game.

This is where Continuous Delivery comes in. Continuous delivery
is a software engineering approach in which teams produce
software in short cycles, ensuring that the software can be

released reliably at any time. Its objective is to build, test, and
release software faster and more frequently.

Ideally this means that all functionality is planned, realized and
released with the same repeatable process, called a pipeline.
Quality gates (like unit tests, continuous builds, acceptance tests,
and metrics) ensure that the functionality and quality is
guaranteed. If something is not right, the pipeline is stopped so
that the error can be fixed. Therefore, metrics should be in place
to understand, trace and pinpoint the error to make sure this does
not happen again. Every piece of software, whether it is a bug fix,

1 Forrester: Continuous Delivery Is Reshaping The Future Of ALM,
 Kurt Bittner, July 22, 2013

2 http://xpir.it/mag3-cd30-1
3 http://xpir.it/mag3-cd30-2

/ / / / / / / / / / / / / / / / / /

Figure 1

Xpir i t Magaz ine
page 6

CONTINUOUS
DELIVERY 3.0

a new feature or a change request, is treated in this same
manner.
This sounds perfect for new projects and new software, but how
does this work within existing scenarios and within organizations
that have already been building software for many years? Before
I dive in to this, I want to talk a bit about digital disruption.

Digital Disruption: rethinking existing scenarios
Digital Disruption has a strong relation with the Law of the
handicap of a head start4, which describes how making progress
in a particular area often creates circumstances in which stimuli
are lacking to strive for further progress. This results in the indivi-
dual or group that started out ahead eventually being overtaken
by others. In the terminology of the law of the handicap of the
head start, what was initially an advantage subsequently
becomes a handicap.

In many (larger and older) organizations we see this happening
all the time. Products or services that were once very innovative,
are being optimized, expanded, tweaked and polished. All is well
until the moment a digital disruptor steps into the market who
completely reinvents the product or service, taking over market
share very quickly and aggressively. We all know the disruptors
around us. Uber who runs a taxi service without taxis, AirBnB who
provides accommodation but owns no real estate, and so on5.

The disruptors are usually newly founded companies, bearing no
legacy and doing things differently right from the start. Something
that is impossible for existing companies. Or not? Because when
you think of it, the main thing the disruptors do differently is
choosing reinvention instead of optimization.

Do old constraints still apply?
The question that we need to ask ourselves is: “Why are experien-
ced, rich and large companies not disrupting the market themsel-
ves?”. While there is no generic answer that applies everywhere,
one of the things that makes companies slow and rusty is a lack
of self-reflection. Processes and tools have been in place for many
years. The ways of working have been in place for many years and
these are being optimized over and over again. Instead, companies
should ask themselves the question: ”Why do we do this?”

The older companies started when hardware was very expensive
and limited. Software was written in a matter of months or years.
It was very important to write software that was right the first
time because it took long to compile and deploy. Procedures were
developed to ensure this was the case.

The hardware was so expensive that it needed to be shared.
Because of this, people needed to guard this hardware so that it
was used correctly. Procedures were created to deploy software
to these machines because this could only be done by certain
people, and so on.

This example pinpoints procedures and roles that were created
because of limitations or risks in the past. They are still in place
because this is how we work. And in many cases that is the only
reason left when you look at it closely. Hardware is not expensive
anymore, we can write and compile software in minutes.
Therefore, this needs a different approach. And this goes for a lot
of things, including Continuous Delivery.

4 http://xpir.it/mag3-cd30-3
5 http://xpir.it/mag3-cd30-4

Figure 2

 page 7

Think ahead. Act now.

Continuous Delivery 3.0
Now that Continuous Delivery is on top of the hype cycle, it is also
on top of the minds of many organizations. The assignment to
the development teams (or now often called DevOps teams) is
simple: move towards Continuous Delivery. This is exactly what
most people do: start optimizing the process of delivery.
But now that we have learned that re-
flection on the reason why and going
beyond optimization of your current
tools and processes is important, we
can apply these same concepts to the
delivery process and move beyond the
mere optimization and automation of
the current process.
In order to make a real difference, to really gain speed and quality
in the delivery process, do not optimize what you have, but rethink
what you do and think about the next “next step”. In most cases,
optimization and automation alone is not enough. The process
needs to be thoroughly looked at and rethought. This is what
Continuous Delivery 3.0 is all about. Do not optimize what you
have, but rethink what you do and think about the next “next
step”! Let me illustrate this with a few examples.

Machines, Virtual Machines, IaaS, PaaS, Containers
10-15 years ago all software was running on physical hardware,
which was expensive and hard to scale. This completely changes
with virtualization technology. Machines could be created in a
matter of minutes, and the scalability issue was solved. Many
organizations currently think about the next step. To deliver new
functionality in a continuous way they even need more
flexibility than Virtual Machines running on physical hardware.
Of course the cloud offers this flexibility of unlimited space and
unlimited machines, but is moving your Virtual Machines to the
cloud as IaaS (Infrastructure as a Service) the right thing to do or
is this an optimization?

In the Continuous Delivery 3.0 mindset, moving towards IaaS is
perhaps not the right thing to do. When you rethink the possibili-
ties, and move towards PaaS (Platform as a Service) and do not
have to maintain machines anymore, moving your application into
containers6 7(for example Docker) might be the next “next step”,
and therefore a better choice.

Manual Tests, GUI Tests, Test Automation
One of the most important things within a Continuous Delivery
pipeline is the execution of automated tests. Writing automated
tests is hard and although a lot of companies invest heavily in the
automation of tests, testing is still a very manual job. When
moving towards Continuous Delivery, tests need to be automated
to ensure quality over and over again. Because manual testing
has been done for many years, the logical optimization is to
automate these manual tests. In most cases this means GUI
testing. But again, this is not what brings you further.

The next “next step” goes beyond GUI testing. Test automation
done right should be the area of investment. As the Agile Test
Pyramid describes, a large base of fast and small technology-

driven unit tests and only a handful of End-to-End GUI Tests allow
you to run your tests quickly and reliably, and often this is the
better approach.

Rethink your processes
These two examples illustrate how rethinking your process can be
of great benefit. Looking at the Continuous Delivery Pipeline, many
more examples can be thought of. For instance,
■ Feature Toggles instead of branches to disconnect your

deployment from a release. Breaking down your monolith into
smaller independent components to be able to have
different release cycles for different components.

■ Building metrics and usage insights into your application to
proactively act on user behavior instead of alerts and event
to react on it.

These are all examples of how you can think ahead of the hype
cycle.

Summary
Continuous Delivery 3.0 is all about thinking ahead. Instead of
optimizing the things you already do, start thinking about how
you can do it better or differently. Just like the digital disruptors
disrupt well-known concepts and companies by being different
and acting differently.

The best way to start within you own company is to ask the
question: “Why do we do this and do the old constraints still
apply?” When you start thinking about the next “next step”, new
and valuable possibilities will open up, in addition to transforming
your Continuous Delivery process to the next level.

RENÉ VAN OSNABRUGGE
ALM LEAD CONSULTANT XPIRIT

René is always looking for improvement on all fronts.
By using modern technology, implementing Continuous
delivery, DevOps practices and coaching in the domain of
Scrum and Agile, he helps companies to improve their
software delivery process. As a MVP in Visual Studio and
Development Technologies he is an active blogger and
speaker at both national and international conferences
where he shares his knowledge of his passion: Application
Lifecycle Management.

Do not optimize what
you have, but rethink
what you do and think
about the next ‘next
step’!

6 http://xpir.it/mag3-cd30-5
7 http://xpir.it/mag3-cd30-6

CO
NT

IN
UO

US
DE

LI
VE

RY
 3

.0
M

OB
IL

E
AL

M
CL

OU
D

Xpir i t Magaz ine
page 8

Release management,
from technical
to functional practice
Traditionally deployment and release of software have been synonymous to each other. As a result, the IT department
is in charge of the time of release, and decides when the business can release a feature to the public. Separating the
concerns of release and deployment allows you to improve the performance of continuous delivery pipelines and also
empower the business to release features when they want to, without the involvement of IT. In this article I will show
how you can apply the concept of separation of concerns in your continuous delivery strategy, specifically targeted at
the notion of releasing and deploying your software to production. This enables faster deployment cycles and empowers
the business to release features without the need to involve IT.

The difference between deploy and release
Let’s start with the definition of a software release and what de-
ployment entails. Releasing software or features is defined as ex-
posing the software or feature to the end-user of the system. So
this is the first moment the software or feature becomes available
to the end-user. Deploying software includes installing the soft-
ware on an environment (one or more machines in some kind of
coherent configuration) to make it potentially accessible to the
end-users. Based on these definitions you already can see why
this has been something that has been done hand in hand at the
same moment in time, since it all has to do with exposing new
software to the end-user. But there is a subtle difference. Deploy-
ment is the activity of installing the software on an environment
and release is the fact that the end-user can access it. So we can
deploy our software without releasing features and we can re-
lease our features without deploying the software. It is possible
to separate these two activities and carry them out at different
moments, and this provides us with a huge number of advantages.

To mention a few:
■ We can deploy at any moment in time, since it does not imply

exposing new things to end-users, thus enabling deployments
without requiring business approval. They are not impacted in
any way by our deployments, so why would we need their ap-
proval? This enables continuous delivery for our teams without
disrupting the business with our deployments.

■ We can validate whether the new deployment shows the
same behavior after installation and before exposing new
functionality.

■ We can determine whether the new software – which has new
features but that are not yet visible to end-users – has diffe-
rent performance or stability characteristics that might need
fixing before we expose it to the end-user. This gives us the
ability to remediate issues before they are experienced by
end-users, and thus give them more confidence in one-time-
right delivery.

■ We can empower the business units by enabling them to
toggle features on or off at their leisure and when they

require it, without the involvement of IT.

Feature toggles as a fundamental piece of the puzzle
How can we realize this separation of concerns? We need to have
a way of making the exposure of features independent of instal-
ling the software in the production environment. The key to this
is the concept of Feature toggles. Feature toggles are also known
as Feature flippers, Feature flags, Feature switches, Conditional
features, etc. A feature toggle is very simple in concept. It is a me-
chanism to turn a feature on or off, independent of the installation
procedure. New features only become available when they are
switched on. Application logic will check for the status of a feature
switch and then decide whether to offer the feature or not.

A simple “if” statement that evaluates the feature toggle status
is often enough to accomplish this. The real challenge lies in
managing a set of feature toggles and how you want to expose
the feature in the future. You have multiple options when it comes
to how you are going to pick the group of end-users that will see
a feature behind a switch. You can define an all-or-nothing switch,

/ / / / / / / / / / / / / / / / / /

CONTINUOUS
DELIVERY 3.0

CO
NT

IN
UO

US
DE

LI
VE

RY
 3

.0
M

OB
IL

E
AL

M
CL

OU
D

 page 9

Think ahead. Act now.

or you can define a switch that only shows a feature to a particu-
lar set of customers, for instance a group that you have pre-
selected as your very special customer group.
The use of feature toggles has been around for quite some time,
but only recently has it gained in popularity. Instead of avoiding
deployment of features that are not part of the release, we now
consider it good practice to deploy both old, current and new
features.

Of course, you could build your own sophisticated framework
around feature toggles to read the status from configuration files
or a database. But you might want to take a look at what is al-
ready available in open source that you could use in your product.
A quick search returns a lot of frameworks, from which I picked a
few that I have found useful in various projects. I also added the
open source license of the software in the table below (See side
note).

How can you implement the feature toggles?
You can incorporate a feature toggle framework in just a few sim-
ple steps. To explain in more detail how you can do this, I chose
the framework “Feature Toggle” as an example. All other frame-
works in the table are implemented in similar ways and each has
its own unique set of capabilities. I chose “Feature Toggle” since
it has out-of-the-box support for a database-backed feature
toggle that works well in distributed systems that can run on mul-
tiple different machines.

A feature toggle for a typical ASP.NET MVC application is imple-
mented by adding the nuget package to your project. You could
create a specific folder that contains all feature toggles, which
makes it easier to locate them during maintenance. Next, create
a class that inherits from the base class SqlFeatureToggle as in
code sample 1.

Short note on OSS licenses
When you use open source code in your software, you need to be aware of the license under which the software is published.
Roughly speaking, there are three categories of licenses:

Strong Copy Left or so-called “viral” licenses
This includes licenses such as GPLv2 and GPLv3. These licenses involve the requirement that you must pass on all the same rights
you received if you redistribute the covered program. This applies not only to the original program, but also to any modifications
and additions. The GPLv2 states: “work based on the program”, but the term “work based on the program” is vague whereas this
is of key importance. It is not clear whether this means just derivative works of the original program or something much broader.
So this is a tricky license type that can get you into trouble and potentially requires you to open-source your commercial software,
including any potential patents that are part of the software!

Downstream or “weak copyleft licenses”
This includes licenses such as LGPL. The general requirement of these licenses is that, if the covered code is distributed, the same
code must be provided downstream under the same license terms. Unlike Strong copyleft licenses, this mandate generally does
not extend to improvements or additions to the covered code. The LGPLv2 (the “lesser” or “library” GPL) is classified as both a
downstream and a copyleft license. The prevailing wisdom is whether or not the license is “viral” depends on how the covered
library is linked to any proprietary code.

Attribution
This includes licenses such as BSD, MS-PL, MIT and Apache. These licenses are very basic and allow any kind of downstream use,
including use in a commercial product, as long as the code contains appropriate attributions to the upstream authors.

Be aware!
Carefully evaluate which license you allow for your development and please always check this, since a dependency on open
source, for instance a nuget package, is created in a second, but the consequences can be huge!

Framework Name License Link

NFeature GPL https://github.com/benaston/NFeature

Feature Toggle Apache 2.0 https://github.com/jason-roberts/FeatureToggle

Feature Switcher Apache 2.0 https://github.com/mexx/FeatureSwitcher

FlipIt Apache 2.0 https://github.com/timscott/flipit

Xpir i t Magaz ine
page 10

The next step consists of adding some configuration to the
web.config file, where we configure the feature toggle framework.
It includes a connection string to the database and a query for
each feature toggle to determine whether the feature is turned
on or off. To do so, add a section to the config file as shown in
code sample 2.

This allows you to evaluate the feature toggle anywhere in the
code. Just create an instance of the feature toggle class and then
access the property FeatureEnabled to check the feature status.
The query per feature gives the flexibility to store this information
in any table of the database. Code sample 3 shows how to change
the title of a web page based on the feature toggle.

As you can see, implementing these feature toggles is not rocket
science. Now let’s look at different release strategies and what
we need to add in order to make the idea fully come to life.

Release strategies
Now that we have separated the release from deployment we can
start thinking about what our options are when it comes to rele-
asing features to the end-users. The way we distribute the new
feature to the end-users needs to be based on the goal we want
to achieve. There is a set of release strategies you can select from,
and based on this, you need to pick the right implementation of
your feature toggle. There are many strategies you can apply,

some requiring you to add capabilities to the feature toggle
framework, while others can be done with out-of-the-box functio-
nality. Let me describe a few to give you an idea.

