
Xpirit
Magazine

Other articles are: n Using Microsoft Application Insights to Implement a Build, Measure, Learn Loop - Marcel de Vries
n Develop Cross-platform mobile hybrid apps with Ionic - Pascal Naber n Git vs Team Foundation Version Control: Getting
started - Rene van Osnabrugge n Start with Visual Studio Release Management vNext - Rene van Osnabrugge
n API Managment - Marcel Meijer

Think ahead. Act now.

Patriek van Dorp
An Introduction to
Azure Service Fabric

Alex Thissen
First programming
experience with
Microsoft HoloLens

Roy Cornelissen
Lessons learned:
migrating an N-Tier
web app to microservices

http://www.visualstudio.com

 page 3

With great pride I welcome you to the very first edition of Xpirit Magazine.

Our journey to make a real difference in IT started in November 2014, when

Xebia and a group of very talented people came together to found Xpirit, a

new company that always puts people first, and chooses to only work with the

very best so our customers achieve more.

At Xpirit we firmly live to our core principles of People First, Quality Without Compromise,

Customer Intimacy, and Sharing Knowledge. As the foundation of our organization, our

core principles ensure we stay focused on helping our customers reach their full potential,

while we get to do the work we love. At Xpirit we are more than just a consultant, we are

always looking towards the future. And because we take our profession seriously, we

invest more time to really understand our customers, and seek out innovative solutions

that will help them succeed. We do make a difference, because that is what we are:

different!

This Xpirit Magazine is an expression of one of our core principles: sharing knowledge.

You’ll find in-depth articles on emerging technologies that only a select few have

experienced. That’s because at Xpirit our team lives at the cutting edge (like our article

on Hololens), it’s what makes our people tick and it’s a competitive advantage that will

make your organization stand apart.

Along with publishing articles, you’ll see us at conferences around the world where we

present sessions and workshops in the domains of cloud-based solutions, application

lifecycle management and enterprise mobility. You might already have met members of

our team at Microsoft Tech-Ed Europe, Visual Studio Live Las Vegas, Visual Studio Live

San Francisco, Techorama Belgium, Techdays in The Hague or DevIntersection in

Amsterdam. Included in this first edition of Xpirit Magazine are articles on mobile cloud

development and Azure stack, along with our first in-depth experience on software

development using the brand-new Microsoft Hololens. There’s also a great article on Git

versus TFS that critically examines the competitive advantages of both new and proven

technologies. You’ll get plenty of food for thought with our vision on migrating applications

to a microservices architecture and the best way to start with Visual Studio Release

Management, as well as new ideas to take your IT and business to the next level with our

insights into implementing a build-measure-learn loop. At Xpirit, we really understand

your business!

We wish you a pleasant and informative time reading this magazine, and look forward to

hearing from you.

Pascal Greuter

Managing Director Xpirit

Colofon
Edition:
Xpirit Netherlands bv
No. 1 • May 2015

Editorial Office:
Xpirit Netherlands bv

This magazine was made
with the help of:
Pascal Greuter, Marcel de Vries,
Patriek van Dorp,
Rene van Osnabrugge, Pascal Naber,
Roy Cornelissen, Alex Thissen and
Marcel Meijer.

Contact:
Xpirit Netherlands bv
Utrechtseweg 49
1213 TL Hilversum
The Netherlands

Phone: +31 (0)35 538 19 21
E-mail: pgreuter@xpirit.com

Layout and Design:
Reclamebureau Bij Dageraad
Winterswijk
www.bijdageraad.nl

©2015 All rights reserved.
No part of the contents of this
magazine may be reproduced or
transmitted in any form or by any
means without the written permis-
sion of the Xpirit Netherlands bv.

All trademarks are property if their
respective owners.

Advertisement
Microsoft 2
Xebia University 29
Xpirit Netherlands bv 44

Welcome to
Xpirit Magazine!

Xpir i t Magaz ine
page 4

Table of content

n Welcome to Xpirit Magazine .3

n Table of content .4

n Using Microsoft Application Insights

 to Implement a Build, Measure, Learn Loop .5

n An Introduction to Azure Service Fabric .10

n Develop Cross-platform mobile hybrid apps with Ionic 15

n Git vs Team Foundation Version Control: Getting started21

n First programming experience with Microsoft HoloLens 25

n Lessons learned:

 migrating an N-Tier web app to microservices .30

n Start with Visual Studio Release Management vNext 35

n API Managment .40

 page 5

In our industry we are constantly striving to build better software faster. At the moment you see that continuous delivery
is the current technology hype where we all try to deliver the software in faster cycles to the customer and try to achieve
to build only the software that brings the highest business value to the customer. Many companies are now selling
consulting services and products that focus primarily around the delivery and installation of the software products in
test and production environment so the value actually reaches the customer in a timely manner. This is all great and
does deliver a lot of value but there are still a lot of issues we need to solve. One of the primary issues we still need to
solve is how we can determine what additional features will actually bring the most value to the end user.

Think ahead. Act now.

It is crucial to know that you are delivering the right product that

actually provides value. You want to know the performance of our

application in production and how specific usage of the system

can impact the performance of our application. If something goes

wrong you want to get diagnostic information from your system

in production so you can see or even predict when things will

break. All these questions are solvable, but most of the time they

are solved with custom point solutions that take up a lot of time

to build and maintain. In this article I will show you how a product

called Microsoft Application insights can provide these insights

with out of the box functionality so you can focus on building fe-

atures instead of worrying about these kinds of infrastructural

fundamentals in your application.

Build, Measure, Learn

Application Insights collects, processes and presents a wide variety

of telemetry data including performance, usage, availability,

exceptions, crashes, environment, log and developer-supplied data

from all components of an application—including clients (devices

and browser), servers, databases and services. With this "360

degree view" of your application, Application Insights can quickly

detect availability and performance problems, alert you, pinpoint

their root cause and connect you to rich diagnostic experiences in

Visual Studio for diagnosis and repair. It also supports continuous,

data-driven improvement of an application. For example, it

highlights which features are most and least used, where users

get "stuck" in an application, where and why exceptions are

occurring, which client platforms are being used with which OS

versions, and where performance optimizations will make the

biggest impact on compute costs. By incorporating Application

Insights into your product you can start gaining insights in the

usage of your product in real time, giving you information that

you can use to better decide what needs to be done next in your

development team.

Application Insights provides libraries you can include in virtually

any type of application. There are support libraries for native Java

applications, iOS applications (Objective-C), Android applications,

Windows Store applications and web applications. You can very

easily gain access to these libraries by either pulling them from

GitHub, or for .NET applications by getting them from NuGet.

At the moment Microsoft is transitioning from Application Insights

that was part of the Visual Studio Online offering to an offering

that is an intrinsic part of the Microsoft Azure offering. For this

reason you will find two types of libraries, the old and the new

ones. The one I describe here are the new libraries that provide a

common API regardless of the platform you target. So methods I

show here in a web application are exactly the same on the other

supported platforms. At this moment you get the libraries as

pre-release packages from NuGet.

Using Microsoft Application
Insights to Implement

a Build, Measure, Learn Loop

ALM

Xpir i t Magaz ine
page 6

Measuring application performance

With Application Insights you can get diagnostics on both the

client-side performance and the server-side performance of e.g.

your web application. The way to get started and get performance

data is first by adding Application Insights into your project.

In my example I will use an ASP.NET MVC website, but this works

the same for the other application types I just mentioned. You can

use the Visual Studio Wizard to generate a lot of stuff for you.

I will describe what to do by hand so you can also apply it to

projects you manage without Visual Studio. First, you need to go

to the new Azure portal and there create a new Application

Insights profile.

Figure 1 - Create Application Insights Profile

After specifying the correct Application Insights name, application

type, resource group and region you will get the dashboard where

all your telemetry data will be shown when we have set up things

correctly in our application.