A/B testing
With A/B testing our goal is to test whether certain changes to
your product will yield the result that you want to accomplish. For
example, think about adding a special banner to your website with
a deal of the day in order to increase conversion ratios. We can
validate in production whether this is actually the case by selec-
ting a cohort of users (a cohort is nothing more than a selected
group of targeted users to which we expose the feature) and then
watch whether the change yields the expected results. In this
particular case we need to design our feature toggle in such a
way that we can select the right set of users. This means that we
need a set of criteria based on which we influence the toggle, or
we can implement a toggle that randomizes a percentage of users
to whom we want to expose the feature.
Important to note is that apart from the feature toggle, instru-
mentation also needs to be in place. You might want to track this
using Google Analytics. If you are interested in feature usage sta-
tistics, then tools such as Microsoft Application Insights can show
how a feature is used. However, the design of the telemetry we
need for our validation needs to be part of feature development.
This way of releasing features to end-users and testing the effects
of the feature on your product in production is better known as

CONTINUOUS
DELIVERY 3.0

<div id="header">
@{
var featureToggle = new MvcMusicStore.Featuretoggles.HomePagefeatureToggle();
if (featureToggle.FeatureEnabled)
{

<h1>
ASP.NET MVC MUSIC STORE-With feature toggle in action

</h1>
}
else
{

<h1>ASP.NET MVC MUSIC STORE</h1>
}

}
</div>

3

public class HomePagefeatureToggle : SqlFeatureToggle {}

<appSettings>
<add key="FeatureToggle.HomePagefeatureToggle.ConnectionStringName"
 value="MusicStoreEntities"/>
<add key="FeatureToggle.HomePagefeatureToggle.SqlStatement"
 value="Select status from featuretoggles where name ='HomePagefeatureToggle'"/>
</appSettings>

1

2

CO
NT

IN
UO

US
DE

LI
VE

RY
 3

.0
M

OB
IL

E
AL

M
CL

OU
D

 page 11

Think ahead. Act now.

A/B testing. It has been used in the online marketing space for
many years. Applying this to continuous delivery, our goal will be
less targeted towards marketing, but more towards pipeline
optimization and ensuring that our software budgets are spent
wisely on features that are actually used and loved by our
end-users.

Canary releasing
Another release technique is focused on discovering whether the
new functionality we want to expose does not interfere with the
standard use of your application and whether it does not
introduce performance and scalability issues. In this scenario we
build a new feature and include telemetry to measure the impact
of the feature on usability, scalability and performance. Microsoft
Application Insights can track the performance and scale impact.
Moreover, by adding custom telemetry metrics we can also track
the usage of the feature and see if people find the feature and
use it as expected. We also need to allow a specific group of users
to use the new feature in a controlled and highly monitored envi-
ronment. To do so, you can use traffic management from Microsoft
Azure, or “Testing in Production” when using Azure Web Apps.
We call this technique Canary Releasing.

This term comes from the early days when miners brought a
canary with them into the coal mines. A canary is more sensitive
to toxic gases than the miners. If the canary suddenly died, then
the miners knew to get out of the mines as quickly as possible.
The same concept applies here, since we are validating in produc-
tion in a controlled environment and we are closely watching our
telemetry data. As soon as we see indicators that show that
things are going wrong on the servers that host the new features,
we can bail out and move all traffic back to the servers with only
the current features.

Dark launching
The other common way of releasing is by exposing the feature to
the end-user without him noticing. You will enable the complete
dataflow, but not the actual UI. This means that you exercise the
complete feature and closely measure the performance, scale and
expected outcomes, without the end-user noticing this. You can
think of this way of releasing as a headless canary release. You
might think, ok so how do I expose a feature without an end-user
noticing? Take two examples: a new calculation engine for your
product or a new feature in which you show users where they are,
based on their IP address. In these cases you can submit the data
that is required for the calculations or location determination,
without showing this to the end-user. You can measure the costs
of compute and the impact on the scale. We only release the UI
to the end-user when the feature shows what we expect and does
not have a big impact and we do so by flipping a second feature
toggle. In these kinds of releases, you typically have multiple
switches exposing one layer in your architecture at a time. Dark
launching is typically used by developers and IT to assess whether
new features have significant impact on scale and performance.
This enables them to ensure that when the business unlocks the
feature for the end-user, no IT involvement is required.

Conclusion
Applying the concept of feature toggles allows us to create the
ability to separate the concerns of deploying and releasing
software. This empowers IT to deploy software to production any
time they want, since it will not affect the end-users. This is a
fundamental step in enabling continuous delivery and removing
waiting times in the delivery pipeline for deployments. It also
empowers the business to define release moments, since IT does
not have to be involved when a feature is released to end-users.
It enables a set of new release strategies that can help us be
more effective in the development of new functionality while
eliminating waste at the core, and to only build features that
end-users like and use. Finally, it also provides more stability in
our deployment process and enables us to be more in control of
the whole design, build, deploy and release process, given we have
built in the required telemetry to track what is going on.

MARCEL DE VRIES
CTO XPIRIT

Marcel spends most of his time
looking at how new emerging
technologies, a shift in mindset
and a new way of working can
help organizations get software
in production faster.
Helping organizations transform
towards a high speed, innovative
and productive organization has
become his passion. You can find
him speaking regularly at industry
events around the world, e.g.
Visual Studio Live, Tech Days,
Dev Intersection and Techorama.

Xpir i t Magaz ine
page 12

CONTINUOUS
DELIVERY 3.0

Infrastructure as Code
Your team is in the process of developing a new application feature, and the infrastructure has to be adapted.
The first step is to change a file in your source control system that describes your infrastructure. When the changed
definition file is saved in your source control system it triggers a new build and release. Your new infrastructure is
deployed to your test environment, and the whole process to get the new infrastructure deployed took minutes while
you only changed a definition file and you did not touch the infrastructure itself.
Does this sound like a dream? It is called Infrastructure as Code. In this article we will explain what Infrastructure as
Code (IaC) is, the problems it solves and how to apply it with Visual Studio Team Services (VSTS).

/ / / / / / / / / / / / / / / / / /

Infrastructure in former times
We have radically changed the way our infrastructure is treated.
Before the change to IaC it looked like this:
Our Operations team was responsible for the infrastructure of the
application. That team is very busy because of all their responsi-
bilities, so we have to request changes to the infrastructure well
ahead of time.
The infrastructure for the DTAP environment was partially created
by hand and partly by using seven PowerShell scripts. The order
in which the scripts are executed is important and there is only
one IT-Pro with the required knowledge. Those PowerShell scripts
are distributed over multiple people and are partly saved on local
machines. The other part of the scripts is stored on a network
share so every IT-pro can access it. In the course of time many
different versions of the PowerShell scripts are created because
it depends on the person who wants to execute it and the project
it is executed for.
The configuration of the environment is also done by hand.

Figure 1: A typical network share

This process creates the following problems:
■ Changes take too long before being applied.
■ The creation of the environment takes a long time and is of high

risk, not only because manual steps can be easily forgotten.
■ The order of the PowerShell scripts is important, but only a

single person knows about this order.
■ What’s more, the scripts are executed at a particular point in

time and they are updated regularly. However, it is unclear
whether the environment will be the same when created again.

■ Some scripts are on the work machine of the IT-Pro, sometimes
because it’s the person’s expertise area, and sometimes
because the scripts are not production code. In either case,
nobody else has access to it.

■ Some scripts are shared, but many versions of the same script
are created over time. It’s not clear what has changed, why it
was changed and who changed it. It’s also not clear what the
latest version of the script is. (See figure 1)

■ The PowerShell scripts contained a lot of code. The code does
not only contain the creation of resources, but also checks
whether resources already exist and updates them, if required.

■ The whole process of deploying infrastructure is pretty much
trial and error.

As you can see, the creation of infrastructure is an error-prone
and risky operation that needs to change in order to deliver high-
quality, reproducible infrastructure.

Infrastructure as Code characteristics
Our infrastructure deployment example has the following
infrastructure provisioning characteristics, which will be explained
in the following paragraphs:
• Declarative
• Single source of truth
• Increase repeatability and testability
• Decrease provisioning time
• Rely less on availability of persons to perform tasks
• Use proven software development practices for deploying
 infrastructure
• Idempotent provisioning and configuration

Declarative
A practice in Infrastructure as Code is to write your definitions in

Definition of Infrastructure as Code
Infrastructure as Code is the process of managing and provisio-
ning computing infrastructure and its configuration through
machine-processable definition files. It treats the infrastructure
as a software system, applying software

 page 13

Think ahead. Act now.

a declarative way versus an imperative way. You define the state
of the infrastructure you want to have and let the system do the
work on getting there. In the Azure Cloud, the way to use decla-
rative code definition files are ARM templates. Besides the native
tooling you can use a third party tool like Terraform to deploy
declarative files to Classic Azure and to AzureRM. PowerShell
scripts use an imperative way. In PowerShell you specify how you
want to reach your goals.

Single source of truth
The infrastructure declaration files are placed in a source control
repository. This is the single source of truth. All team members
can see and work on the files and start their own version of the
infrastructure. They can test it, and then commit changes to
source control. All changes are under version control and can be
linked to work items. The source control repository gives insight
into what is changed and by whom.

Figure 2: Schematic visualization of Imperative vs Declarative

The link to the work item can tell you why it was changed. It’s also
clear what the latest version of the file is. Team members can
easily work together on the same file.

Increase repeatability and testability
When a change to source control is pushed, this initiates a build
that can test the change and after that publish an artifact. That
will trigger a release which deploys your infrastructure. Infrastruc-
ture as Code makes your process repeatable and testable. After
deploying your infrastructure, you can run standard tests to see
if the deployment is correct. Changes can be deployed and tested
in a DTAP pipeline.
This makes your process of deploying infrastructure reliable, and
when you redeploy, you will get the same environment time after
time.

Decrease provisioning time
Everything is automated to create the infrastructure. This results
in short provisioning times. In many cases a deployment to a cloud
environment has a lead time of 5 to 10 minutes, compared to a
deployment time of days, weeks or even months.

This is accomplished by skipping manual tasks and waiting time
in combination with high-quality, proven templates. The automa-
tion creates an environment that should not be touched by hand.
It handles your servers like cattle instead of pets*. In case of
problems there is no need to logon to infrastructure to see what
is going wrong and trying to find the problem and fix it. Just
delete the environment and redeploy the infrastructure to get the
original working version.

CO
NT

IN
UO

US
DE

LI
VE

RY
 3

.0
M

OB
IL

E
AL

M
CL

OU
D

Xpir i t Magaz ine
page 14

CONTINUOUS
DELIVERY 3.0

Rely less on availability of persons to perform tasks
In our team, everybody can change and deploy the infrastructure.
This removes the dependency on a separate operations team. By
having a shared responsibility, the whole team cares and is able
to optimize the infrastructure for the application.

This will result in more efficient usage of the infrastructure
deployed by the team. Operations is now spending more time on
developing software than on configuring infrastructure by hand.
Operations is moving more to DevOps.

Use proven software deve-
lopment practices for de-
ploying infrastructure
When applying Infrastruc-
ture as Code you can use
proven software develop-
ment practices for de-
ploying infrastructure.
Handing your infrastructure
in the same way you han-
dle your code, helps you to
streamline the whole pro-
cess. You can start and test
your infrastructure on each
change. Using Source con-
trol as a team is a must.

The sources that it contains should always be in the state in which
they can be executed. This results in the need for tests such as
unit tests.

Figure 3: VSTS source control, build and release

Idempotent provisioning and configuration
Creating an idempotent provisioning and configuration for provi-
sioning will enable you to rerun your releases at any time. ARM
Templates are idempotent. This means that every time they will
be executed the result will be exactly the same. The configuration
is set to what you have configured in your definitions. Because
the definitions are declarative, you do not have to think about the
steps on how to get there; the system will figure this out for you.

Creating an Infrastructure as Code pipeline with VSTS
There are many tools you can use to create an Infrastructure as
Code pipeline. In this sample we will show you how to create a
pipeline which deploys an ARM template with a Visual Studio
Team Service (VSTS) build and release pipeline. The ARM Template

will be placed in a Git repository in VSTS. When you change the
template, a build is triggered, and the build will publish the ARM
template as an artifact. Subsequently, the release will deploy or
apply the template to an Azure Resource group.

Prerequisite
To start building Infrastructure as Code with VSTS you need a
VSTS account. If you don’t have a VSTS account, you can create
one at https://www.visualstudio.com. This is free for up to 5 users.
Within the VSTS Account you create, you then create a new project
with a Git repository. The next step is to get some infrastructure
definition pushed to the repository.

ARM template
ARM templates are a declarative way of describing your infrastruc-
ture. ARM templates are json files that describe your infrastructure
and can contain 4 sections: parameters, variables, resources and
output. To get started with ARM templates you can read “Resource
Manager Template Walkthrough”1.

It is possible to create ARM templates yourself by choosing the
project type Cloud → Azure Resource Group in Visual Studio. The
community has already created a lot of templates that you can
reuse or take as a good starting point. The community ARM
templates can be found on the “Azure Quickstart Templates”2.
ARM templates are supported on Azure and also on-premise with
Microsoft Azure Stack.

In our example we want to deploy a Web App with a SQL Server
database. The files for this configuration are called “201-web-app-
sql-database3”. Download the ARM template and parameter files
and push them in your Git source control repository in your VSTS
project.

VSTS Build
Now you are ready to create the build. Navigate to the build tab
in VSTS and add a new build. Use your Git repository as the source.
Make sure you have Continuous Integration turned on. This will
start the build when code is pushed into the Git repository. As a
minimum, the build has to publish your files to an artifact called
drop. To do this, add a Copy Publish Artifact step to your build and
configure it like this:

*Pets vs Cattle
Is a widely used metaphor for
how IT operations should handle
servers in the cloud.

Servers are like pets
You name them and when they
get sick, you nurse them back to
health.

Servers are like cattle
You number them and when
they get sick, you get another
one.

1 Resource Manager Template Walkthrough http://xpir.it/mag3-iac1 .
2 Azure Quickstart Templates http://xpir.it/mag3-iac2
3 201-web-app-sql-database http://xpir.it/mag3-iac3

Think ahead. Act now.

Figure 4: ARM template in Git

Figure 5: Copy Publish Artifact configuration

VSTS Release
The next step is to use VSTS Release for deploying your infrastruc-
ture to Azure. To do so, you navigate to release and add a new
Release. Rename the first environment to Development and add
the task Azure Resource Group Deployment to the Development
environment. This task can deploy your ARM template to an Azure

Resource group. To configure your task, you need to add an ARM
Service Endpoint to VSTS. You can read how to do this in the
following blogpost: http://xpir.it/mg3-iac4. Now you can fill in the
remaining information, i.e. the name of the ARM template and
the name of the parameters file (fig. 6).