Figure 2 - Initial Application Insights Dashboard

As you can see in the portal, you can now add Application Insights

into your project in Visual Studio and add code to your web page

to show the client performance of your web application. The ser-

ver-side code is nothing more than registering Application Insights,

and it will start intercepting all work done in your server-side code,

including the detection of outgoing dependencies and the time

consumed in those calls. When you add Application Insights to

your ASP.NET MVC application it will register an Http Module in

the web.config that will initialize Application Insights and start the

telemetry dataflow of your application. On other platforms like e.g.

mobile applications, you need to bootstrap Application Insights in

the startup of your application.

Application Insights is configured using a file called ApplicationIn-

sights.config. This is also the location where you specify the In-

strumentationKey that identifies where your data needs to flow.

You can keep this key the same for all instances of your website,

so all data flows to the same location on Azure. After setting up

these basics you will already get all the basic server performance

and usage data flowing to the portal dashboard. You can see the

first charts already light-up in your portal.

With websites that have heavier JavaScript on the client it is im-

portant to also keep track of the client side performance these

days. You can also enable client-side tracking of performance by

injecting a small piece of JavaScript into your application. This is

more or less the same concept as you have with other tools that

e.g. track user behaviour on pages, like Google Analytics. Each

page must have this small piece of JavaScript code that you can

copy from the portal. In an MVC app the most convenient place

to insert this code is in the master template file that is used by

every page. This is standard _Layout.cshtml file that can be found

in the “views\Shared” folder. The script you need to place in the

page can be copied from the portal when you click on the “Add

code to monitor web pages” blade in the Azure portal. The code

is shown in the following code snippet:

<script type="text/javascript">

var appInsights=window.appInsights||function(con-

fig){

function s(config){t[config]=function(){var

i=arguments;t.queue.push(function(){t[config].apply(t,

i)})}}var

t={config:config},r=document,f=window,e="script",o=r.c

reateElement(e),i,u;for(o.src=config.url||"//az416426.

 page 7

Think ahead. Act now.

vo.msecnd.net/scripts/a/ai.0.js",r.getElementsByTag-

Name(e)[0].parentNode.appendChild(o),t.cookie=r.coo-

kie,t.queue=[],i=["Event","Exception","Metric","PageVi

ew","Trace"];i.length;)s("track"+i.pop());return con-

fig.disableExceptionTracking||(i="onerror",s("_"+i),u=

f[i],f[i]=function(config,r,f,e,o){var

s=u&&u(config,r,f,e,o);return s!==!0&&t["_"+i](con-

fig,r,f,e,o),s}),t

}({

instrumentationKey:"841abd52-569e-4c2f-a213-

32ded088cdb2"

});

window.appInsights=appInsights;

appInsights.trackPageView();

</script>

In this piece of JavaScript code I highlighted two parts. First where

you supply the instrumentation key. This is the same key as you

will find in the ApplicationInsights.config file. The second part is

the initialization of Application Insights in the client. You see you

can just reference a variable named appInsights and on that you

can call a variety of methods to track information from the client.

The trackPageView() call will now be executed on each page the

client loads and that will generate the basic performance data

you can see in the portal.

Figure 3 - First Performance Data in Dashboard

Looking at application diagnostics

With application diagnostics you can get valuable insights into

why things might have gone wrong in your application. With Ap-

plication Insights you can search right from the portal. It is a cen-

tralized location where you can search for the log events you send

out and it can also correlate with the performance and usage me-

trics you have gathered. So when things go bad in your application

this provides a complete and holistic view on what went on in the

system, what was used at that moment and how things broke in

your system. Without adding any line of code, Application insights

will track any unhandled exceptions. If you want to send out spe-

cific log information with the optional levels like Verbose, Warning

and Error you can do so by adding a two lines of code. Here is a

code snippet on how to do this.

TelemetryClient client = new TelemetryClient();

client.TrackTrace("This is diagnostic information",

SeverityLevel.Warning);

If you go to the portal you can then find those log messages, and

filter on anything that was happening surrounding that particular

log message. This is shown in the following screenshot:

Figure 4 - Diagnostic Events

As you can see, finding specific diagnostics is something that can

be done pretty easy by just adding these statements to your

application

Measuring application usage

Before we look at how we can add usage metrics into our

application, I want to take it one step back and talk a little bit

about the theory behind why this is an important step into

becoming more efficient in building software.

Xpir i t Magaz ine
page 8

Eric Ries wrote in his book “The lean startup” about how to deter-

mine if you are delivering the right product. He describes a lot of

principles on building a startup. One of the principles is the concept

of testing assertions on what we think is most valuable for our

customers. Traditionally we spend a lot of time specifying what a

feature looks like and then we start implementing it. If we have

continuous delivery set up we can even deliver it to production in

a rapid pace. But the problem that remains with this approach is

that the assumptions on why we build a certain feature are not

tested and assumptions are made on the value of a feature

before we can actually validate if this is true. We still tend to

spend a lot of time and money delivering the wrong features to

the customer when these assumptions are wrong. This all boils

down to the simple principle that the only feature that provides

value is a feature that is actually used and meets the end users

need. To mitigate the risk of building the wrong things, Eric

describes the concept of “validated learning”, where you set up

an experiment in your software and define the metrics to show

you if the feature will bring to you what you assume. When it is

established that the feature really provides value because the

customer is using the feature as envisioned, only then do you start

spending more time and money polishing that feature. He descri-

bes a so called Minimal Viable Product (MVP) that you build to

enable you to test your assumptions on the feature you want to

deliver. So you create a first simple iteration of the feature instead

of spending a lot of time specifying the feature and then build it

completely. You build the first minimal version to test your

assumptions and after that you iterate on it to improve it with

the help of the direct customer feedback.

With Application Insights you can build metrics into this Minimal

Viable Product and learn if assumptions you made are true and

based on that input pivot on your ideas and create a new experi-

ment, or pursue the idea and polish it and measure the effects of

those changes. In Application Insights this is done with telemetry

events you can send and based on this you can build your own

graphs to see the experiment and learn, or even export the data

to some analysis environment of your own liking.

Let’s have a look on how we can add this kind of telemetry data

into your application.

Adding custom telemetry tracking to your application

With application insights you have the ability to add custom

tracking to your application both client- and server-side. For this

Application Insights provides the following tracking methods:

Table 1 - Tracking methods available on TelemetryClient

Now let’s say you would like to set up an experiment where you

want to validate if a customer will remove items from your shop-

ping basket more often when they are from a specific region in

the world. You also think it is related to the total amount of the

Shopping Basket. You segment this amount into buckets of 0-100,

100-500 and 500-1000. To set up such an experiment, the only

thing you need to do is add additional telemetry data to a call

TrackEvent when someone hits the Delete button in your shopping

cart page.This can be done with the following code snippet:

var basketValue = GetShoppingbasketTotalRange();

TelemetryClient client = new TelemetryClient();

var properties = new Dictionary<string, string>();

properties.Add("Amount segment",

GetShoppingbasketTotalRangeSegment(basketValue).To-

String());

var measurements = new Dictionary<string, double>();

measurements.Add("Amount total", basketValue);

Method Description

TrackPageView Called when you show a page, a screen,

 a windows form, etc.

TrackEvent Called to track User actions. It is used to track user

 behavior, so you use this to track e.g. if someone is

 actually using your new feature and you want to track

 that usage and the performance of those actions.

TrackMetric Called to track a Performance measurements such as

 e.g. queue lengths or other metrics relevant for your

 application. You use this when it is not directly tied to

 a user action. Otherwise you use the TrackEvent and

 provide it also metric information in that call so it is

 directly correlated to the event.

TrackException Called to log exceptions for diagnosis. It will trace

 where they occur in relation to other events and also

 provides stack trace information.

TrackRequest Called to log the frequency and duration of server re

 quests for performance analysis

TrackTrace Called for tracking diagnostic log messages, as shown

 in the previous paragraph.

 page 9

Think ahead. Act now.

client.TrackEvent("Item removed", properties, measure-

ments);

In this code sample you can see we add custom properties to the

tracked event. This gives us the ability to slice the data using

those property values in the portal. We also add a measurement

to the event, that is used to show the average value of the shop-

ping basket, when the button is clicked. Since Application Insights

already tracks from which country requests come from, you don’t

need to add this as a custom property for slicing your data. When

you add this piece of code to your application, you can create a

graph or table that shows this data in the portal. You can see the

results in the following screenshot:

Figure 5 - Custom Telemetry Data Dashboard

Measuring application uptime

Finally, we can also track how well the uptime of your website is.

This is done by configuring Application Insights inside the Azure

portal to send a request to your website on a certain configurable

interval. The most simplistic uptime test is that you provide an

URL of your website, e.g. of your home page. When a request to

this page returns the 200 OK return code, it is considered as your

site being up. You can also define a more complex set of checks

on your website to validate if everything runs as expected. For

this you can either record a Fiddler trace or use Visual Studio web

performance tests to record a set of page request and additional

validations. Here you could validate if you can browse your e-com-

merce website and add an item to a shopping cart and go to the

checkout to see if that flow is up and running. After recording

these web requests at the Http level, you can upload this

recording into Application Insights.These tests are then configured

to run from the Azure datacentre on the set interval.

When errors occur or test assertions fail, you can get email

notifications and also dive deeper into the events that happened

in that particular time window. This way you can diagnose why

your site might have experienced an outage or was not able to

return the pages within the set time window specified in the tests.

The moment you see downtime in the portal, you can then dive

into that specific event and dive deeper on the cause, by using all

the things we discussed before. All this telemetry data is at hand,

when you want to diagnose such an outage problem.

Conclusion

With Microsoft Application Insights it becomes possible to get a

full view of your application running in production. Not only can

you track performance, diagnostics and see the uptime of your

website, you can also track very specific metrics about the usage

of your product. By using all these metrics as input to your agile

development process, you can ensure you are building the things

that matter most to your customer. With Application Insights you

are able to optimize your software development by implementing

the full “Build, Measure, Learn” loop.

Marcel de Vries

CTO

https://xpirit.com/
specialists/marcel-de-vries

mdevries@xpirit.com

Xpir i t Magaz ine
page 10

An Introduction to
Azure Service Fabric

Building hyper-scale distributed applications can be very complex. Developers need to take asynchronous communication,
concurrency, latency, redundancy into consideration and many more aspects that are necessary to make distributed
applications successful. These aspects are necessary, but they aren’t directly related to the business domain the appli-
cations relate to. Microsoft azure service fabric helps to simplify these aspects and have developers focus on the business
domain at hand.

Next Generation PaaS

Microsoft started their Cloud Computing platform as a Platform-

as-a-Service (PaaS) offering with Web- and Worker Roles. Web-

and Worker Roles basically are templates for virtual machines that

are managed entirely by Microsoft. They hold your applications

code and they define the characteristics of the virtual machines

that code is deployed to. Although you can deploy more than one

applications onto a single virtual machine (or role instance), up-

dating any of the applications can take up to 15 minutes and thus

typically a role instance (or virtual machine) contains only a single

application.

Web- and Worker Roles are completely stateless due to the fact

that the actual disks are located on the physical machine where

the role instances are hosted. To account for failure of a physical

machine or software errors, Microsoft recycles our role instances.

This means that the disks will be replaced with new disks and that

our application code will be deployed

on those new disks. Any state that

was added after initial deployment

will be lost. To make sure that our

state is being saved, we need to

store it in a durable remote data

store. Examples of durable remote

data stores are Azure SQL Database,

Azure Table- or Blob Storage, Azure

DocumentDb, Azure Search, etc. Alt-

hough these data store serve their

purpose very well, you still need to

think of latency, concurrency, consistency and implementing retry

policies. These are all things that complicate your overall solution

without adding any business value. In addition, using these plat-

form services makes it harder to build cross-premises or cross-

cloud solutions. Azure Service Fabric provides a layer on top of the

operating system of the virtual machine hiding details like the

number of cores, the amount of RAM etc. This layer, or fabric as

it’s called, is created over a cluster of nodes (or virtual machines)

and it manages the provisioning, redundancy, communication and

all the complexity you don’t want to deal with. Azure Service Fabric

also provides a quorum-based replication mechanism that allows

you to store data where your application code runs. This greatly

reduces latency, while preserving state on multiple machines, po-

tentially in multiple data centers. And the great thing is that, be-

cause Azure Service Fabric is implemented as a layer on top the

operating system, it can run anywhere. As long as nodes can find

each other at IP level they can be joined to the cluster.

Figure 1 - Reduced Complexity

CLOUDCLOUD

 page 11

Think ahead. Act now.

Getting started with Azure Service Fabric

The first thing you will need to do is setup your development

environment. To get started first install Microsoft Azure Service

Fabric SDK – Preview 1 using the Web Platform Installer. For this

you need to have Visual Studio 2015 RC installed.

Figure 2 - Web Platform Installer

This will install the Microsoft Service Fabric Host Service, the

Service Fabric SDK, the Microsoft.ServiceFabric.Powershell module

and the Microsoft Azure Service Fabric Tools for Visual Studio 2015.

Next you’ll need to set up a development cluster to test your code

on. A Service Fabric development cluster is very different from the

Compute Emulator we all know from Web- and Worker Roles.

A Service Fabric development cluster is exactly the same techno-

logy that runs in your production environment ensuring that the

code that runs in your machine will run exactly the same way in

your production environment. The only difference is that the

cluster nodes in a development cluster are running on a single

machine whereas in production each node runs on a separate

machine. These machines can either be physical or virtual,

on-premises, in your ISPs datacenter, in Microsoft’s datacenter

(Azure) or in any Cloud environment for that matter, that runs

Windows Server 2012 R2 and up.

Creating a development cluster is done in four simple steps:

1. Open up a PowerShell window as Administrator

2. Execute Set-ExecutionPolicy –ExecutionPolicy
 Unrestricted -Force -Scope CurrentUser
3. Execute cd “$env:ProgramFiles\Microsoft
 SDKs\Service Fabric\ClusterSetup”
4. Execute .\DevClusterSetup.ps1

This will start the Microsoft Service Fabric Host Service and it will

setup a 5 node cluster on your machine. By default your cluster

files (logs and data) will live in c:\SfDevCluster.

Finally, you can verify your cluster by starting the Service Fabric

Explorer located in the Tools folder in the Service Fabric SDK

installation directory (C:\Program Files\Microsoft SDKs\Service

Fabric).

Figure 3 - Service Fabric Explorer

Building Microservices

Microsoft Azure Service Fabric is based on a microservices princi-

ples. Applications that run on Azure Service Fabric consist of small

autonomous services that interact with each other in a loosely

coupled manner. These services can be deployed together as one

application, but they can be upgraded separately without causing

downtime to the system.

Reliable Services Api

To get started you’ll need to create a new project in Visual Studio

using one of the templates in Visual C# -> Cloud -> Service Fabric.

There are four templates, two for building on top of the Service

Model API and two for building on top of the Actor Model API

(which will be discussed later). The two templates for building on

top of the Service Model API are:

1. Application with Stateless Service

2. Application with Stateful Service

Figure 4 - Visual Studio Project Templates for Azure Service Fabric

Xpir i t Magaz ine
page 12

As the name suggests the templates consist of one project for

the application and one project for a service. You can look at the

application as a configuration container for a number of services.

Configuration is done through an ApplicationManifest.xml file. In

there you can specify endpoint names that are used for services,

the minimum number of replicas that should be acknowledged

before returning and the target amount of replicas that should

exist for a particular service and the required partitioning strategy,

etc.The other project is the actual service. From a microservices

perspective this should be a small autonomous service with a

single responsibility. Configuration and definition of the service is

done through a ServiceManifest.xml file, which is located in a

PackageRoot folder.

There are two types of

services, stateless and

stateful. Stateless ser-

vices do not contain state

on the nodes that they’re

hosted on. They can have

state in external data sto-

res like Azure SQL Data-

base, Azure DocumentDb

(or any other storage ser-

vice available), but their

state will not be stored on

the actual node.