Figure 6: Azure Resource Group deployment configuration

Figure 7: Clone an environment in Release

 page 15

CO
NT

IN
UO

US
DE

LI
VE

RY
 3

.0
M

OB
IL

E
AL

M
CL

OU
D

Xpir i t Magaz ine
page 16

CONTINUOUS
DELIVERY 3.0

DTAP
At this point you only have a Development environment. Now you
are going to add a Test, Acceptance and Production environment.

The first step is to create the
other environments in VSTS
release manager. Add environ-
ments by clicking the Add envi-
ronment button or bycloning the
development environment.

Each environment needs separate parameters, so you need to cre-
ate a parameter json file per DTAP environment. Each environment
gets its own azuredeploy.{environment}.parameters.json file,
where {environment} stands for development, test, acceptance or
production.

Figure 8: Configure each environment to a different parameters
file

The deployment can be changed to meet your wishes. For exam-
ple, deploy to a separate ResourceGroup in Azure per DTAP envi-
ronment. Now you have your first version of an Infrastructure as
Code deployment pipeline. The pipeline can be extended in multi-
ple ways. The build can be extended with tests to make sure the

infrastructure is configured as it is supposed to be. The release
can be extended by adding approvers, which makes sure that an
environment will only be deployed after an approval of one or
more persons.

Conclusion
Infrastructure as Code will help you to create a robust and reliable
infrastructure in a minimum of time. Each time you deploy, the
infrastructure will be exactly the same. You can easily change the
resources you are using by changing code and not by changing
infrastructure.
When you apply Infrastructure as Code, everything should be
automated, which will save a lot of time, manual configuration
and errors. All configurations are the same, and there are no more
surprises when you release your application to production. All
changes in the infrastructure are accessible in source control.

Source control gives great insight in why and what is changed and
by whom. A DevOps team that applies Infrastructure as Code is
self-contained in running its application. The team is responsible
for all aspects of the environment they are using. All team
members have the same power and responsibilities in keeping
everything up and running, and everybody is able to quickly fix,
test and deploy changes.

PASCAL NABER
CLOUD CONSULTANT XPIRIT

Pascal is a passionate software
developer and technical software
architect who primarily focuses on
quality and simplicity. He has a great
interest in everything that’s related
to Microsoft software development
and new technologies.

PETER GROENEWEGEN
CLOUD CONSULTANT XPIRIT

Peter is Lead Azure Consultant. He is helping
software development teams with software
development, UI Testing, Unit testing and their
CI/CD pipelines on the Azure Stack. He has an
interest in new technologies like the Hololens
and he is an active Stack Overflow contributor.
In 2016 Peter was awarded the Microsoft Most
Valuable Professional award for Visual Studio
and Development Technologies.

Infrastructure as Code will
help you to create a robust
and reliable infrastructure in
a minimum of time.

Xpir i t Magaz ine
page 18

Mobile Innovation:
Don’t Wait for
the “Perfect” App
In less than a week, Ninatic’s Pokémon Go took Nintendo’s popular franchise into the real world and became the planet's
most popular app. By combining with Augmented Reality, location-based services, gestures and touch mechanics, as
well as a cloud-based logic and storage, Niantic produced a uniquely mobile gaming experience that redefined its
category while collecting record earnings. .

The mobile home run
Mobile developers everywhere are looking for their Pokémon
Go — that unique, transformative, "showstopper" experience that
combines the best of what mobile devices offer with an unt-
ethered use case to create something entirely new. And they’re
not as rare as you might think. While consumer apps like Pokémon
Go and Uber get most of the attention, there are thousands of
B2B and B2E apps that are every bit as successful and innovative.
For example, Novarum DX built an app that uses smartphones and
their cameras to process tests that detect the presence of
diseases such as Ebola, or harmful chemicals in water supplies.
The app replaces sophisticated laboratory equipment and requires
no additional hardware, allowing field workers with minimal
training to analyze tests on the spot, bringing life-saving testing
to areas that were previously inaccessible.
While saving lives with a mobile app is an obvious win, not every
business has the right set of circumstances to replicate that kind
of success. But that doesn't mean they're locked out of the kinds
of digital transformation mobility can bring. In fact, if you're only
looking for headline-making apps, you're probably missing out on
a lot of immediate innovation right in front of you.

Incremental transformation
In the long term, businesses succeed and fail on the thinnest of
margins. Whether you're a five-person startup or a Fortune 500
enterprise, reducing costs or increasing productivity by even a frac-
tion of a percent can make a significant difference in near-term
success. And over time those incremental efficiencies can add up
to something much bigger.

We see this constantly with
customers looking to improve
their core business processes
with mobility. These projects
may not make headlines, but
the opportunity they repre-
sent is substantial. Bloomin’

Brands lets its Outback Steakhouse customers receive coupons,
get on the guest list, and pay for their meals from mobile devices.

McKesson helps doctors replace time-consuming paper forms with
electronic records and a mobile app. Xactware, which processes
80% of U.S. home property claims, created a mobile app to help
insurance adjusters receive assignments, build 3D models, esti-
mate costs, settle onsite, and instantly upload all materials for
processing while in the field. While these companies may not have
created entirely new businesses, they all built dramatically more
efficient, delightful experiences for their employees and custo-
mers.

Cultural reinvention
In most cases, the immediate financial results of a truly mobile
strategy are enough to justify the investment — happy customers
are profitable customers, and efficient workplaces mean increased
productivity. But there’s a secondary benefit, as well. Mobility is
culturally transformative. It helps executives shift from “How
much” to “What if.” It allows IT to add quantifiable value, moving
from a cost center to a profit center. And it helps engage develo-
pers who might otherwise look elsewhere. Recently, a large,
traditional healthcare company launched a small proof-of-concept
mobile program with a very limited budget. As the project
succeeded, developer interest from outside the team soared as
the project offered an opportunity to engage in what the project
lead called “the cool new thing we had going on”, without leaving
the security of their current company.

Build fundamentally mobile experiences
Of course, not every mobile story has a happy ending. You don’t
have to look hard to find cautionary tales of mobile apps that
failed to deliver. There are as many reasons for this as there are
apps, but the common thread through most of them is a lack of
understanding of the mobile use case. If mobility is just a checkbox
— a rehash of your desktop application crammed into a smaller
screen — the project is headed for mediocrity or worse, and you’ll
probably create as many problems as you’ll solve.
Our mobile devices have to be more than just PCs with limited sto-
rage, small screens, and small keyboards. Porting desktop or Web
apps (yes — even "responsive" websites) to those devices plays to

/ / / / / / / / / / / / / / / / / /

MOBILE

Incremental efficiencies
can add up to something
much bigger.

JOSEPH HILL
XAMARIN CO-FOUNDER &
PRINCIPAL DIRECTOR OF
PROGRAM MANAGEMENT
AT MICROSOFT

CO
NT

IN
UO

US
DE

LI
VE

RY
 3

.0
M

OB
IL

E
AL

M
CL

OU
D

 page 19

Think ahead. Act now.

the worst of the platform and ignores the best. By all means, busi-
nesses must extend their systems to mobile endpoints, but they
should do so by creating mobile-first experiences that integrate
with existing systems of record. That means embracing mobile-
only features like biometric authentication, push notifications,
voice communication, GPS, and other sensors. It means offsetting
form factor limitations by embracing cloud-based intelligence ser-
vices like face recognition and predictive analytics. And most of
all, it means building beautiful, performant native applications that
are every bit as satisfying to users as the latest consumer apps
they downloaded from their app store.

What’s Next
The scope of mobile development is growing at an astounding
rate, covering as much ground in a month as desktop development
did in a year. In just the 8 years since the launch of the iPhone,
we’ve gone from email, calendar, and PIM to 3D interfaces, voice-
driven controls, and intelligent services that predict and surface

information before you know you need it. As we continue that
journey toward more immersive, natural interfaces on increasingly
diverse types of devices, two trends will become increasingly im-
portant. The first is deeper integration into operating systems and
hardware, to wring maximum performance out of devices and
provide native UI on every platform. The second is an increasingly
intelligent, responsive cloud service that delivers seamless,
modern experiences to the widest possible number of platforms
without sacrificing developer efficiency.

Act Now
A lot of interesting technology is on the way, but don’t wait to get
started. It’s been said that “the perfect is the enemy of the good,”
and that’s never been more true than today. For every game-chan-
ging mobile pure-play that makes headlines, there are hundreds
of companies that built steady streams of innovation over time,
and that all starts with one app. Then another, and another…

JOSEPH HILL
XAMARIN CO-FOUNDER & PRINCIPAL DIRECTOR
OF PROGRAM MANAGEMENT AT MICROSOFT

Joseph Hill is a Xamarin Cofounder and Principal Director of
Program Management at Microsoft. Joseph has been an active
participant in the Mono community since 2003, and has also
contributed to several open source .NET applications. As a
professional developer, he has worked with several Fortune
500 companies in designing and implementing .NET applicati-
ons. In January 2008, Joseph joined Novell to serve as the
Product Manager for Mono, ultimately driving the product
development and marketing efforts to launch Xamarin’s
commercial products.

Xpir i t Magaz ine
page 20

Exploring
the Microsoft Bot Framework

At the Microsoft Build Conference in 2016, Microsoft announced something they call “Conversations as a platform”.
This stated human interaction and machine learning as the next computing interface.

The goal is to turn a conversation into a more powerful tool that
is contextually rich while improving productivity. As Satya Nadella
said, the human language is the new user interface. Microsoft is
investing substantially in this area with Cortana, Cognitive services
and Bot framework. In the end Microsoft sees a convergence from
messaging with people to messaging with services.

Figure 1

Figure 2

The convergence towards conversations starts with the Cortana
Intelligence Suite, which consists of 3 main parts.
■ Bot Framework. We will explore this framework in more detail

in this article.
■ Cognitive Services. For example, Language Understanding Intel-

ligent Service (LUIS)
■ Machine Learning. Which is the basis for the language under-

standing of LUIS.

Bot Framework
One of the main building blocks for this next computing interface
are bots. Microsoft announced the bot framework to help develo-
pers build rich bots with easy integration to many channels and
other services. The bot framework consists of three main parts,
as seen in the following diagram.

Bot builder SDK
The Bot Builder SDK is an open source SDK that provides all the
building blocks you need to develop your Bot using .NET, NodeJS.

/ / / / / / / / / / / / / / / / / /

MOBILE

CO
NT

IN
UO

US
DE

LI
VE

RY
 3

.0
M

OB
IL

E
AL

M
CL

OU
D

 page 21

Think ahead. Act now.

It also consists of a chat bot emulator and Visual Studio templa-
tes. The emulator makes it easy to test your bot while it is being
developed, but in the end the bot is just an API. You could also
use postman or any other tool to test your bot.

Developer Portal
The developer portal is the place where you can register your Bot
and connect it to a wide range of communication channels. Here
you get a step-by-step guide on how to add more channels to
your bot. The Skype and Web Chat channels are added by default
when you first register your bot in the developer portal.

Figure 3

Bot directory
When you are done building your Bot you can publish your Bot to
the Bot Directory, which contains different Bots which are already

published and are ready for use. When your Bot is submitted to
the Bot directory it usually takes a few days to get through the
validation process. After that other users can add your bot to their
channels.

Building a Bot
When you first create a new Bot in Visual Studio, the project
should look very familiar if you previously developed a Web API.
There is a Controllers folder and a MessagesController which han-
dles the requests coming into the bot. The Post method gets an
Activity class which describes the message/event the bot receives.
The HandleSystemMessage method allows you to handle different
Bot events such as users entering the conversations or leaving.

Dialog
A dialog is a class with state and methods that use Bot Builder-
defined types to manage interactions. The Bot Framework mana-
ges conversations by sending JSON messages through the Bot
Connector and to/from the user and bot. These messages hold
the state of an ongoing conversation. To facilitate managing state
with the Bot Framework, your dialog type must be serializable. To
support this, the code is decorated with the [Serializable] attri-
bute. Additionally, the class contains fields, representing the state
of the conversation. The Bot framework dialog manages all the
state for you if you follow this simple guidance.
When implementing a dialog, you simply chain interactions and
guide the user through the conversation one step at a time. You
have to implement the Start method for your dialog and from
there you can chain methods to guide the user to the end of the
dialog. A code snippet from a dialog is seen below (code 1).

FormFlow
FormFlow is a Bot Builder SDK library that lets you declare the
type of information you need and then it does the bulk of the work

public async Task StartAsync(IDialogContext context)
{

context.Wait(ConversationStartedAsync);
}

public async Task ConversationStartedAsync(IDialogContext context,
 IAwaitable<IMessageActivity> argument)

{
var message = await argument;
await context.PostAsync(message.Text);

PromptDialog.Choice(
context: context,
resume: ResumeAndPromptRatingAsync,
options:

 Enum.GetValues(typeof(Consultants)).Cast<Consultants>().ToArray(),
prompt: "Welcome to the Xpirit Feedback Bot! Please select the consultant

 you want to provide with feedback:",
retry: "I didn't understand. Please try again.",
promptStyle: PromptStyle.Auto);

}

1

Xpir i t Magaz ine
page 22

of managing the conversation and moving the user from question
to question automatically. In Dialogs, you have the responsibility
of writing the methods to prompt the user and collect the results,
but FormFlow simplifies the entire process. Another benefit of
FormFlow is that it automatically formats questions to be more
readable and it tries to process partial answers if it can.
When rebuilding the Xpirit FeedbackBot to use FormFlow instead
of Dialogs the whole implementation is an entity with the fields
you wish to gather from the user. So instead of specifying the
flow yourself, the Bot Framework handles that for you. (code 2)

So while you have to build the dialog yourself using Dialogs, the
FormFlow does that for you and you only have to focus on the
information that you want to gather. There are a lot of additional
options available to customize how the FormFlow method renders
things, as you can see in the above code sample with the [Prompt]
attribute.

Conclusion
Microsoft has made it very easy to get started with building and
exploring the bot world. However, there are also a lot of things
you can add to your bot when you start combining the Bot
framework and LUIS or other cognitive services. Microsoft has even
made it very easy to use LUIS (Language Understanding Intelli-
gent Service) from the Bot Framework by providing base classes
and attributes to integrate LUIS into your Bot. As seen in the
code sample it is very easy to include LUIS into your Bot dialog.
(code 3)

All the sources for the bot build in this article are available on
Github.

[Serializable]
public class XpiritFeedbackForm
{

[Prompt("Choose the {&} to give feedback {||}")]
public Consultants Consultant { get; set; }
public Ratings Rating { get; set; }
public string FeedbackMessage { get; set; }

public static IForm<XpiritFeedbackForm> BuildForm()
{

OnCompletionAsyncDelegate<XpiritFeedbackForm> processForm = async (context,
 state) =>

{
await context.PostAsync("We are currently processing your feeback. We will message

 you the status.");
};

return new FormBuilder<XpiritFeedbackForm>()
.Message("Welcome to Xpirit Feedback bot!")
.OnCompletion(processForm)
.Build();

}
}

2

MOBILE

3 [Serializable]
public class XpiritFeedbackDialog : IDialog<object>
{

...
}

[LuisModel("key", "key")]
[Serializable]
public class XpiritFeedbackDialog : LuisDialog<object>
{

...
}

1 http://xpir.it/mag3-bot

CHRIS VAN SLUIJSVELD
CLOUD LEAD CONSULTANT
XPIRIT

As a Lead Consultant at Xpirit,
Chris is helping customers with
implementing a microservices-
enabled platform using Service
Fabric, API Management and API
design guidelines. Chris loves to
experiment with new technology
and tweets, and then blogs about
this on the internet. Chris is keen
on adopting new technologies and
investigating how they can deliver
more value for the customer.

 page 23

Think ahead. Act now.

Continuous delivery 3.0
for mobile apps
Continuous delivery is a hot topic in the current world of software development, especially for web applications. Most
teams and companies I know of are starting to experiment with it or are in the process of implementing continuous
delivery. In my role as consultant I get to see a lot of different companies and their ways of working. A lot of companies
have some automated testing and automated deployments to certain environments in place. However, when you look
at mobile application projects, you often don’t find any sign of continuous delivery.

Setting up some basic principles of continuous delivery for mobile
isn’t that hard, although there are some extra hurdles for mobile
applications compared to web applications, for example the
deployment process towards app stores. The first steps in imple-
menting continuous delivery could consist of setting up continuous
integration with automated builds and unit tests running at every
code check-in. Another step could be to set up automated deploy-
ments towards private stores (with tools such as Hockeyapp), so
your test team always has a new, daily version of the app on their
test devices. This article is not about setting up the basics of
continuous delivery which we call continuous delivery 1.0. Instead,
it is aimed at creating a new mindset about continuous delivery.
Welcome to the world of continuous delivery 3.0.

What is continuous delivery 3.0?
Continuous delivery 3.0 is a term my Xpirit colleague Rene van
Osnabrugge came up with to define the next level of continuous
delivery. It’s hard to say exactly what continuous delivery 1.0 or
2.0 is. However, what we mean to say with CD 3.0 is that when
you really want to get to the next level of continuous delivery, you
have to rethink certain parts of your software delivery pipeline
instead of just putting some automated deployments in place.

This article covers three areas you might want to rethink when
implementing continuous delivery for mobile apps.

Rethink testing
Every developer will agree that proper automated testing is
important in all software development projects. However, it may
be even more important in mobile app projects than in web
projects. On the web it’s possible to implement a fast update in
the application on your web servers, but with native mobile apps
you’ll have to go through app store submissions and reviews, and
this can take up to several days. What’s more, competition within
the app stores is huge and it’s easy for users to just open the
store and download the app from your competitor if your app con-
tains bugs or doesn’t work properly. If you lose users on a mobile
platform, it’s really hard to get them back. They are also very likely
to leave 1-star ratings and never return after switching to a
competitor.

Automate everything
To be able to maintain high quality levels at every moment in time,
automated tests are key. Mike Cohn developed the concept of the
agile test pyramid which describes how to create a properly
balanced set of tests. The key point of the test pyramid is that
you need to create a large foundation of unit tests that can run
fast, as well as a much lower number of end-to-end test cases
that run through the GUI.

/ / / / / / / / / / / / / / / / / /

CO
NT

IN
UO

US
DE

LI
VE

RY
 3

.0
M

OB
IL

E
AL

M
CL

OU
D

Feature: Login
In order to access my account
As a user of the website
I want to log into the website

Scenario: Logging in with valid credentials
Given I am at the login page
When I fill in the following form
field	value
Username	xtrumanx
Password	P@55w0Rd
And I click the login button
Then I should be at the home page

1

Xpir i t Magaz ine
page 24

Structure your application so you can mock or stub all internal and
external dependencies in your code and build unit tests to cover
all code paths within your solution. The unit tests form a base of
tests that you should be able to run as often as possible. This is
why they need to be fast, and with fast I mean being able to run
hundreds of tests within a few seconds. If these kinds of tests
take too long, people will stop running them and the goal of these
tests is lost.

In addition to the unit tests there is a set of component tests that
connect several units together, as
well as integration tests and API tests
which test all server side functionality
of your mobile apps.

Setting up a clear API layer is key for
your architecture and this splits up
testing responsibility between your
mobile app layer and back-end layer
of the application. The APIs form a
contract of communication between
these two layers and if you test the
APIs by themselves, it should be pos-
sible to release them separately. By having a good API stub
framework, the automated mobile app tests only have to commu-
nicate to these stubs instead running tests from the UI to the
back-end system.

The mobile device landscape involves an enormous amount of
complexity with different types of operating systems, OS versions,
screen sizes, processor and memory differences. Manual testing
of all these device combinations is impossible. Solutions such as
Xamarin Test Cloud can help you by providing a cloud farm of thou-
sands of devices, running all possible combinations of operating
systems and versions. Tools like this integrate with your continu-
ous integration builds, so you can run these tests with every
automated build.

These methods of automated testing allow you to focus your
manual testing efforts on edge cases which are hard to automate.
Think of scenarios like receiving a phone call while running your
app, or suddenly losing reception.

Automating your current tests is not enough
While automating your test effort is a good start, it isn’t actually
rethinking your test strategy. Rethinking your test strategy means
that you need to make a shift to focus on quality earlier in the
software development process instead of only reducing the test
effort.

This means that the role of your testers is going to change. There
is no room for testers who write test scripts based on specificati-
ons or who try to break your application by monkey testing.

Making a shift to an earlier phase of your development process is
important in order to have high-quality code at every moment of
the cycle. Instead of writing test scripts, testers should be helping
the business with writing testable requirements that can be used
in automated test scripts. Popular ways to do this are ATDD
(Acceptance Test Driven Development) or BDD (Behavior Driven
Development). Below is an example of a BDD specification written
in the Gherkin language. Tools such as Specflow can turn these
specifications into automated tests. It is possible to combine
Specflow tests and the Xamarin test cloud to have your require-
ments tested automatically on thousands of devices. (code 1)
Combining these kinds of tests with the automated unit tests
create a stable level of quality right from the start of the devel-
opment process up to the first release, as well as future releases.

Rethink releases
If the quality of your code is measurably high at all times, it should
be possible to deploy the application at regular intervals. However,
deploying is totally different from releasing.

MOBILE

 page 25

Think ahead. Act now.

For more details, please read the article by Marcel de Vries on
separating deployments and releases, also published in this
magazine. Mobile apps have a number of extra difficulties regar-
ding releases. When you create a public app in the stores you’ll
have to go through the official review cycles by Apple, Google and
Microsoft, and this can take up to several days. This makes quality
in your app even more important because there is no way to
quickly release bug fixes as they have to go through the same
review cycle.

Public beta releases
A lot of companies I visit use tools to distribute the apps that are
in development to their testers. The most common tool for this
job is Hockeyapp. Hockeyapp works great for test app distribution
and is easy to integrate into automated build or release tools such
as VSTS. When you’re rethinking releases you will end up trying
to release as often as possible and also make early releases
available to end-users. Hockeyapp can support such beta releases.
However, it is not designed for large public beta tests because
managing large sets of users takes a lot of manual effort. Apple,
Google and Microsoft all have features for releasing beta apps to
groups of users but they all involve a number of disadvantages:
Apple still requires you to go through a review cycle that can take
several days and a beta release only has a lifetime of 60 days.
Another option would be to publish two apps to the stores, one
with a beta tag and one without. This option is valid for Android
where you could do early releases to the beta version in the store
and use the app without a beta tag for a more formal release at
a slower pace. However, this is not an option for iOS because Apple
forbids adding beta versions of apps to iTunes. So is there any
other way to add beta functionality to releases that are released
to the store?

Dark Launching & Feature toggles
Feature toggles are an option that allows you to integrate featu-
res into your app without enabling them immediately when you
technically release an app. When you create feature toggles, you
start with adding a configuration option to enable or disable a
new feature without implementing the feature in your code. You
should be able to release the app as long as the configuration re-
mains disabled. Now you can implement the feature and switch
the feature on as soon as it is ready to use. If you can control the

switches of the app from a central location, this can be extended
even further by letting your business users decide which features
will be enabled. There are several tools in the market that help
you with the management of these feature toggles to be able to
dark launch your app’s features. Many of these tools also have fe-
atures that allow you to enable new features to only a small set
of users in order to see the impact of the feature before releasing
it to everyone.

Rethink analytics
Having health monitoring in your apps seems obvious. There are
several tools to implement this and every customer I visit seems
to have some basic health monitoring installed. Rethinking analy-
tics is thinking about the extra value analytics can offer you.

Functional insights
The first step in rethinking analytics is to start using the analytics
features to only see health checks. It can be really useful to see
which pages are used most, which features are used most often,
or the keywords your users are using for searching within your
app. Most mobile analytics tools are able to do this and it can give
you valuable insights that will enable you to improve your app.
An even more advanced scenario would be that you set up your
analytics in such a way that it measures differences between
certain functionality and automatically switches feature toggles
when errors occur, or that it measures decreased use of certain
features after enabling a particular feature toggle.

Data is driving more and more decisions and that’s why you never
want to throw away any data. The same goes for your analytics
data. Combining the functional analytics of, for instance, the
moments when your app is used most frequently, the most
popular features and other things that can be traced with your
company’s big data can lead to new insights. Machine learning is
becoming available for almost everyone and finding correlations
and making predictions is becoming easier and easier. Find ways
to do a continuous export of your analytics data to your big data
environment and get insights that you never thought of before.

Conclusion
Software quality is even more important in mobile projects than
on the web because of the releases through the store, the wide
diversity of devices and competition of other apps. Setting up a
good continuous delivery process will increase your overall
software quality and will enable you to release more frequently
and with less risk.
Taking the first steps should be easy. There are lots of guides for
setting up continuous integration builds, running automated tests
and doing automated deployments to tools, for instance Hockey-
app. On my blog http://mobilefirstcloudfirst.net I’ve written a
couple of guides on how to set up automated builds, tests and
distribution to Hockeyapp for your mobile apps using VSTS to get
you started with continuous delivery 1.0. Hopefully this article has
inspired you to think a bit further than just these basic steps and
will help you to evaluate your current development lifecycle with
new ideas on how to rethink your testing, releasing and analytics
steps to move more to continuous delivery 3.0.

CO
NT

IN
UO

US
DE

LI
VE

RY
 3

.0
M

OB
IL

E
AL

M
CL

OU
D

GEERT VAN DER CRUIJSEN
MOBILE LEAD CONSULTANT
XPIRIT

Geert van der Cruijsen is a mobile software architect with
years of experience in building applications using Xamarin &
.Net technologies for the iOS, Android and Windows platforms.
As a Lead consultant at Xpirit, Geert helps Xpirit’s customers
with defining and improving their mobile strategy, vision and
technical implementation regarding mobile application
development and mobile ALM. Geert is also a Xamarin Training
partner, delivering Xamarin University training to mobile deve-
lopers. Geert is an active member of the Xamarin and Wind-
ows UWP community, has spoken at several conferences and
is co-organizer of the Dutch Mobile .Net developer’s meetup.

Disruptors
don’t follow

traditional rules.
They deem

the impossible
possible.

“In the new world, it is not the
big fish which eats the small fish.
It’s the fast fish which eats the
slow fish.” (Klaus Schwab)

In our current digital age we see
traditional business processes
and priorities dethroned.
If you fail to value speed above all
else, your company will fall behind!

Therefore we think ahead,
but act now!”

CTO XPIRIT

Xpir i t Magaz ine
page 28

Extending your
Build and Release pipeline

The new build and release engine that ships with Visual Studio Team Services and Team Foundation Server 20151

provides a whole new way of configuring your Continuous Integration and Deployment pipeline. A much improved and
simplified way.
You may have invested in the build and release features of previous versions, or you may be treading into uncharted
(or currently not yet supported) territory for your own applications. That territory isn’t a swamp nor is it a desert; it’s
actually not that hard once you know where to start. Let this article be your guide along the way.

Run existing scripts
The existing build and release library of tasks is already quite
extensive and consists of a set of predefined tasks that you can
use to author your build and release pipelines. The tasks are
divided into five categories: Build, Utility, Test, Package and Deploy.
You have total freedom in choosing which ones you want to use
and in what order. Most of the tasks come with a simple configu-
ration UI, which allows you to tune their behavior.
If your build process is relatively simple, you will probably not need
to extend the process at all. You will only need to pick the right
tasks from the library, put them in the right order and configure
them.

There are also a number of standard tasks that offer your first
extension points:
■ The Build category contains tasks that allow you to run a

number of standard build and package management tools,
ranging from MSBuild, NPM, Gradle, Grunt to Ant and Gulp.

■ The Utility category contains tasks that allow you to run
PowerShell and Batch scripts on Windows as well as Shell
scripts on other platforms.

■ The Deploy category contains a number of tasks that allow you
to interact with remote machines, including Azure PowerShell,
Docker and Chef.

The common element of all of these tasks is the fact that they
execute scripts that you’ve included in your source control reposi-
tory. This has the advantage that it’s easy to version these scripts
with your code, but it also introduces a coupling between your
build pipeline and the scripts in source control. Given that their
contents are not visible when looking at the pipeline, they can
also make the build and release process harder to understand.
However, what’s nice about these extension points is that you can
use the technologies you are already familiar with to extend your
build pipeline. It also allows you to port over your existing build
pipeline without too much trouble.

Figure 1

Grab an extension
If you don’t have an existing script that does what you want, and
writing such a script isn’t an easy thing to do, you should check
out the Visual Studio Market Place to see if there is an existing
extension that offers the functionality you’re after.

/ / / / / / / / / / / / / / / / / /

ALM

Tip: In order to quickly iterate while writing your script in the
context of the Build system, you’ll find the Run Inline Power
Shell2 and the Shell++ task very useful. They allow you to run
a script defined completely in the task UI. However, after you’ve
debugged your script, it is recommended to check it in and use
the existing PowerShell and Shell Script tasks to run them.

1 The Release Management bits shipped with TFS 2015 update 2
2 http://xpir.it/mag3-extendpipeline1
3 http://xpir.it/mag3-extendpipeline2
4 http://xpir.it/mag3-extendpipeline3

CO
NT

IN
UO

US
DE

LI
VE

RY
 3

.0
M

OB
IL

E
AL

M
CL

OU
D

 page 29

Think ahead. Act now.