Figure 5 - Service Fabric Application

Stateful services, on the other hand, store their state on the

actual node where they’re being hosted on. This reduces network

latency while retrieving the data. Partitioning, allocation and

replication are all managed by Service Fabric based on the

configuration provided in both the ApplicationManifest.xml and

ServiceManifest.xml files. State will be stored on the actual node

where your service is hosted, thus reducing network latency.

Once you created an application, additional services can be added

to the application by right-clicking the applications project in the

Solution Explorer. This way you can mix all types of services

(Stateless, Stateful, Stateless Actor and Stateful Actor) in the

same application. The AplicationManifest.xml file will automatically

be updated to include the new services and you can manually alter

them to override configuration settings made in the Service -

Manifest.xml file.

Reliale Services

Writing a service can start out simple, but you still have the option

to change the inner workings of a service.

A Service Project basically is a Console Application that compiles

to an EXE. In the Main method a FabricRuntime is created and a
service type is registered. Multiple service types can be registered

to the FabricRuntime, but that would mean these service types

can only be upgraded together and not separately. We’ll discuss

this later when we talk about the Actor Model API.

Snippet 1 - Registering Service Types to the FabricRuntime

A second class in the project represents the actual service. The

service class inherits either from StatelessService or StatefulSer-

vice and it requires you to implement just two methods:

1. CreateCommunicationListener

2. RunAsync

Snippet 2 - Two overrides of a Service

CreateCommunicationListener needs to return an implemen-
tation of ICommunicationListener, which deals with opening
and closing a communication channel and listening on it. This can

be a communication channel of your choosing (e.g. WebSockets,

HTTP, Azure Service Bus, ZeroMQ, etc.). This communication channel

 page 13

Think ahead. Act now.

is used to receive messages from outside the service.

RunAsync is where all the work is done. If you’re familiar with

how Worker Roles work, this is very much the same as the Run
method in a Worker Role. It defines the lifecycle of the service. If

the RunAsyncmethod returns the service will be recycled. So, just
as with Worker Roles, it contains an endless loop that will execute

our code.

Reliable Data

If you chose to create a Stateful Service your service class will

contain a StateManager property. This property can be used to

get reliable data collections, queues and transactions. This way

you can read from and write to a collection as you are used to

and you don’t have to worry about concurrency, redundancy, avai-

lability or scale.

Snippet 3 - Using Reliable Collections

A Programming Model Built For Microservices

So microservices are small autonomous services with a single

responsibility. Now that looks a lot like Separation of Concerns in

object-oriented programming. Basically each class would be a

microservice on itself if it was independent from the process it ran

in. Project Orleans was developed to create a programming model

that implements the mathematical Actor model for concurrent

computations. This programming model was used to accommo-

date the hundreds of thousands of game sessions and play

records of the computer game HALO 4.

The Reliable Actors API in Azure Service Fabric is a programming

model based on Orleans built on top of the Reliable Services API.

A Short Note On Virtual Actors

Before we continue, here’s a short note on what virtual Actors are.

Virtual Actors are isolated single-threaded components that

encapsulate both state and behavior. Actors interact with the

system, including other Actors, by sending asynchronous

messages in a request-response pattern. Virtual Actors are always

there. If they are not, they will be created on the fly and if they

were created in the past they will exist for ever. So the developer

is not concerned about the lifecycle of the actual object.

Snippet 4 - Creating an Actor

Reliable Actors Api

Up until now we haven’t discussed the other two project templa-

tes, Application with Stateless Actor Service and Application with

Stateful Actor Service. The structure of the application is pretty

much the same in that is still is a configuration container for a

collection of services. The Actor Service templates both create two

projects in addition to the application project:

1. A project for the actual service

2. A project that contains the interfaces for the Actors

The actual service host is exactly the same as with the Reliable

Services API. The only difference is that we need to register every

Actor to the FabricRuntime. Every Actor will become a Service in

Azure Service Fabric. And because the Actor Service by default is

configured to have nine partitions, activations of the Actors will

be distributed over the nodes in the cluster automatically.

Snippet 5 - Registering Actors to the FabricRuntime

Snippet 6 - Implementing IActor

Xpir i t Magaz ine
page 14

Every Actor starts out as an interface defining its behavior. This

interface should implement the IActor interface. The IActor
interface is just a marker interface for the ActorProxy to validate
that this will indeed return an Actor.

Next, we need to create a class in the actual Service project that

inherits from Actor and implements the previously created
interface. If it involves a Stateful Actor Service we’ll need to inherit

from a generic Actor of the type of the state it will contain.

The state needs to be a class that needs to be data contract

serializable.

Snippet 7 - Actor State object

Snippet 8 - An Example of a Game Actor

Snippet 8 shows that Stateful Actors have a State property where

state can be stored. Persisting the state of an Actor is completely

transparent and you can only specify whether to store the data

on disk or in-memory (by using the VolatileActorStatePro-
viderAttribute above the Actor class).
If an Actor is idle for more than sixty minutes it will be deactivated

and ultimately it will be garbage collected. If you need to trigger

a specific method on an Actor periodically, you can register

so-called Reminders. Reminders are registered with and controlled

by the FabricRuntime and thus they will always fire, even when

the Actor is deactivated or even garbage collected.

Just like Grains in Orleans, Azure Service Fabric Actors can raise

events to which other actors or client services can subscribe.

Conclusion

Microsoft Azure Service Fabric offers developers a virtual layer, on

top of the operating system, that spans multiple machines. This

layer helps orchestrate our applications keeping them healthy

even when the physical machine is failing. Because Azure Service

Fabric takes a Microservices approach, services that make up an

application can be upgraded independently from each other

“without downtime and within seconds. And because Azure Service

Fabric is a layer on top of the operating system it can run

anywhere. It hides all the complexity that comes with developing

highly available, high performance distributed systems and lets

developers focus on the business domain at hand.

Patriek van Dorp

Lead Consultant

https://xpirit.com/
specialists/patriek-van-dorp

Develop Cross-platform
mobile hybrid apps with Ionic

Before you start with the development of a mobile app, there are some tough choices to be made. The most important
one is how the app will be developed. You have the option to develop it as a native, HTML5 or a hybrid app. If you choose
to develop a native app, the number of mobile platforms that you would like to support usually states the number of
apps that will be developed.

Currently you probably want to support at least iOS and Android,

perhaps Windows Phone. The consequences are you will develop

in three different environments, in three different languages and

the apps need to be developed in three different development

tools. It’s clear a lot of challenges needs to be addressed. The main

challenges are you will need a broad technical knowledge and it

will be hard to keep the apps functionally equal.

One of the available solutions is Xamarin. Xamarin allows you to

develop a native app in one language, C#, for all platforms.

Especially with Xamarin Forms you have only one codebase.

However, Xamarin Forms is still maturing, since it’s a relatively

new product. Luckily, Xamarin becomes more stable with each

update. Some of Xamarin’s major advantages are quick app

response, platform specific look and feel and the use of XAML to

define the views.

An alternative to these native apps is

a HTML 5 solution. Basically you

develop a web application which will

be used and themed as an app. Just

like Xamarin there is a single code base, used for all platforms.

When the development team has experience in web development,

this approach is probably the most appropriate. The drawback to

this solution is there are restrictions with respect to access device

hardware. For example, you cannot use the camera or the GPS.

Since HTML rendering is browser specific it can be a challenge to

make your app look and feel exactly the same on each platform.

Another disadvantage is there is always an Internet connection

required, thus data loss could occur.

For a long time it’s possible to opt for a hybrid solution. This is an

HTML5 app, hosted in a native container. Examples of such

containers are PhoneGap, Cordova and Trigger.io. When you

choose for a hybrid app, you choose for both the benefits of an

HTML5 and a native app. The native container has access to

device-specific functionality and removes the internet connection

availability requirement. This solution has some disadvantages:

the end user might experience your app as slow and the look

and feel is different from what the end user of a native app is

used to.

Hybrid apps 2.0

As in the entire software world, the world of hybrid apps is moving

fast. Last year many frameworks popped up to provide a solution

to the classic disadvantages of a hybrid app with HTML5. There

are Famo.us, Framework7, Monaca, AppGyver, OnsenUI and Ionic.

The latter looks promising, with Ionic, apps can be developed

rapidly and cross platform. When you have basic experience

with webdevelopment, in particular AngularJS, Ionic is the next

logical step.

MOBILE

 pagina 15

Think ahead. Act now.

If you have experience with
XAML, you will quickly feel
familiar with Xamarin Forms.

Xpir i t Magaz ine
page 16

Ionic

Ionic is an open source framework for building HTML5 mobile apps

to give the end user the experience of a native app. This is done

by making use of HTML, JavaScript and CSS. Like a number of

other frameworks AngularJS is used for the User Interface. Ionic

exists for almost a year, after a long list of betas and release

candidates, Ionic is about to release version 1. Ionic is already

mature enough for developers to put their applications into

production.

Below a list with some need-to-knows about Ionic:

n Ionic works on Ionic 2, which supports Angular 2

n Optimized for speed

n On both iOS and Android, apps look like a native app. An end

 user will not be able to quickly tell whether the app is native

 or hybrid

n Windows Phone is not supported (yet). The support of this is

 on the roadmap

n All native app containers are supported, but Cordova

 is favored

n A major advantage is the existence of a large community.

 There is a high response rate and speed on the forum

n Ionic is open source. The license even allows commercial

 apps to be developed without the app being open-source

 itself.

n Drifty just invested 2.6 million dollars

n The book ‘Developing an Ionic Edge’ has just been released

n The book ‘Ionic in action’ will be released soon

n Ionic provides more and more services and tools to simplify

 the app-developers life

n Ionic is 100% free to use

n There are numerous apps in the stores developed with Ionic.

 For example, the Android and iOS apps Sworkit and Chief

 Steps are a good example to see there is almost no

 difference from a native experience

n Ionic focuses on the latest versions of iOS and Android.

 At this time, IOS 6 and Android 4.1 and later are supported

 Ionic is working hard to become a mature framework to

 develop cross-platform mobile application with.

Starting with Ionic

To Install all necessary software to be able to start developing,

seems to be a project in itself, but it’s well documented by Ionic

(http://ionicframework.com/getting-started/).

Ionic requires NodeJS and Apache Cordova. Besides this also the

Android SDK and Java SE Development Kit need to be installed.

There are several ways to install all necessary software. Of course

it’s possible to follow Ionic’s documentation. Make sure that the

correct System Paths are set in Windows. Another way is

particularly useful if you want to use Visual Studio as a

development tool. You can limit the actions by only installing or

configuring Visual Studio Tools for Apache Cordova. For Visual

Studio 2013 with update 4 the installer can be found here:

https://www.microsoft.com/en-us/download/details.aspx?id=42675.

For Visual Studio 2015 it’s a matter of checking the correct

checkbox in the setup.

After installation, a new project template is available in Visual

Studio. The new template is called 'Blank App (Apache Cordova)

"and can be found under Templates -> JavaScript -> Apache Cor-

dova Apps.

 page 17

Think ahead. Act now.

The most common way to develop apps with Ionic is often done

with Sublime Text, a free third-party tool. Visual Studio is also a

viable option.

Ionic offers an alternative to start developing. For this, the project

Ionic Box is available. It’s a virtual machine which can be downlo-

aded with all necessary tooling. More on this can be found at:

https://github.com/driftyco/ionic-box

Create an app with Ionic

It is advisable to stay as close as possible to Ionic’s intended man-

ner to start a project. There are Visual Studio templates and Nuget

packages available. However, it is important to know what these

libraries actually do for you.

Ionic offers multiple templates to start developing an app:

Start the NodeJS command prompt, navigate to the directory

where the app should be created and type the following command

to use the sidemenu template for a new app with the name ‘my-

appname’:

ionic start myappname sidemenu

A directory structure is generated with all necessary files inside.

The www directory contains all files providing the app’s user interface.

Run the project

There are several ways to run a project. Because an Ionic project

is a web project, it can be run in the browser. In addition, it can

run in an iOS or Android emulator. It’s also possible to run the app

in the device’s browser or of course as a native app on a device.

Since a device’s browser interprets the app differently from the

native app, it’s advised not to use this option.

Run in the browser

To do this, execute the following command in NodeJS:

ionic serve

A local development server is started, the default browser laun-

ches and displays the project. A very productive feature is called

LiveReload. This ensures that as soon as changes have been made

to the source, the browser automatically refreshes. All changes

are immediately visible without rebuild time, redeploy or local de-

velopment server restart. Especially when you have a development

environment with two screens, this is a relief.

Run in the emulator

This sample only shows how to start the emulator for Android.

When you want to start the simulator for iOS, you will need a Mac.

Execute the following commands:

ionic platform add android

ionic build android

ionic emulate android

The emulator is started and the app will be displayed.

Run as an app on a device

Before release it’s necessary to test the app on an actual device.

If the app should be installed on iOS, an Apple Developer license

is required which costs $99,- per year. After this XCode should be

installed and configured. This is necessary because this way

Cordova can package and sign the app for iOS. XCode can only run

on Mac hardware. For Android, the following command can be

executed in NodeJS after the Android device is attached to your

PC. (USB debugging must be enabled on the device)

blank An empty app

tabs (default) A starter app where tabs are used for navigation

sidemenu A starter app where a sidemenu is used for navigation

Maps A sidemenu starter app with Google Maps integration

Salesforce Uses Salesforce OAuth autentication and the Salesforce

 REST API to call Salesforce functionality.

Analytics A starter app which uses the Ionic IO Analytics Service

Push A starter app which uses the Ionic IO Push Service

io A starter app which uses all Ionic IO services

blank tabs sidemenu

Xpir i t Magaz ine
page 18

ionic run android

The project structure created by Ionic is very well arranged. The

project includes package manager Bower. Ionic is already loaded

with Bower and can be used immediately to load other packages.

Use Visual Studio to develop Ionic projects

Besides Sublime Text, Visual Visual Studio can also be used to

develop the Ionic project. This requires some manual steps. It is

convenient to create a ‘Blank 'Blank App (Apache Cordova)' with

the name www. Both the Ionic directory and the directory Visual

Studio created for the project correspond. Close the solution and

copy the sln file and all files and directories, except the images

folder and index.html to Ionic’s www folder. Open the solution from

its new path and add all directories of Ionic to the project. Now

both Sublime Text and Visual Studio can be used for development.

Ionic Components

Ionic offers a comprehensive set of components that can be used

directly in the views. These are all well documented on http://io-

nicframework.com/docs/components/. Examples include List, Grid,

Toggle, Cards, Checkbox, Button and many more components.

Additionally Ionic provides a layout for

standard HTML tags such as h1 and p.

No layout-specific code needs to be

written for iOS or Android.

Ionic is not just a CSS framework it is

also a JavaScript UI library.

For example, JavaScript provides

services to display a pop-up or a spinner. All services can be found

here: http://ionicframework.com/docs/api/. This altogether

provides a broad range of functionality to the developer, for

conveniently developing the User Interface. Besides User Interface

services, Ionic also offers other services.

Ionic ecosystem

Although Ionic only exists little over a year, the project is already

in the top 50 most popular frameworks on GitHub. Ionic releases

more and more tooling to make developers’ life easier. The goal

of Ionic is to give hybrid app developers a head start over

developers of native apps.

Ionic IO

Ionic offers all services under the name Ionic IO. To use these

services you need to personally register and the app must also

be registered. After this, the following services are available:

Ionic User

This service provides user tracking. In addition, this service is

required when using other services like Analytics and Push.

http://docs.ionic.io/v1.0/docs/push-quick-start

Ionic Push

This service can send push notifications to the app.

http://docs.ionic.io/v1.0/docs/push-quick-start

Ionic Deploy

Usually when updating your app, you have to go through the

resubmission process. With Ionic Deploy new versions of the app

can be deployed without going through the resubmission process.