Extensions are installed into your Visual Studio Team Services
account of Team foundation Server (requires 2015 update 2 or hig-
her). Extensions can carry one or more build tasks as well as other
types of extensions, such as Dashboard Widgets or 3rd party
features.

There are over 100 extensions in the Build and Release category
of the Marketplace, so it is likely you will find what you are looking
for.

Figure 2

Wrap your script in a task or create your own
If you can’t find a task in the standard library nor an extension in
the Marketplace to extend your Build and Release pipeline, you
have the option of writing your own task. You may also want to
wrap your existing scripts in a task to provide a nice UI user inter-
face to make it easier for others to consume.
Tasks can be written in two languages: TypeScript (which compiles
to Javascript) and PowerShell. TypeScript will run on all platforms,
whereas PowerShell will only run on the Windows Platform. If you
consider sharing your task to the Visual Studio Marketplace it is
recommended to use Typescript in order to reach the broadest
audience.
From your task you can call out to other technologies, any execu-
table or shell script. It is also possible to call directly into .NET
assemblies from the PowerShell host. Communication between
your task and the agent’s host process is done through specially
formatted log messages5 or through the corresponding methods
of the VSTS Task SDK.

The minimal components required for a task are:
• task.json – The task manifest which describes the task’s

input parameters and the main entry point.
• A .js or .ps1 file – The actual script that is executed as

configured in the task.json.

Tip: You may also find an extension which provides most of the
features you need. Since most extensions are released as Open
Source, they may provide a starting point to build your own ex-
tension, or you may be able to provide the added functionality
in the form of a pull request or raise an issue with the develo-
per on their GitHub account.

A side note on variables
When you start making your scripts re-usable in different
contexts, you will likely want to pass data into your scripts. There
is a long list of pre-defined (well-known) variables available which
you can reference directly from your existing build scripts through
environment variables.
It is highly recommended to use these well-known variables It is
considered bad practice to rely on the availability of custom va-
riables, as these will be hard to discover for other people. Instead,
consider passing these values as arguments to your scripts.

1 {
"id": "3333333-3333-3333-3333-333333333333",
"name": "PingTask",
"friendlyName": "Ping",
"description": "Pings a remote host to see if it is alive.",
"helpMarkDown": "[More Information](http://www.example.org)",
"category": "Utility",
"author": "Jesse Houwing",
"version": { "Major": 0, "Minor": 1, "Patch": 0 {,
"minimumAgentVersion": "1.83.0",
"inputs": [],
"instanceNameFormat": "Ping $(RemoteHost)",
"execution": {

"PowerShell3": {
"target": "$(currentDirectory)\\myscript.ps1",
"workingDirectory": "$(Build.SourcesDirectory)"

},
"Node": {

"target": "$(currentDirectory)\\myscript.js",
}

}
}

5 http://xpir.it/mag3-extendpipeline4

Xpir i t Magaz ine
page 30

If you want to interact with the task host - to receive input para-
meters and read any variables - you will also need to reference
the vsts-task-lib6 matching your chosen script technology.
A build task can package both PowerShell and a Javascript. De-
pending on the agent’s capabilities it will select the appropriate
implementation based on the order defined in the task.json.
You can include either PowerShell3 or Node, or both. Be sure to
give each task a unique id and to increment the version number
each time you publish a new version. The minimal task.json looks
like this: (code 1)

Figure 3

There is little documentation on the Task.json options and
structure; the best reference to date is the vsts-tasks library on
GitHub and the repositories of the open-source tasks.

You may encounter a third task execution target called: “Power
Shell” (note the lack of a version number). This is the task host
that shipped with TFS 2015 and is considered deprecated with the
release of TFS 15 and the latest VSTS build agents.

Note: be sure to save the task.json as UFT-
8 with no Byte-Order-Mark (Signature), or
your task may fail to upload or will not
show up correctly: (figure 3)

Put the logic you need in the Javascript or
PowerShell file. This small example tries to
ping a host and returns the result: (code 2)

$remotehost = www.example.org
[string] $output = (ping $remotehost)

if ($output -match "Pinging")
{

if ($output -match "\(100\% loss")
{

Write-Output "##vso[task.logissue type=error;]Could not reach $remotehost"
Write-Output "##vso[task.complete result=Failed;]FAILED"

}
elseif ($output -match "\(0\% loss")
{

Write-Output "##vso[task.complete result=Succeeded;]DONE"
}
else
{

Write-Output "##vso[task.complete result=SucceededWithIssues;]DONE"
}

}
else
{

Write-Output "##vso[task.logissue type=error;]$output"
Write-Output "##vso[task.complete result=Failed;]FAILED"

}

2

ALM

6 http://xpir.it/mag3-extendpipeline5
7 http://xpir.it/mag3-extendpipeline6
7 http://xpir.it/mag3-extendpipeline7

Tip: You can use the Cross Platform TFS
Command line tool to create a
skeleton task using tfx build tasks create.

 page 31

Think ahead. Act now.

Upload your task to Visual Studio Team Services or TFS using the
cross platform command line tools7:
tfx build tasks upload --task-path
c:\folder\containing\task.json\file
--service-url
http://youraccount.visualstudio.com/
DefaultCollection

You will be prompted for a Personal Access Token when you are
uploading to Team Services or for your account credentials for TFS
(use Fiddler or an NTLM authentication proxy to authenticate
against TFS 20158).

The task will then be available for all users of the target account
/ project collection.

Extend your task with a User Interface
To extend your task with a UI, update the task.json and define
one or more input elements. Inputs can be of different types, e.g.
filePath, string, boolean, picklist, radio or multiLine). The UI does
not provide a lot of ways to do validation, so the script included
with your task will have to provide for this. To make the remote
host configurable in our current task, add a required string-type
input: (code 3)

You will need to package the PowerShell or Typescript task SDK
with your extension. Since the example uses the PowerShell3
host, you will need to download the VstsTaskSdk module9 and put
it in a subfolder named ps_modules\VstsTaskSdk, in alongside
the task.json.
We can now use the commands provided by the Task SDK10 to
retrieve the input value and to set the outcome of the task:
(code 4)

...
"version": { "Major": 0, "Minor": 2, "Patch": 0 },
"inputs": [

{
"defaultValue": "www.example.org",
"helpMarkdown": "Hostname or IP address to ping.",
"label": "Remote Host",
"name": "RemoteHost",
"required": true,
"type": "string"

}
],
"instanceNameFormat": "Ping $(RemoteHost)",

...

$remotehost = Get-VstsInput -Name "RemoteHost"
[string] $output = (ping $remotehost)

if ($output -match "Pinging")
{

if ($output -match "100\% loss")
{

Write-VstsTaskError "Could not reach $remotehost"
Write-VstsSetResult -Result "Failed"

}
elseif ($output -match "0\% loss")
{

Write-VstsSetResult -Result "Succeeded"
}
else
{

Write-VstsSetResult -Result "SucceededWithIssues"
}

}
else
{

Write-VstsTaskError "$output"
Write-VstsSetResult -Result "Failed"

}

3

4

9 http://xpir.it/mag3-extendpipeline8 and http://xpir.it/mag3-extendpipeline9
10 http://xpir.it/mag3-extendpipeline10

CO
NT

IN
UO

US
DE

LI
VE

RY
 3

.0
M

OB
IL

E
AL

M
CL

OU
D

JESSE HOUWING
LEAD CONSULTANT & SCRUM TRAINER XPIRIT

Jesse’s passion is to support agile teams along their journey
of continuous improvement by helping them tweak their
tools, tighten their collaboration, and learn new skills. In the
past year he has developed a number of tasks that extend
the new build system. Jesse is an active blogger, community
contributor to StackOverflow and MSDN, and a Professional
Scrum Trainer.

Xpir i t Magaz ine
page 32

If your task depends on the presence of third party tools, you
should either package them as part of your task or define a
demand in your task.json. If you ship a third party component,
validate that its license is permits redistribution. When using a
demand, your task will signal the consumer to install the third
party prerequisites on the build server.

Release your task as an extension
The Visual Studio Marketplace makes it easier to create tasks and
to share them with the community. To share your build task as
an extension, follow the steps outlined on MSDN .
You can also use the Build and Release Tasks for Team Services
Extensions to automate the build and release pipelines of your
extensions.

Conclusion
As you can see, the process of writing a simple build task is easy.
Although the documentation is currently still evolving, there are
enough examples available, by means of the standard tasks as
well as tasks shared by the community.

The fact that both the Build and Release functionality depends on
the same task library makes investments in custom tasks even
more useful.

If you feel your tasks are useful to others, share them to the
community by pushing them to GitHub and publishing them as an
extension to the Visual Studio Marketplace.
If you find gaps in existing extensions, join the effort by submitting
issues, or better yet, submitting a pull request.

Everybody benefits!

ALM

rainerScrum T Trainer
ofessional Pr

Scrum.org

Build & Release Extensions published or contributed to by:

Jasper Gilhuis
■ Token Comparer

Jesse Houwing
■ Build and Release Tasks for Team Services Extensions
 (contributed)
■ Extension Tasks
■ TFVC Tasks
■ MsBuild Helper
■ Variable Toolbox

Pascal Naber
■ Azure WebApp Configuration

Peter Groenewegen
■ Zip and unzip directory
■ Pester Unittest task
■ Twitter
■ Deploy AzureRm Automation
■ Run Inline Powershell & Azure Powershell

René van Osnabrugge
■ Send Email

 page 33

Think ahead. Act now.

Technical Debt
in your Application Lifecycle
Addictions are a serious problem. Using a survey assessing alcohol usage and personal behaviors can quickly help
discover the seriousness of the problem. If only assessing the impact of technical debt was that easy. Addictions are
usually ignored until the effects of the addiction are really bad. The same can be applied to technical debt in your
application lifecycle. It is there, but often it only surfaces when gaining control is difficult, requiring a lot of work and
cost. This article provides guidance on acknowledging technical debt and helps you to regain control.

Acknowledging technical debt
Today, many teams spend a lot of time and effort in optimizing
processes of their Application Lifecycle. We often look for ways to
improve our continuous integration, automated deployment,
testing, architecture, continuous delivery, agile practices and
automated provisioning. Many of these topics require technical
skills or require organizational stamina to result in change.
Technical debt is just as important as the other topics, but it rarely
gets the attention it deserves. One of the characteristics of tech-
nical debt is that it is spread throughout the application lifecycle.
A shortcut built in to the codebase can be perfectly OK at the

moment of implementation, but we tend to overlook consequen-
ces for the future. In practice, the less visible these choices are,
the more they can hurt. Nowadays, effective and well organized
teams can ship software towards production in a fast manner.
However, effects of shortcuts can easily result in costly production
issues.

When teams do have code quality on their radar, they tend to
focus on code syntax only. But that only covers the easy parts.
Substantial rework or refactoring is often not accounted for, re-
sulting in technical debt being built in. Acknowledging technical
debt is the first step, just like admitting the addiction, but how do
we convince our product owner and stakeholders that we need to
undertake additional efforts for something that currently seems
to do the job?

Getting in control
While acknowledging is the first step to improving, taking actual
measures is the next step. As a development team, we spend time
refining our backlog, m focusing mostly on getting the right
amount of functional detail into the user story. However, getting
user stories right can be challenging.

There are many ways of getting your stories better. There are
many techniques available for working on stories; one great
example is provided by Gojko Adzic1. He has taken a hamburger as
a model for breaking down user stories. It helps you to identify

tasks and possible other options, provi-
ding you with an overview. It enables
you to sort these on complexity and
effort, allowing you to take a conscious
decision on how to approach the story.
Using techniques like these allows you
to approach stories in a way in which
both technical and non-technical people
– e.g. a product owner – understand the
mechanics of the story.

As stated before, it is of key importance that we acknowledge
technical debt. When working out the details of a story you should
be able to focus on existing technical debt or places it may occur.
A conscious mind is required for this, danger can be just around
the corner, for example the lack of domain knowledge or just the
rush to get things done.

Quantify technical debt
Identifying and measuring technical debt can be a daunting task.
Fortunately, there are tools available to help you achieve this. One
of them is SonarQube2, an open source tool that helps you to iden-
tify and measure technical debt. You can integrate it in your builds
and get it to automatically generate technical debt measures.

While having this at build time is perfect for many teams, some
like to have this feedback even sooner. Tools like SonarLint for

/ / / / / / / / / / / / / / / / / /

What is technical debt?

Technical debt can be summarized as ‘During the planning or execution of a software project,
decisions are made to defer necessary work’. Over time this infects the maintainability of the
codebase and will require effort to keep resolving issues. Several forms of this debt can exist
and are referred to as architectural debt, and design debt. The practices and approaches
described in this article are applicable to most forms of technical debt.

1 http://xpir.it/mag3-techdept1
2 http://www.sonarqube.org/

CO
NT

IN
UO

US
DE

LI
VE

RY
 3

.0
M

OB
IL

E
AL

M
CL

OU
D

JASPER GILHUIS
ALM LEAD CONSULTANT
XPIRIT

Jasper combines his deep knowledge
of the Microsoft ALM Platform with
several years of (agile) process
experience to enable long-lasting
change in the software delivery
process.
He uses his enthusiasm and his
genuine interest in people to make
a difference at any level of the
organization. Jasper provides
consultancy, training, and guides
workshops in the area of ALM and
Scrum.

Xpir i t Magaz ine
page 34

Visual Studio3 can help developers identify critical issues on-the-
fly. Rule sets defined by the team can be enforced immediately
to prevent the occurrence of known technical debt issues. Remem-
ber, facing the facts is a good thing!
Besides direct feedback during development, feedback based on
telemetry in your application is equally important. Insight into
what parts are actively used compared to less active parts helps
determine the actual need to fix certain technical debt items in
these areas. It provides developers as well as business and sta-
keholders with valuable insights they may not have had previou-
sly. Prioritizing on what to do first can now be based on actual
data.

Technical debt will be in your application lifecycle. Acknowledging
that is important, fiercely trying to prevent any form will get you
nowhere. Budget is never an unlimited resource, which means
choices need to be made. Technical debt is something that needs
to be worked on to prevent it from increasing to unacceptable
levels. Although at first sight this usually does not add ‘real value'
for the product owner or stakeholder, the development teams are
aware of its importance.

Making it visible
Having technical debt measured by tools allows you to add signi-
ficance to it. Making product owners and stakeholders aware of
this significance is of great value. To do so, teams need to make
sure that their technical issue is well understood and that the
team should be able to quantify or compare it to other (mostly
functional) items on the product backlog. It is considered good
practice to make stories out of technical debt items and provide
these with an estimate. Being able to compare stories in your
backlog makes it easier to ‘sell’ it to the business.

The following diagram may help to make technical debt in a
particular area understandable and comparable. Every technical
debt issue should be plotted in this diagram.

A debt story that holds little business value and requires little
technical challenge to resolve it (B), may sound like a quick win,
but may not be worth the effort. Technically challenging items
with low business value (A) may result in significant time spent

on something that has little results. Technically challenging and
high business value items (C) sound like a challenge but could
easily be worth the effort to the business. Some technical debt
may occur in areas where fixing is simple and business value is
high (D).

Measuring Effects
Acting on technical debt is important and the metrics provided by
tools will allow you to verify whether your efforts are actually hel-
ping. Retrospectives can be used to zoom in on how the technical
debt is evolving in your product. What kind of measures would be
helpful?

A very important metric is your team’s velocity. A stable velocity
implies a steady flow of business value delivered over time. Hand-
ling technical debt in a sustainable way should improve the overall
quality of the product. However, spending time on debt is time
that is not spent on actual value. Therefore, velocity may drop a
bit at first, but could well increase over time while your application
is better equipped to stand the test of time. Teams should also
be comparing their velocity to business value delivered. Solely
looking at velocity or value could be deceiving. A little drop in
velocity could very well deliver more value.

Measuring your technical debt and comparing this to your velocity
and your business value is crucial to your application lifecycle.

Summary
As a developer you want to write high-quality software with
minimal technical debt, resulting in high value being delivered.
User stories require enough attention from a technical and non-
technical viewpoint. Various techniques are available on getting it
right. Everyone involved in the application lifecycle should under-
stand the importance of technical debt management and should
put his best effort into minimizing risks and achieving great
results!

ALM

3 http://xpir.it/mag3-techdebt2

 page 35

Think ahead. Act now.

Doing Testing Right
and at the Speed of Light
Most organizations think they are ready for the future when they engage in agile software development practices and
ALM. However, if these organizations do not change their traditional, after-the-fact approach towards testing, they
will not be able to deliver their desired value at the speed of light. This article describes a different approach towards
testing, presents steps to properly introduce testing and test automation, and shows how the Microsoft eco system
can be employed to achieve this: integration with all the relevant test tools by standardizing their output formats.
We exemplify this by using various concrete examples obtained along the way.

Wake up!
IT organizations that still feature an after-the-fact approach to
testing need to radically change their software testing approach
if they are to stay in business. New ideas, Minimum Viable
Products, apps, and novel integrations are what businesses should
be built on – without any compromise on quality. In an era in which
acceleration of the delivery cycles is necessary to shorten the time
to market, traditional testing is one of the last bastions that
needs to be conquered. Testing these ideas, MVPs, apps, and
integrations as quickly and often as possible becomes a mere
necessity: the sooner we can invalidate assumptions, the sooner
organizations can come up with the right, game-changing
innovations. Organizations simply cannot survive without it.

Testing is a unique discipline which requires a clear, quality-orien-
ted mindset. Traditionally, test activities are performed by
dedicated teams of test professionals. In turn, these test profes-
sionals will commence testing the software only once it is built.
As such, test activities typically are performed after a sprint’s end.
Often they are labor-intensive, and in the case of findings, rework
is injected into subsequent sprints. This negatively impacts the
velocity of the project and can ultimately lead to the project’s
grinding halt: what is built in two weeks’ time, often takes two
months (or more) to be put into production. This needs to stop.
Organizations should be able to deliver high-quality software to
production as often as possible and as quickly as possible, so
there really is no use in separate testing activities with late
feedback cycles.

In short, it’s time to do it differently. Testing and checking should
commence before the production software is built and should rely
on close collaboration between the whole team. It’s a rather clear
adagio: “we specify, develop, and test our functionality together,
and we deliver software that is production-ready as soon as it’s
ready.”

/ / / / / / / / / / / / / / / / / /

Mike Cohn's agile test automation pyramid

The pyramid defines several layers on which tests can be
automated. Unit tests are the lowest-level tests, counterparts
of designated source code functions. Automated end to end
tests should (only) focus on end-to-end integration scenarios
rather than testing individual functionality. Likewise, Compo-
nent & integration tests serve to test functionality of the
application, typically exposed through services, without having
to rely on the user interface of the application.

One should strive for automating at the lowest level possible
(‘Unit tests’), since this enables quick feedback cycles, detailed
feedback information ("the bug occurs at line 42 of the
Customer Service module”), and the corresponding technical
ecosystem between test code and production code.

CO
NT

IN
UO

US
DE

LI
VE

RY
 3

.0
M

OB
IL

E
AL

M
CL

OU
D

Business facing tests
(are we building the

right thing?)

Technology facing
tests (are we

building it right?)

Xpir i t Magaz ine
page 36

A plea for a straightforward test strategy
Some of the most important questions related to testing include:
“What do we want to test? And why?”. If the rationale for testing
is clearly defined, different test types can be logically derived; a
focus on integration testing, performance testing, or resilience tes-
ting. As a next step, we define a current and a desired state on
how these tests are actually performed (automated or not), where
the testing takes place (see sidebar on the agile test automation
pyramid), what technologies are used and by whom (the test-
oriented team member, or development-oriented team member).

Start right, and start now!
Every organization can start with moving towards a sound agile
testing and test automation strategy. Organizations that use the
Microsoft stack can immediately implement the right tooling in
order to speed up their feedback cycle.

Welcome to Visual Studio Team Services and Team Foundation
Server (TFS) cum suis. New required functionality (user stories) is
defined within TFS as Product Backlog Items (see Figure 1), each
of them broken down into one or more tasks. Proper operation of
the functionality needs thorough testing. As such, one or more
test cases can be linked to a product backlog item. The test cases
are managed within Microsoft Test Manager (MTM). Within MTM,
these test cases do not pose any restrictions as to how the test
case is executed (manual or automated) and with regard to the
technical ecosystem; the test case merely serves as a description
of the test activities.

Figure 1 Work Item definitions in Team Foundation Server

Traditionally, testing using a TFS-/MTM-based setup as outlined
above occurs by running the application and (often) manually per-
forming the steps of the test cases that are attached to a specific
work item. This is a suboptimal approach because of the distance
between testing and coding – both temporal distance (first we
need to develop code, only then can we perform the testing
activities) and technical distance (test (plan)s and test results
reside in a separate system, namely Microsoft Test Manager).
Furthermore, testing occurs within big chunks (complete sprint
results as the unit of test) rather than intermediate feedback on
partly-implemented Product Backlog Items. This makes it more
difficult to address test findings (find the needle in the haystack),
which again delays the feedback cycle.

This approach, which is often encountered in many organizations,
requires a significant speed-up in order to achieve the true merits
of continuous delivery (integration and testing). So, how can we
use readily available solutions to perform proper testing as quickly
and as often as possible? Let’s take the next steps to reap the
full benefits.

ALM

 page 37

Think ahead. Act now.

Taking the next steps
1. Automate your tests
Automate existing test cases within TFS, or develop integration
adapters and attach some assembly to the test cases in Microsoft
Test Manager. This can be used to link Protractor (or similar) test
code for an AngularJS front end (cf. Xpirit Magazine #2, p. 40-46).
Currently, only MSTest-based test cases can be associated, and
increase of this coverage may not be expected. Microsoft díd an-
nounce a new capability to link test results that were generated
during a build run with any arbitrary adapter, to requirements, for
instance user stories1. Linking test results to test cases seems like
an obvious next step – this feature is requested.

2. Truly bring your tests to the code
We can take this even one step further. Why not make the test
case itself reside within the source code – right next to the pro-
duction code? This enables tests to be run as soon as code is de-
veloped – possibly even before: Gherkin-style specifications (given
– when – then) can be used to enable the business to speed up
refinements and clearly describe the acceptance criteria for each
product backlog item. This notation also helps to achieve common
understanding between all stakeholders of the required functio-
nality. Below, we share an example of shopping cart functionality
that verifies the total article count.

Given I am logged in
When I add a product to my shopping cart
Then the cart total is updated

The Gherkin specifications are transferred to source code once
development commences, and glue code is developed to link the
test case and code to the production code. Both the production
code and test code are maintained by the team. All code is part
of the same source code repository, nicely placed together.
(code 1)

As soon as parts of the functionality are tested and committed,
all tests can be executed automatically. Issues are spotted as
quickly as possible, because the right tests are run as part of your

pipeline at each commit. As a result, lengthy analysis steps to find
the issues are reduced to quickly spotting the issue, actually fixing
it, and observing a green test.

3. Test and develop as one in an integrated pipeline
Within the VSTS/TFS Build and release, we can construct a pipeline
where all the tests reside. Regardless of the technological choices
for our applications’ platforms (Angular, iOS, C#, Java), we enable
this pipeline to drive all development and test activities.
This allows us to write test code in the same technical context as
the production code (i.e. we use Protractor for Angular tests, and
nUnit for C# unit tests), because we simply integrate the test re-
sults based on their standardized output formats (such as xUnit,
jUnit or NUnit); this prevents the community from having to write
(and maintain) adapters. Even more importantly, using standardi-
zed test output formats allows us to integrate all automated tests
in a heterogeneous and partially non-Microsoft ecosystem. There
is an open standards world out there whose benefits can readily
be reaped.

Figure 2 Running tests within a pipeline

Implementing your test strategy in the pipeline
The build pipeline acts as continuous integration and allows us to
chain all kinds of tasks so that production-ready software is

1 Please see the following blogpost for more details:
 http://xpir.it/mag3-testing1

CO
NT

IN
UO

US
DE

LI
VE

RY
 3

.0
M

OB
IL

E
AL

M
CL

OU
D

1 [When(@"I add a product to my shopping cart")]
public void WhenIAddAProductToMyShoppingCart()
{

home.addProduct(0);
}

[Then(@"the cart total is updated")]
public void ThenTheCartTotalsUpdated()
{

Assert.AreNotEqual(initialProductsInCart, home.CartQuantity());
}

public HomePage addProduct(int index)
{

_driver.FindElements(By.CssSelector(".btn-primary"))[index].Click();
return this;

}

Xpir i t Magaz ine
page 38

achieved. This includes development and test tasks. The following
section describes how some of the types of tests from the agile
test automation pyramid (see sidebar) can be implemented within
a pipeline concept.

■ Unit tests are performed during development, prior to commit-
ting changes and in the build pipeline, prior to building the
component consisting of the various units.

■ Integration tests test specific integrations between separate
components. These tests can happen internally and externally.
Internal integration tests may consist of test routing within a
service. External integration tests may test compatibility with
data structures in code and database schema, or how an
application handles unavailability of a database.

■ Business-facing component tests test the user interaction with
one or more parts of the system.

Implementation (simplified) code 2

ALM

Test type Description Current End Developed Responsibility Mainly
 state state in performed by

Unit Tests the smallest Code Code C#, Typescript Team Developers
 pieces of testable code
 - C# (RESTful services)
 - Typescript (front-end)
 - RDBMS (if needed)

Integration Test the interaction N/A (no tests) Code C# Team Developers
 between components
 (service layer ⇔ database
 layer, or front-end
 layer ⇔ service layer)

Component Tests independent N/A Code C# OR Team Testers,
 components of a (BDD Typescript Developers
 larger system, e.g.: for view)
 - API (RESTful service)
 - The view (front-end)

End-to-End Test whether an entire Manual MTM+BDD C#, OR Team Testers
 integrated system meets (using MTM) Typescript
 its business goal

Exploratory Manual testing Manual MTM Manual test Team Testers
 involving continuous (using MTM)
 learning based on
 application feedback

Table 1: Overview of test types, where tests are implemented (current state and end state), the programming language,
and responsibilities.

2
describe('shopping cart filter', function(): void {

it('finds on partial cart ref', function() {
var result: any[];
result = $filter('cartFilter')(cartItems, 'World of Warcraft');
expect(result.length).toBe(1);

});
});

 page 39

Think ahead. Act now.

These tests can also be nicely specified using the earlier-described
Gherkin format. If we develop an AngularJS-based front end, we
can describe the front-end tests in JavaScript using Protractor,
and we simply consume the results and integrate them in TFS.
Suppose we want to run cross-browser tests (“does our software
function properly in various device/OS/browser combinations?”).
Then we can also use a Selenium grid to spawn the different
combinations, which means we are able to interpret the results
within our pipeline.

The test results from each of the test tasks in the build pipeline
are examined to determine whether the software is of sufficient
quality to promote to a next phase. Only software that is properly
unit-tested can be offered for component-testing or integration-
testing, allowing these tests to focus entirely on the component
or the integration between components, rather than on the low-
level functionality. We should now have that one covered. As such,
the build pipeline is a clear implementation of the above-mentio-
ned agile test automation pyramid and test strategy. Table 1
shows a specific example of the test strategy, namely the imple-
mentation of the various test types. By including a current (actual)

and end state (desired), test improvements can be managed and
measured promptly.
If we have a pipeline using TFS and VSTS Build that runs all tests
for the various test forms as quickly and as often as possible, we
can constantly interpret the results and make the right go-live
decisions. Possibly, this can be split across multiple pipelines:
a “build pipeline” for unit tests and a “release pipeline” for end-
to-end tests. Ultimately, we know that we’ve built the right
product right.

Summary
Organizations should place their testing activities at the center of
their development efforts. Only then can development teams
obtain the feedback they deserve and need to deliver high-quality
software. VSTS/TFS Build and Release enables organizations to
incorporate the automated tests to cover the required test forms.
What’s more, it allows for seamless integration with test tools
from other ecosystems by standardizing test output formats. This
allows all technologies to be injected into the pipeline, which offers
new possibilities to test apps and speed up time to market.

ERIK SWETS
AGILE TEST CONSULTANT
AT XEBIA

Erik combines profound technical knowledge with
analytical and communication skills to help IT
organizations change the way they organize, approach,
and perform testing activities. He is experienced in
setting up continuous delivery initiatives and
implementing test automation as one of the most
crucial parts of his customers’ software development
activities.

VIKTOR CLERC
UNIT MANAGER TEST AUTOMATION
AT XEBIA

Viktor is a strong customer-focused IT manager with
a keen eye on delivery quality. Using modern tools and
techniques, he strives to dramatically reduce his
customers’ time to market and improve the quality
feedback cycle to all relevant stakeholders.

CO
NT

IN
UO

US
DE

LI
VE

RY
 3

.0
M

OB
IL

E
AL

M
CL

OU
D

Xpir i t Magaz ine
page 40

Containers
on the Microsoft platform:
the full picture
Containerization as a new application paradigm

It is hard to miss the emergence of container technology and its effect on application development and architectures.
Containers as lightweight hosts for small applications are quickly associated with a micro-services architecture (MSA).
Applications based on micro-services are split into small autonomous systems instead of monoliths. Small services
ask for light-weight hosting where creating a multitude of hosted services is simple and cheap. This approach benefits
greatly from the high density of the services on host machines, and containers fit nicely into these types of applications.
This is why the reinvented architectures around micro-services and the new hosting models have driven the popularity
of containerization of modern applications.

Containers 101
At first sight, the concept of containers appears rather abstract.
Quite often a comparison is made with virtual machines. Although
there are some similarities, it is also a dangerous comparison.
Virtualization is not the same as containerization and virtual
machines are not containers.