This type of update does not support binaries. Only HTML, CSS

and JavaScript can be updated this way.

http://docs.ionic.io/v1.0/docs/deploy-install

Ionic Analytics

This Ionic IO service provides a way to add Analytics, metrics and

error tracking to your app. Of course you are free to choose a dif-

ferent analytics provider. http://docs.ionic.io/v1.0/docs/analytics-

install

Ionic View

All people involved in the app development can install Ionic View

on their device. With Ionic View they get access to the app under

development and are able to review it.

Ionic View is available for both iOS and Android. It’s possible to

upload your app via the command prompt and make it available.

Ionic view is currently in beta. More on this at: http://view.ionic.io/

Icons and splashscreen

Every platform has different requirements regarding the images

being used. This has to do with screen resolutions. Ionic takes

away this burden by generating correct images, per platform, from

a single source-image. Ionic does the same for Splashscreen

images. More on this can be read at:

http://ionicframework.com/docs/cli/icon-splashscreen.html

Based on these components,
Ionic is similar to Bootstrap
for web applications. Ionic
however, goes even further.

 page 19

Think ahead. Act now.

Creator

With Ionic Creator it’s possible to create mockups and prototypes

of mobile apps. After this a template can be generated which can

be used to create an app. This ensures a quick start with the

development of an app. The tool is not available yet. For more

information: http://ionicframework.com/creator/

Ionic lab

Ionic Lab displays the apps UI for both iOS and Android at the

same time in a browser window. LiveReload is still working when

using Ionic Lab. Both windows are being displayed side-by-side.

To use this feature execute the following command:

Ionic serve --lab

Icons

Over 700 icons, created by Ionic, can be downloaded and used for

free. http://ionicons.com/

Xpir i t Magaz ine
page 20

ngCordova

Ionic has created AngularJS wrappers to call native functionality

on phones through Cordova. This functionality is grouped in a

library called ngCordova. These wrappers work on both Cordova

and PhoneGap. With this library functionality is made available

such as taking a picture, a barcode scanner, upload a file, the

flashlight, GPS and much more. ngCordova works on all AngularJS

frameworks that operate on Cordova. http://ngcordova.com/

Conclusion

The world of mobile web development is very dynamic at this time.

It is not yet clear which method of developing a cross-platform

app will become the de facto standard. AngularJS is very popular

among web developers and Ionic provides the ability to use

AngularJS for cross-platform mobile apps. This is offered with

powerful services that make it very easy for the developer to

quickly develop an app with a native user experience.

Ionic is fairly new player and there are many competing frame-

works in this area. Windows Phone is not yet supported. Ionic only

supports recent versions of the mobile platforms. Especially

because phones have to be fast enough to do the rather heavy

rendering. In spite of this, in several cases such as long lists, apps

might not feel like a native app. Ionic should give you the look and

feel of a native app. My experience is that Ionic particularly delivers

the looks but does not always give the feeling of a native app.

Ionic is working hard to resolve these performance issues. Maybe

the performance problem can be found in the use of AngularJS.

As soon as Angular 2 is released, Ionic 2 will be released short

after.

Despite the drawbacks, Ionic has been embraced by many

developers and has a large community. Without doubt this has to

do with the fact that Ionic is open-source and free to use, even

for commercial applications. The tooling that Ionic offers is very

result oriented and reduces the choices a developer needs to

make, although he surely can. The LiveReload feature is really

great and saves lots of time. All this could make Ionic a player in

the mobile apps market that’s here to stay. In addition, it’s clear

that hybrid apps are a formidable competitor to native apps and

other cross-platform solutions like Xamarin.

Pascal Naber

Lead Developer

https://xpirit.com/
specialists/pascal-naber

Are you ready for a next
step in your Career?

Through experience you have an adventurous mind and
now is the right moment in your career to be part of
something new, something excellent and most of all
something inspiring and fun. We ask for your energy,
enthusiasm and devotion, nothing more, nothing less.
Trust us, we will not disappoint you in what you get in
return.

For our expanding assignments in the

Enterprise Mobility space we are searching

for a Mobile Lead Consultant with a firm

knowledge of the Xamarin tools. For more

details visit https://xpirit.com/mobile-

lead-consultant.

We are searching for Microsoft Azure

specialists and professionals with a firm

knowledge of Microsoft Cloud services and

tools. For more details visit

https://xpirit.com/cloud-lead-consultant

Git vs Team Foundation
Version Control: Getting started

When you are a Microsoft developer you probably are used to a Microsoft Version Control system: In the early days Visual
SourceSafe or nowadays Team Foundation Server Version Control (TFVC). TFVC is fairly simple. Once you understand that
the server always must know what you are doing it is simply a great and easy to use Version Control System.

When TFS 2012 introduced Local Workspaces, it became even bet-

ter, because now all the advantages of TFS and the advantage of

not having to check-out files, like in for example SVN, were

combined. With a local workspace you do not have to inform the

server about everything you are doing, you only check-in files.

All changes are kept locally on your disk. This change in TFS

simplified it even more.

But Microsoft realized that their Source Control System was not

embraced by anyone other than developers using Microsoft tools.

Within this cross-platform, cross-language world they need to

have something different to offer. The best choice Microsoft made

was not to build something themselves, but embrace a system

that was already very popular within the open source and

non-Microsoft community: Git.

There are many great posts and blogs about what Git is. The book

Git Pro , which is available online, does a great job in explaining

the concepts. The most important thing to know is that Git is a

Distributed Version Control System (DVCS) where TFS is a Centra-

lized Version Control System (CVCS). TFS knows about all the

changes that happen. You check out a file, edit the file and check

it in. The server knows. History is on the server. Therefore you need

to be “online” in order to use a Centralized Version Control System.

A DCVS is different. You get a full copy of a repository that is

stored somewhere on a server, including all the history etc. Then

you work locally on this repository. You can check-in changes, view

history and rollback if you like. After working for a while you can

then push back all the changes to the repository where you

originated from.

Because it can be very hard to grasp Git as a hardcore TFVC user

this article contains some starting points to “translate” Git to TFVC.

Be aware that TFVC and Git are conceptually very different and

hat a “reaI” translation can actually not be made. But it will

certainly help in setting some reference points.

Dictionary

In this article we will talk about the following definitions:

Git Actions TFS Command

Clone Create Workspace and Get Latest

Checkout Switch workspace / branch

Commit CheckIn / Shelve

Status Pending Changes

Push CheckIn

Pull Get Latest Version

Sync (Push and Pull.

Only exists in VS UI) CheckIn and Get Latest Version

Clone vs. Create Workspace and Get Latest

[Clone] in Git means that you get a local copy of a full Version

Controlled repository that is stored somewhere.

Create a repository clone in Git

ALM

 page 21

Think ahead. Act now.

Xpir i t Magaz ine
page 22

You basically pull everything on to your local machine. Clone is the

first thing you need to do when you start working with a Git

repository.

Create a workspace in TFS Version Control

In TFS we first [create a workspace], map the server folder to a

local folder and [Get the Latest Version] of all the files in our

workspace.

Checkout vs. Switch workspace / branch

[Checkout] in Git, means change the branch you are working on.

This is something that we do not have in TFS. Sure, we have bran-

ches in TFS, but they are in separate folders and locations on disk

and in the repository.

Branches in TFS Version Control

In Git this is not the case. You just have 1 view on the repository

and the branches are “contained” within this repository. Switching

branches is very easy to do and files directly change.

In TFS a best practice is, that you create a separate workspace

per branch you are working on. When you want to work on another

branch, you [change your workspace], open the solution from this

workspace and start working. In Git you can use the command [Git

Checkout] or just use the DropDown lists in the UI.

Switch Git branch in TFS Web Access

Switch Git branch in Visual Studio

Commit vs. CheckIn / Shelve

The comparison between commit and checkin/shelve is one that

can actually be not made. In TFS you can perform a [Checkin].

The client sends all the files to the central TFS repository and the

files are available to everyone. In Git you can [Commit] your

changes when finished. Big difference here is that in Git, you

always [Commit] to your “local” repository.

 page 23

Think ahead. Act now.

Changes are not available on the original branch where you came

from. You have to [Push] your changes as a second action to

“check-in” on the server. In TFVC you cannot commit locally. The

closest thing to checking in for yourself is a shelveset.

Git Commit

Git Push

Status vs. Pending Changes

In Git you can use the command [Git Status]. It shows you all the

modified files in your local repository that have not been Pushed.

In TFS we have the view Pending changes windows. In the UI it

looks quite the same and has the same behavior.

Beware of the branches in Git.

TFS Checkin

View Status in Git

Push vs. CheckIn

When you want to send your changes to the remote repository

where you originated from in Git, you can use the [Push] com-

mand. With this command, you send all your local commits to the

remote repository. In TFS you use checkin for this. Because there

is only 1 central server you always checkin on this server.

Xpir i t Magaz ine
page 24

Push in Git

Pull vs. Get Latest Version

To get all commits from the originator repository that were made

by others, you can use the pull command. With this command you

retrieve all the changes. In TFS we use the [Get Latest Version] of

[Get Specific Version] command to synchronize the workspace.

Pull in Git

Get Latest Version In TF

Sync vs. CheckIn and Get Latest Version

Sync is not really a Git Command. You use Push and Pull. Visual

Studio created a nice graphical button to do this together.

Summary

It is hard to compare 2 version control systems that are concep-

tually different. But in essence it are both version control systems

that you can use to store your changes safely.

Sync button in Visual Studio

Both TFVC and Git have their advantages and disadvantages and

it is hard to make a good choice. Git is fast and flexible and most

of all supported on all platforms. As a downside it has a steep le-

arning curve. TFVC is fast, robust, enterprise ready and easy to

use. With the pointers in this article, try out Git. Use it in your daily

scenario and make the choice for yourself. After all it is a matter

of taste after all.

Resources:

n Git Basics – http://git-scm.com/book

n Announcement of Git and TFS

 http://blogs.msdn.com/b/bharry/archive/ 2012/08/13/

 announcing-git-integration-with-tfs.aspx

n Wikipedia Definition –

 http://en.wikipedia.org/wiki/Git_(software)

n TechEd 2013 video of Martin Woodward –

 http://channel9.msdn.com/Events/TechEd/NorthAmerica/

 2013/DEV-B330#fbid=Lb7e4eYEDpC

 Build 2015 video of Martin Woodward -

 http://channel9.msdn.com/events/Build/2015/3-746

n Use Git in Visual Studio –http://blogs.msdn.com/b/

 visualstudioalm/archive/2013/02/06/set-up-connect-and-

 publish-using-visual-studio-with-git.aspx

n A successful Git branching model – http://nvie.com/posts/

 a-successful-git-branching-model/

Rene van Osnabrugge

Lead Consultant

https://xpirit.com/
specialists/rene-van-osnabrugge

First programming experience
with Microsoft HoloLens

Back in January of 2015 Microsoft unveiled the HoloLens, which it calls the first holographic computer running Windows
10. The computer fitted inside a wearable device will add holograms to the real physical world. Holograms are objects
made entirely of light, can be 2-dimensional or 3-dimensional and can be viewed from every side. They do not actually
exist, but appear to be blended into the real world. Unlike actual objects they have no mass and cannot be touched.
Even so, the experience that the HoloLens creates provides a new view of the world.

During the //build/ conference in April 2015 more details and

applications of the HoloLens were unveiled. Also, the Windows

Holographic Platform was announced as the higher level initiative

to integrate holograms into the Windows platform, where the

HoloLens is a hardware device that uses these capabilities.

A select group of developers were allowed to experience the

HoloLens first hand and create a working application for the

device. Marcel de Vries and Alex Thissen took the deep dive and

worked their way through the Microsoft Holographic Academy

guided by Microsoft mentor Emily.

New capabilities offer new possibilities

The HoloLens is an untethered wearable computer that fits on

your head with a band. It is like wearing a baseball cap with a

large set of sunglasses attached to it. Its band is secured with

a knob on the back of the band to make it an exact fit for your

head. You can extract and raise the visor to have it fit correctly on

your head regardless of whether you are wearing glasses or not.

The visor contains multiple sensors, a set of high-definition lenses

to display the holograms and a Holographic Processing Unit (HPU)

to perform data acquisition and processing of the sensor data.

Before you use the HoloLens you need to calibrate it so it knows

WINDOWS 10

 page 25

Think ahead. Act now.

Xpir i t Magaz ine
page 26

the distance between the pupils of your eyes. This was required

on the developer devices we used, but it might be possible this

calibration step is not required in the final consumer product.

The holographic images are overlaid on what you would see

without wearing the HoloLens. It makes it different from other 3D

viewing devices that occlude your vision totally, such as the Oculus

Rift. This enables you to interact with the real world instead of a

fictional world, opening up a whole set of additional possibilities.

The HoloLens not only offers visual enhancements, but also

positional stereo sound by two speakers on either side of the

device.

The HoloLens is a device that has a vast array of sensors and de-

vices fitted inside the headset. The exact type of sensors has not

been disclosed yet, but they allow the HoloLens to support the

following:

n Voice recognition

You can issue voice commands that are picked up by the

microphones inside the HoloLens. The commands are recognized

and translated to string-based commands. These commands

work amazingly accurate and direct. You do not have to raise

your voice, as the device picks up normal spoken words and

sentences.

n Spatial mapping

The HoloLens can scan the environment (e.g. the room in which

you are standing) and map out the objects and surfaces that it

contains. Normally you would not see the mapping of the room.

It is possible though, to show the mapping with a triangular

mesh, so you can actually see what has been scanned. The scan

of the environment is cached in some form, so you can quickly

turn around and see the correct mapping. A rescan is performed

periodically to update any changes, and also to remove any glit-

ches that might have occurred.

n Gesture recognition

The HoloLens is able to see your hands in the field of view. It

can recognize (at least) a closed fist and an index finger. Moving

your stretched index finger down and up is a “tap”-gesture,

which is mostly used to indicate and initiate an action that

would normally be done with a mouse-click. You can compare

this to the capabilities the Microsoft Kinect introduced a couple

of years ago.

n Gaze tracking

Your gaze is comparable with a laser beam coming from the

front of the HoloLens. It is centered in your field of view. By

turning your head and body you can look around the entire

environment redirecting your gaze by doing so. The center point

of your view acts as the focus point for cursors projected into

the environment. By moving your head and looking towards ob-

jects you gaze towards certain objects that can be detected by

the Hololens. This enables you to select those objects and in-

teract with them using gestures or voice commands.

n Ambient and positional sound

The sound speakers in the HoloLens can produce both ambient

sounds, like background noises or music, and positional sound

that appears to be coming from a specific source at a certain

position in the environment. It might seem similar to normal

stereo sound, but the big difference is that you can turn around

and face any direction. This means that the sound from each

speaker is adjusted for the direction you are facing.

The capabilities mentioned can be leveraged by HoloLens appli-

cations to produce unprecedented experiences and possibilities

for interactions.

Combining Unity and Visual Studio

You can program applications for the HoloLens in a variety of

ways. The applications can be any standard Universal application

for Windows 10. They are 2-dimensional windowed applications

that you place somewhere in the environment on a flat surface

like a wall or a table surface.

More immersive applications use the capabilities of the HoloLens

to enhance beyond mere projection into the environment. Such

applications use a low level C++ programming model using DirectX,

or a higher level managed language (such as C#) combined with

the .NET framework.

During the Holographic Academy we developed a Origami demo,

where a playground of paper origami objects was placed into the

classroom. The playground consisted of a notepad of paper sheets,

two folded paper planes and two balls. We added functionality

and logic to drop the balls onto the planes and let them roll down

 page 27

Think ahead. Act now.

into our real world. These actions are initiated both by voice and

gesture commands. Once dropped the balls actually bounced

against holographic, but also real world objects recognized by the

HoloLens from the spatial map information. In the final exercise

we changed the logic such that when the ball dropped to the

ground, it show an explosion on the point of impact. After the

explosion a virtual hole in the ground was shown. Through this

hole there appeared to be a complete new 3D world underneath

our classroom floor. Watching into the hole let you view that world

from all angles as if it was really there.