Containers are essentially virtual fences created to perform isola-
tion of shared system resources and processes of a host system.
The processes in the host and within the containers all exist at
the host level. Each container thinks it has its own unique set of
system resources assigned to it. A container is oblivious to
anything outside of its fence; it cannot see anything outside of
itself and any access to the container’s resources does not affect
other containers or their content. The net result is that each
container is its own silo and can be thought of as a way of
creating a high density of sub-computers within a host system.

This is perhaps the reason why containers appear to be similar to
virtual machines. The isolation is definitely a recognizable attri-
bute, but the key difference is that a container runs directly in the
host system and nothing is virtualized, only isolated. Conse-
quently, the containers run their processes in the same operating
system that the host uses. A Linux host system will have Linux-

based application pro-
cesses running and the
resources behave as in
Linux, such as /dev/root.
A Windows host will be
able to create Windows

based containers running .NET and Win32 applications utilizing
Windows resources, such as the C:\ drive and the registry. This is
an important aspect of containers: container and host OS are
always one and the same. Unless virtualization comes into play.

Docker as an industry standard
Container support has been a feature in Linux and Unix operating
systems since the beginning. The popularization of container tech-
nology and container-based application architectures has started
with the advent of Docker, both a company and tooling with the
same name. Before Docker, the challenge involved the semantic
differences of the container APIs inside the operating systems and
the way that applications are deployed to containers. Docker stan-
dardized the methods of creation and interaction with containers.
Docker offered a uniform API and Command-Line Interface (CLI)
for controlling containers. It allowed a user and application to start
and stop container instances. It also defined a standard for buil-
ding container images, which contain (pun intended) resources
and settings inside a newly created container. Container images
are packages that are used to deploy your application assets for
use in containers. Docker envisions container images to consist of
layers. Each image is based on a parent image, going back to a
(nearly-empty) base image, and only has the changes from the
parent. This approach provides a highly efficient way to build con-
tainer images. However, it is important to remember that the root
parent image is always intended for the particular operating
system it was created for.

The popularity of Docker has made it the de-facto standard for
working with containers across a variety of platforms. Docker
started in the open source Linux eco-system, intended for and tar-
geted to Linux-based applications, but has expanded to Windows.

Docker Toolbox
The first available option to run containers on Windows-based
host systems is to use ‘Docker Toolbox’. It offers Linux-based
containers and images on Windows. This seems like a contradic-
tion from the previous remark that host and container OS are
always the same. Docker Toolbox uses Oracle VirtualBox to create

/ / / / / / / / / / / / / / / / / /

CLOUD

Each container is its own silo and can
be thought of as a way of creating a
high density of sub-computers within
a host system

 page 41

Think ahead. Act now.

a virtualized host system running a Linux distribution, in which the
container instances are hosted. Admittedly, it does sound like a
scene from the movie Inception. Until then, Windows itself was
not capable of hosting containers, so Linux had to be the host
operating system. Virtualization helped out by offering Linux
container technology to Windows.

Docker for Windows
The second offering from Docker Inc. for the Windows platform
was ‘Docker for Windows’. In principle it is a natural progression
from Docker Toolbox. The main difference is that it uses Windows
Hyper-V technology as the virtualization layer, instead of the afo-
rementioned VirtualBox. This brings Docker much closer to the
Windows platform, but still leverages a Linux-based virtualized
host to create containers.

Figure 1: Docker for Windows using Hyper-V to run a Linux
container host

Figure 2: Docker Toolbox shows a Windows client running a
Linux-based host

Windows Server containers
Windows Server 2016 (Technology Preview 3 and onwards) was
the first Windows operating system that offered native Windows
containers. Put differently, Windows Server 2016 is capable of
creating container isolation as part of the operating system. Like
before, this implies that the containers are Windows-based and
run directly in Windows, sharing resources and processes from the
Windows Server host.
Microsoft has also adopted Docker as their container interaction
API. A PowerShell module and the CLI are available, so you can
choose your preferred interactive terminal, and write PowerShell
scripts or batch files to automate simple Docker management.

Hyper-V containers
The Windows Server 2016 operating system has a unique feature
with regard to containers. It knows how to combine virtualization
and containers to provide an even higher level of isolation.

Figure 3: Windows Server containers shows a Windows client
running a Windows-based host

CO
NT

IN
UO

US
DE

LI
VE

RY
 3

.0
M

OB
IL

E
AL

M
CL

OU
D

Xpir i t Magaz ine
page 42

CLOUD

Container isolation is a good thing, but there is a potential risk of
applications breaking out of their container and accessing the host
system or the insides of another container. To mitigate this risk
in a hostile multi-tenant situation or when trying to regulate wor-
kloads, you might require additional isolation. Windows offers the
option to start a Hyper-V virtualized host with a minimal Windows
OS optimized to run containers. These containers are called Hyper-
V containers, in which a high degree of isolation is achieved at the
expense of a small performance impact.

Two special version of Windows Server 2016 were created as an
operating system for Windows Server containers: Windows Server
Core and Nano Server. These trimmed-down versions of the full
operating system discard unnecessary features in order to provide
a fast, lean and mean container host basis.
Container images created for Windows Server container also run
in Hyper-V containers and vice versa. So, you can decide the level
of isolation as an afterthought instead of having to decide upfront.
The same does not hold true for container images used with Doc-
ker for Windows and Windows Server containers. The reason for
this is that the former utilizes Linux based container images,
where the images for Windows Server are Windows based.
Recently, the Hyper-V container feature made its way to Windows
10 Professional and above, giving Windows containers to develo-
pers’ machines.

Containers in Azure
The Azure platform of Microsoft brings many of the container op-
tions together in a number of Infrastructure-as-a-Service (IaaS)
offerings. Obviously, with Windows Server 2016 virtual machines
in Azure, you can leverage both Windows Server and Hyper-V con-
tainers. Additionally, virtual machines running a Linux distribution
such as Debian or RedHat, offer Linux-based containers. Both op-
tions are nicely integrated into the Microsoft developer experience.
Docker container hosts running in Azure virtual machines can be
accessed as if they are local on your machine. Microsoft has pro-
vided Docker drivers to connect a local Docker client to the Docker
daemons and engines running in Azure-hosted machines.

Figure 4: Azure ACS physical architecture provisioned for a DC/OS
cluster

Azure also has a complete production scale container hosting
offering in Azure Container Services (ACS). Essentially, ACS provi-
des a cluster of virtual machines in a scale set for containers to
be hosted on. ACS uses Docker Swarm or DC/OS under its covers
in order to provide a container cluster management, monitoring
and resource governance platform for the set of virtual machines.
When you create the ACS cluster, you choose either Docker Swarm
or DC/OS.

Docker Swarm combines multiple Docker container hosts into a
virtual single host for hosting containers. DC/OS builds upon many
open source based tools and frameworks, such as Apache Mesos
and Marathon. It keeps track of the available resources on all vir-
tual machines in a cluster, it can build and deploy Docker container
images, and control and monitor the running container instances.

ACS takes care of installing and configuring typical small and large
deployments of Docker Swarm or DC/OS clusters for test and pro-
duction scenarios. It is available from the Azure Portal after a few
clicks, and it offers more functionality than simple IaaS, but it does
require you to keep and maintain the virtual machines in the
cluster yourself. That brings it rather close to the offering of a
Platform-as-a-Service.

Development with Visual Studio and containers
Because Microsoft has chosen Docker as its standard for contai-
ners, you will encounter Docker tooling throughout the family of
Visual Studio products.
Visual Studio 2015 Update 3 ties into the developer workflow for
creating and hosting applications in containers after you have in-
stalled the Docker Tools for Visual Studio. The tooling allows a de-
veloper to easily deploy a .NET-based application to a Docker
container. To do so, it will build a Docker image that is uploaded
to an existing or newly created Docker container host which can
be local or remote. Images are built from a Docker file describing
the alterations from a base image. The tool Docker Compose
facilitates in creating Docker images and environments, and is the
underlying mechanism leveraged by PowerShell scripts.

 page 43

Think ahead. Act now.

Figure 5: Provisioning an ACS cluster from the Azure Portal

Figure 6

Visual Studio Team Services (VSTS) takes the Docker container
workflow a step further and provides continuous deployment and
release capabilities. The Docker Integration tooling will integrate
Docker in agile and DevOps workflows with easy and transparent
management and distribution of the Docker images it creates. The
tooling can be found in the VSTS Marketplace and, once installed,
will add additional build and release tasks and service endpoints.
The service endpoints connect to a Docker Registry and a Docker
container host from VSTS. The ‘Docker’ task allows you to build,
push and run a Docker container image, or run a Docker command.
The other task ‘Docker Compose’ can use a docker-compose.yml
file to run Docker Compose-defined commands.

Figure 7

The combination of these tasks allows you to set up a build and
release pipeline on your platform of choice. A pipeline that builds
a Docker image must run on a VSTS build agent hosted in the
same operating system as the one targeted by the container
image.

CO
NT

IN
UO

US
DE

LI
VE

RY
 3

.0
M

OB
IL

E
AL

M
CL

OU
D

ALEX THISSEN
CLOUD LEAD CONSULTANT
XPIRIT

Alex helps companies build web
applications and back-end solutions
using Microsoft technologies and
frameworks. He helps migrate existing
architectures to modern standards
and designs and cloud solutions
running on platforms such as Azure.
Alex cares about security and informs
organizations and development teams
about secure coding and best
practices.

Xpir i t Magaz ine
page 44

In other words: a Linux-based container image must be run on a
Linux-hosted VSTS build agent, and likewise for Windows-based
images and build agents.

.NET Core and cross-platform containers
The two main .NET platforms of this moment are .NET 4.6.2 and
.NET Core 1.0. The programming experience for both is practically
the same with corresponding .NET Frameworks and the languages
C#, Visual Basic and F#. The full .NET Framework can only be in-
stalled on Windows machines, as it is limited by and dependent
on certain Windows features. This implies that applications that
are built for .NET 4.5 can only be run or hosted on Windows
machine and Windows containers. Windows Server and Hyper-V
containers are an excellent choice for hosting .NET applications.

.NET Core 1.0 is a reimplementation of the .NET Framework and its
runtimes, and is designed to be light-weight, modular and most
importantly, cross-platform. Even though .NET Core 1.0 is not on
par in terms of features with the full .NET Framework 4.5+, it is a
very attractive option in your choice of application framework. It
offers a reasonably smooth transition of your application from
Windows to Linux or the other way around. Admittedly, .NET Core
is also targeted for OSX, but this is more geared towards develo-
per station scenarios. Developers can build and run their .NET Core
applications natively on OSX, but will probably need either Wind-
ows or Linux to host the application in a production environment.

Choosing your container strategy and platform
The abundance of choice makes it an all but trivial task to choose
your strategy in container technology and the hosting operating
system within the Microsoft platform. The following guidance
might help in deciding.
Start by realizing that the overall interaction with containers, re-
gardless of their environment, is through the Docker tools CLI and
Docker Compose for both Windows and Linux. The choice of Po-
werShell is more aligned with the Windows platform and is a good
alternative if Windows is a given and there is already an invest-
ment in PowerShell scripts.

The choice for the operating system is largely determined by the
framework that the application (or subsystem) uses. The applica-
tion can be just about anything: a Web application, Web API,
service or command-line tool or otherwise. If these are created for
a Linux-based system, you must choose one of the Linux distri-
butions as your container host. For applications built on .NET 4.5
and higher you must choose Windows Server or Hyper-V contai-
ners. If you want to develop for multiple types of container hosts
(Windows and Linux) then .NET Core offers the flexibility required.

On your development machine it doesn’t really matter what you
choose and it almost comes down to personal preference. You
have most options when you run Windows 10 and use Visual Stu-
dio 2015. Docker Toolbox requires Hyper-V to be turned off and is
the oldest tooling and might be limiting in its reach. Docker for
Windows and Hyper-V containers utilize Hyper-V and are available
side by side on Windows 10. If you are able to host any virtual

machines in Azure and have access to them during development,
you can choose whatever you like. Just remember that you need
a separate image for each operating system.
Looking towards hosting in a production environment you will
need some higher level governance of all containers and resour-
ces. Azure Container Services is currently the only offering availa-
ble in Azure and its containers are always Linux-based. This
narrows your options to targeting your application to either (open
source) frameworks for Linux, Mono or .NET Core. Both targets will
be able to be deployed as Linux-based container images. .NET Core
or Mono seems the most obvious choice for a .NET developer.

At this point in time, Windows Server and Hyper-V containers are
best suited for .NET and Win32 applications and non-production
scenarios. However, as soon as the container monitoring and
governance tooling sets start supporting Windows-based
containers, you will have to re-evaluate your choice. The enter-
prise-grade stability and support for the Windows Server platform
is an important factor to take into account.

Summary
The Microsoft platform has plenty to offer for creating and hosting
containers. Whether these containers need to run on Windows or
Linux, Microsoft can be your platform of choice. Microsoft Azure,
Windows Server 2016 and Windows 10 can host all types of
containers. Azure also offers Azure Container Services for
production scenarios. Docker tooling, the Visual Studio develop-
ment environment and Visual Studio Team Services allow develo-
pers to adopt agile and DevOps workflows, resulting in continuous
delivery and release pipelines for container-hosted applications.
In short: Microsoft is a one-stop shop when it comes to creating
and hosting container-based applications and architectures.

CLOUD

 page 45

Think ahead. Act now.

Conquer the world
with Azure
Machine Learning
What a great idea! You’ve decided to convert your brick and mortar store into an online supermarket. You’ll create in-
telligent business processes that will make shopping easy. They will allow you to run the web shop efficiently! You’ll
make Amazon and Ali Baba jealous. Let's investigate how using Azure Machine Learning can help you.

Creatures of habit
Most people regularly buy the same items. For example, imagine
a customer who regularly buys some cheese. It would be nice if
the system would advise him to put it in his shopping cart. But he
probably won't need cheese during each visit to the shop, only
when he has run out. So the system should be smart enough to
figure out if he needs it. If you repeat this process for all of his
regular products, you can produce an automatically generated
grocery list. Which leads to one-click shopping! Now how's that for
a time saver?

Out of cheese?
Azure Machine Learning (ML) provides a way to answer this
question. First you need to identify the type of problem you need
to solve. Your problem has two possible outcomes: either your
customer will buy cheese, or he won’t. Because the possible
outcomes are limited to just two categories here, this problem
describes what is called a Binary Classification. Fortunately Azure

ML provides some great out-of-the-box classification algorithms
to solve these kinds of problems. You use a binary classification
algorithm to make predictions based on past data. For instance,
the fact that a certain customer buys cheese every week will
stand out as a pattern. Azure ML can detect this pattern and
predict whether the customer will buy some cheese when he’s in
your web shop.

Been there, done that
So far we’ve determined that it's likely that your customer buys
cheese regularly. He'll probably get bored eating the same kind
over and over again. Wouldn’t it be nice if your system could
recommend some excellent alternative brands?

What else have you got?
Azure ML also has a way to answer this question. Again you start
by identifying the type of problem you need to solve. This problem
has many outcomes; there are many types of cheese your custo-
mer might like. The goal is to select just one or two items he’ll like
best and recommend those. Finding similar products in a catalog
can be done using a Clustering algorithm. You can get an answer
to the question by looking at possible ratings of previous purcha-
ses by that user, and also by seeing what similar customers (same
age, gender, etc.) prefer. The Matchbox Recommender algorithm
uses both approaches, making it an excellent choice to use in your
Azure ML model.

Stuck in traffic
Let’s pivot from the customers into
logistics. You can only make a good
profit if you don't waste money.

Your company should always deliver orders in the most efficient
manner. Predicting heavy traffic can help you do that. So when
there is a great deal of traffic on the highway, you’ll want to take
an alternative route. You can make an informed decision based
on traffic information combined with intelligent processing.

/ / / / / / / / / / / / / / / / / /

Azure Machine Learning
Azure ML is a Microsoft
Cloud platform that offers
Machine Learning as a
service. This is all about
finding patterns in exis-
ting data and using them
to predict future events.
These predictions can
make your software
smarter.

CO
NT

IN
UO

US
DE

LI
VE

RY
 3

.0
M

OB
IL

E
AL

M
CL

OU
D

Xpir i t Magaz ine
page 46

What’s the best route?
In order to compute the optimal delivery route, you’ll need to
determine the delay if you take the highway. Again we first need
to identify the type of problem we need to solve. The delay itself
can be any value (minutes, hours), so classification won’t help us
here. Predicting such a numeric requires a Regression algorithm.
You can use your knowledge about past deliveries, combined with
real-time traffic data as inputs. The delay can be compared to the
extra time it will take to use alternative routes.

Figure 1

Sold out
Efficient planning of inventory will help reduce waste. You don't
want to keep too many perishable goods in stock. Everything past
its best-before date will become waste. You need to know how
many items of each product you're likely to sell tomorrow. In order
to be able to do this, you’ll need to have information on what you
have sold in the past. Based on information from products that
were sold in the past, your sys-
tem can predict what will be
sold tomorrow. The more infor-
mation you put into the model,
the more accurate the predicti-
ons will become. For instance, if
your data set contains the date
at which ice cream was sold,
Azure ML will be able to deter-
mine that more stock is needed in summer. It would be helpful if
you were notified about possible mistakes while ordering new
stock. So when you are about to order only ten boxes of ice cream
instead of the required 100, the system should warn you about it.

I can’t let you do that Dave
Predicting the quantity of ice cream that will be sold also requires
a Regression algorithm. Using information from the registers as
input, your system will be able to make accurate predictions about
future sales. An algorithm that detects instances of you breaking
a pattern is an Anomaly Detection algorithm. Azure ML provides
two of them. You can use them to monitor planned orders and
detect possible user errors.

CLOUD

Algorithms
To create predictive models,
Machine Learning uses various types of algorithms.

Some examples are:
■ Anomaly detection - For finding unusual data points
■ Clustering- To discover structure
■ Regression- Prediction of values

■ Classification - Prediction of categories

Data sets
Azure ML prediction models
can only work well if plenty
of accurate information
about the past is available.

 page 47

Think ahead. Act now.

How to get started
If you want to try using Azure ML, you can go to the portal at
https://studio.azureml.net and sign up for a free trial. In the portal,
you start by creating a workspace. In that workspace you add
projects and experiments. For developers, this set-up is somewhat
similar to having a team project in which you add solutions and
projects. Once you’ve created an experiment, you can drag and
drop components into it and start connecting them in order to
create a Machine Learning model. An example of this is shown in
Figure 1.

Heads up
Adding some components to a model is easy; the difficult part is
finding out if your model can actually predict the correct things.
Optimizing your model starts with cleaning the input data set.
Missing values can lead to incorrect patterns.

Providing too much information can lead to poor performance.
Fortunately, Azure ML provides a number of tools to analyze the
accuracy of your model. You can even compare the performance
of multiple algorithms. Interpreting the results does require some
knowledge about statistics. A Data Scientist can help you clean
your data sets and optimize your models.

To sum up
We’ve discussed a number of concepts found in Machine Learning.
All examples were based on finding patterns in existing data, in
order to predict something about the future. You can’t predict your
future without knowing your past. Machine Learning is no longer
something only large companies use, it has become a commodity.
It is quite simple to add some cleverness to your application using
Azure ML. By using some trial and error you can quickly create
some working predictive models. However, finetuning them still
requires the help of an expert.

CO
NT

IN
UO

US
DE

LI
VE

RY
 3

.0
M

OB
IL

E
AL

M
CL

OU
D

LOEK DUYS
CLOUD CONSULTANT XPIRIT

Loek is a Consultant and Cloud Solutions Architect
who focuses on creating secure, scalable, available and
maintainable systems. He’s always looking for ways to
leverage the latest additions to the Microsoft stack
(Azure, .NET) to create better solutions. Loek likes to
exchange technological knowledge, and to promote
software security awareness.

Xpir i t Magaz ine
page 48

How to accelerate
your choices using data

A few months ago, I arrived at the Volvo dealer to pick up my new car. I was very excited. The car dealer tried to explain
all of the car’s features but I couldn’t care less. All I wanted was to hit the road, but he insisted on installing an App on
my phone before I took off. Installing this App would allow me ‘to get to know my car better’. Five clicks later, all was
set up, so finally I could hit the road with my new baby!

A couple of days later, I opened the app, and when I opened it, I
was completely surprised by the amount of data it displays. It
turns out that my car is no longer just a brutal engine. Instead,
it’s a mean IoT machine! It collects all sorts of data that give me
insight into the usage of the car. It helps me to detect problems
early and control a range of settings, and it even allows me to
start the heater from my bed when it’s freezing.
At first it was hard to understand how collecting data could impact
me in a positive way. I became more curious when I realized that
my navigation system is updated regularly, but I’ve never seen an
update screen. When I asked the dealer, he explained that the

navigation is updated only when my car is ‘idle’. The car determi-
nes the ideal moment by analyzing the collected trip history.
He also explained that the car collects my street crossing appro-
ach speed. By detecting patterns in my behavior, Volvo gets a
better understanding of how I use my car. They can now prevent
me from having accidents by applying preventive maintenance on
the brakes or by offering drive assisting features (brake assist,
impact braking, lane corrections, etc.). Volvo has seen the light,
similar to the likes of Tesla, Toyota and BMW. Data will allow them
to run their business more effectively, while I get a safer car. What
do you use to improve your business?

/ / / / / / / / / / / / / / / / / /

CLOUD

 page 49

Think ahead. Act now.

What can you get out of data?
Now, just collecting data will not help you with anything. Your
storage facilities may contain petabytes of data without adding
any value to your customer or your business. To deliver the desired
impact, you will need to transform data intoinformation, but this
is easier said than done. Before turning big data into something
valuable, you’ll need to understand what you can transform it into
and how to achieve it.
Typically, when we gather data from a database, a developer will
be very descriptive in his needs. He’ll be explicit about the source
and most likely he’ll define precisely how it will be formatted.
An example of this is the traditional poor men’s reporting using a
SQL statement:

In this example we will combine the average speed per hour and
the average tyre profile reduction, and group this by date. From a
business perspective, we want to gain insight into yesterday’s
performance. The generally accepted name for this type of
analytics is ‘descriptive analytics’, and the request is usually
expressed in query languages.The second type of analytics I’d like
to introduce you to, is very close to its ‘descriptive’ brother. It is
called ‘diagnostic analytics’.

The focus of this type of analytics is still on the past, and the main
difference lies in the underlying business question. In a descriptive
world we ask ourselves the questions ‘what happened’, whereas
in a diagnostic world we wonder about the question ‘why did this
happen’? So rather than searching for the occurrence of an
incident, your question is now focused on identifying the (root-)
cause of the incident.

Once you understand that your performance has decreased
(descriptive) and you understand the cause of this(diagnostic), it’s
time to make the next step. Using the knowledge you gained, you
want to be able to predict the future performance. This is the
moment when you turn yourself to ‘predictive analytics’. This kind
of analytics helps you to predict future data points using models,
and you train these models by feeding them historical and
reference data.

Now that you understand what the future looks like, you’ll
probably want to understand how you can influence the result.
This is when ‘prescriptive analytics’ can show you the way. An
example: your sales director is confronted with low predictions for
the next quarter. The predictive models have shown the urgency,
and now he has to act accordingly. He can stimulate his market
with a new product launch, but what is the appropriate size of his
salesforce? And what is the best pricing strategy? Does he need
to open a new shop on Bond Street in London or should he invest
in better delivery options for customers outside of big cities? By
simulating what will happen, the prescriptive models will advise
what’s the best possible combination of choices, and using this
advice, the sales director can make a properly informed decision
in order to gain the best result for his organization.
If it’s a split second decision, prescriptive analytics can potentially
even help to make the decision itself. The feedback gathered
directly after the decision can feed directly back into the models.
This allows the business to quickly understand whether a certain
promotion text is more effective than another.

In addition, they don’t have to worry whether the marketer is
online at that particular moment to disable the less effective
advertisement.

1 http://xpir.it/mag3-analytics1

CO
NT

IN
UO

US
DE

LI
VE

RY
 3

.0
M

OB
IL

E
AL

M
CL

OU
D

SELECT Date, AVG(SpeedPerHour), AVG(TyreProfileReduction)
FROM CarUsageData
GROUP BY Date ORDER BY Date ASC

Gartner’s way to visualize the different types of Big Data Analytics

Xpir i t Magaz ine
page 50

Technical Limitations
For a very long period, technical challenges stood in the way of
making proper analytics solutions happen. For the past 20 years,
IT departments have been facing a financial wall, which disallowed
them to handle large chunks of data in their infrastructure. Luckily,
cloud-based large data stores, instant data processing power, and
advanced access control are now very affordable.
Limitations at application level are also disappearing quickly. The
three main cloud providers deliver very competitive solutions in
the domain of machine learning. These solutions are updated con-
stantly and offer a low entry level. Advanced web-based dash
boarding techniques, such as PowerBI, speed up the time to mar-
ket significantly, and they take away the visualization headache.
These tools also reduce the time to market, which in turn allow
business users to access their data a lot quicker. Algorithms
and reference data are nowadays often publicly available. For
commercial usage, several standard packages can be acquired
from public marketplaces requiring limited investment.

Making the difference
Now that the technical barriers can be broken down by newly avai-
lable capabilities, it’s time to bring this advantage to your organi-
zation. Large analyst firms such as Gartner, predict1 that between
now and 2018 more than half of the large organizations will try to
disrupt the industry by using advanced algorithms and analytics.
They even expect that this growth will accelerate beyond this
point. Knowing that these models become smarter while feeding
them data, the urgency to start immediately becomes bigger
every day. You can either allow your competitor a head start or
you can jump on the boat and take a leading position.

It’s important to understand that not every business question can
be answered by using advanced analytics. Especially decision
making involving your own employees is still considered a no-go;
when there’s Personable Identifiable Information in the process,
it’s recommended to take a very defensive approach with advan-
ced analytics technologies. Typically, I believe that you can make
the biggest difference in the following areas:
■ Creating transparency in your organization about business

results
■ Enabling experimentation in customer needs & understanding

variation in those needs•
■ Segmenting customer bases to allow better and more targeted

offers
■ Replacing human decision making in order to reduce operational

costs
■ Innovating business models, products and services.

Making a head start
Your organization is not the first one to attack the problem. To
avoid making the same mistakes and stand up on the shoulders
of giants, we’ve listed the most important recommendations that
will help you to keep gaining speed.
■ When choosing a cloud vendor

AWS, Google and Microsoft all have competing big data offe-
rings. When choosing from one of them, realize that you’ll marry
this vendor. Even though it’s technically possible, you’ll never
move 5 petabytes of data.

■ Involve your legal department
Your legal department can help you to understand what you
can do with data and where you reach limits such as privacy
and legalities. By involving them at an early stage, you can look
at possibilities, rather than restrictions.

■ Start storing raw data today
Well-structured data in application databases is often optimized
for a specific purpose. Since you don’t know how you’ll use this
data in a model, don’t process it. Instead, save the raw data.

■ Obtain reference data
It’s going to be impossible to train your intelligent business
models in a few months. You will need more data to train these
models. Therefore, try to obtain relevant reference data on data
marketplaces. This is both more effective and often cheaper
than collecting it yourself.

■ Train or hire talent?
Data Science is a large part of computer science. It also requires
a completely different mindset. To get started, hire the talent
while you start building up the internal competence.

■ Generate new input
Consider everything as a new source of information. Consider
tools such as Microsoft Cognitive Services to gain new types of
data, even from human conversations.

■ Not pretty
Many times, the output of the numbers aren’t that pretty.
Rather than focusing on the visualization, allow self-service
business intelligence using Excel or a dashboard. This allows you
to focus on the quality of the data.

Conclusion
Getting started with big data analytics is never easy. Even though
it became a lot more affordable, the investment in handling large
pieces of data is still significant. In order to make sure that the
investment is worth the money, you need to find an achievable,
well-designed business objective, and you’ll need to prove to your
organization that this investment will yield returns2. In this game
of figures, you must not overlook the possibility of adding custo-
mer value. Volvo has always committed itself publicly to passenger
safety. With their investments in Big Data, they are proving very
clearly that their value proposition is not just an advertisement,
but that it’s part of their product experience. And I hope it will
keep on proving that, every day when I hit the road on my way
home…

CLOUD

2 http://xpir.it/mag3-analytics2

ALEX DE GROOT
CONSULTANT XPIRIT

Alex is focused on bringing
simplicity and flow to software
teams. He gets excited when
talking about product thinking,
feedback loops and cognitive
load. Having a geeky interest
in IoT, compilers and data
structures, you'll find him
exploring new technologies
such as Cognitive Services and
SmartDust.

Think ahead. Act now.

Xpirit Netherlands BV
Utrechtseweg 49
1213 TL Hilversum
The Netherlands
+31 (0)35 672 9063

Pascal Greuter
Managing Director
mobile +31 (0)6 53 45 96 94
pgreuter@xpirit.com

Marcel de Vries
Chief Technical Officer
mobile +31 (0)6 35 11 54 91
mdevries@xpirit.com

Xpirit is a member of the Xebia family. We operate as Microsoft Business Unit under our own label.
Accompany us on our first steps into a new era of Microsoft Consulting. We strive for authority by embracing new

technologies such as Azure, Enterprise Mobile, ALM and security and adapting them for fit-purpose solutions.

Think ahead. Act now.

If you prefer the digital
version of this magazine,
please use the qr-code.