We used Unity 5.0 with some changes and extensions for the

HoloLens device. Unity is mainly used for 3D applications and

games. It simplifies the use of 3D objects, grids and meshes and

has a physics engine to mimic real world interactions between

objects and the world. Together with the extensions Unity is a

perfect fit as it has all the ingredients to mix real world

characteristics and the input and output of the HoloLens sensors

and lenses.

Typically you create a scene with a camera in the Unity develop-

ment environment. The camera views the scene consisting of

several objects and the controls allow you to interact with the

object and the camera’s position and direction. HoloLens brings

the combination of the environment and the scene, plus the

interaction through the sensors instead of keyboard and mouse.

The addition of spatial mapping allows the scene to interact with

the actual layout of the room, because it will give the physics

engine the contours and dimensions of the outline of the real

world objects. Add some script logic to the Unity mix and you can

create unprecedented applications.

Programming for the Microsoft HoloLens

When building a HoloLens application the first thing to do is to

remove the default camera in the hierarchy of objects. You are

viewing the world from the HoloLens and not from the traditional

camera. The Hololens SDK provides a special HoloLens “camera”

that you can use in the Unity environment. This is a special stere-

oscopic camera that is positioned and oriented by yourself and

you move around in the environment, turn and look up and down.

The HoloLens SDK also provides several entities to be used in the

Unity programming environment. For example, it has a Spatial-

Mapping object that is added to the hierarchy of objects in the

application. It will automatically add the spatial layout obtained

by the sensors and the HPU to the scene. The Unity rendering and

physics engine take care of the processing.

Unity uses scripts to add behavior and functionality to the entities

in the application you are building. The script can be written in a

either C# or JavaScript. We created the scripts in C#, by simply

clicking the Scripts pane from Unity and adding the appropriate

script. You couple these scripts to the object or artefact in your

Unity scene, thereby attaching the functionality in the script to

the entity.

A simple double-click on a script transitions from the Unity

environment to Visual Studio. The Visual Studio solution you

created earlier contains all the scripts you have added.

Xpir i t Magaz ine
page 28

It also holds any other C# code that you need to use, such as

helper classes or logic.

In general code and logic inside Unity is related to entities. The

key events for entities is the startup and an update of the entity’s

state for rendering another display frame.

Let’s look at an example scenario of creating a behavior: cursor

placement. A HoloLens application can use a cursor to indicate the

direction of your gaze and to provide visual feedback of the actual

object or surface you are interacting with. You need a visual mesh

to render as the cursor and some logic to define the behavior. The

visual mesh here is a donut shape that we can then place on the

place where we look at, so it looks like we have a visual cursor fol-

lowing our gaze.

The code fragment below shows the skeleton of such a class with

the particular startup and update logic. The implementation is in-

dicative of the abstraction level of the SDK.

public class WorldCursor : MonoBehaviour {
private MeshRenderer meshRenderer;

// Use this for initialization
void Start()
{

// Grab the mesh renderer that's on the
same object as this script.

meshRenderer = this.gameObject.GetCompo-
nentInChildren<MeshRenderer>();

}

// Update is called once per frame
void Update()
{

// Do a raycast into the world based on
the user's

// head position and orientation.
var head = StereoCamera.Instance.Head;
RaycastHit hitInfo;
if (Physics.Raycast(head.position,

head.forward, out hitInfo))
{

// If the raycast hit a hologram...

// Display the cursor mesh.

meshRenderer.enabled = true;
// Move the cursor to the point

where the raycast hit.
this.transform.position =

hitInfo.point;
// Rotate the cursor to hug the sur-

face of the hologram.
this.transform.rotation =

Quaternion.FromToRotation(Vec-
tor3.up, hitInfo.normal);

}
else
{

// If the raycast did not hit a ho-
logram, hide the cursor mesh.

meshRenderer.enabled = false;
}

}
}

The Start method typically does one-time initialization. In the code

example it will acquire the mesh of the donut we renderer for the

cursor. Inside the Update method you perform the following steps:

1. Acquire the direction of the gaze as a vector in 3D space from

the HoloLens.

2. Perform a raycast in the direction of the gaze and test whether

an actual object or surface was hit. Casting a ray is like shooting

a laser beam straight from the origin, in this case front of the

HoloLens. The hit test of the beam tells whether have focused

on something or are just staring into an empty space. This ray-

cast is available in Unity and not HoloLens specific.

3. If there was a hit, determine the normal vector of the hit loca-

tion. The normal is the vector perpendicular to the surface (of

the object).

4. Perform a transformation (rotation) of the cursor to match the

direction of the normal.

This will make the cursor follow the curves of the object or sur-

face, giving it a natural feel of clinging to the real world objects

or holograms. This is done by a standard 3D operation called a

Quaternion rotation.

5. Display the cursor by rendering its mesh.

 page 29

Think ahead. Act now.

By adding the cursor mesh and attaching the logic from the World-

Cursor class we get the cursor behavior in just a couple of lines of

code.

Once your application is built from both Unity and Visual Studio,

you can deploy it to the HoloLens device through the USB cable

that connects your development computer and the HoloLens. Run-

ning the application is as simple as selecting Run without Debug-

ging from the Debug menu in Visual Studio. The HoloLens provides

a web interface t hat you can use to upload programs and start

and stop them. You can just open a browser window and navigate

to the HoloLens’ IP address, which will show you a web page to

interact with. On this page you can upload the standard windows

10 Universal App packages. Once uploaded they can be run from

either this web interface or straight from Visual Studio.

In conclusion

Programming and testing our first HoloLens application was

an incredible experience. We had no prior knowledge of Unity, but

plenty of years experience programming in C# and a variety of

frameworks. The use of Unity takes some getting used to.

Fortunately there is an abundance of online tutorials and

documentation and an active community. With the help of the

mentor and the documentation we were able to create our

origami demo within 4 hours and have it running on the actual

HoloLens devices. This was a truely amazing and inspiring

experience.

In the Windows 10 timeframe Microsoft will release the HoloLens

device and make it available to the general public. Presumably

before that time developers might get their hands on the device

and SDK to start developing compelling and innovative applicati-

ons for the HoloLens. There is an incredible amount of new

possibilities available applications for the HoloLens. We can’t wait

to get started for real and put holograms to use. The question

remains what the product release date and initial costs will be.

Many thanks to Emily and the HoloLens product team for assisting

at the Holographic Academy and reviewing this article.

Alex Thissen

Lead Consultant

https://xpirit.com/
specialists/alex-thissen

‘Professional development is a continuous learning process’
For those who want in-depth knowledge, Xpirit also offers a wide variety of trainings, in close cooperation with our colleagues from Xebia.
Also in-company courses or customized/tailored courses are possible, https://xpirit.com/training for more details and quotes. If you want to
know more about our trainings and workshops, don’t hesitate to https://xpirit.com/contact/ and we will be happy to answer your questions.

Cross Platform Mobile Development Jumpstart with Xamarin
https://training.xebia.com/mobile/cross-platform-mobile-development-
jumpstart-withxamarin?utm_source=xpirit&utm_medium=
website& utm_content=title-link&utm_campaign=xpirit

Enterprise Development with NServiceBus
https://training.xebia.com/developer-skills/enterprise-development-
with-nservicebus?utm_source=xpirit&utm_medium=website&utm_
content=title-link&utm_campaign=xpirit

Architecting hyper scale solutions for the Microsoft cloud
https://training.xebia.com/architecture/architecting-hyper-scale-
solutions-for-the-microsoft-cloud?utm_source=xpirit&utm_medium=
website&utm_content=title-link&utm_campaign=xpirit

Professional Scrum Developer (PSD) with .NET
https://training.xebia.com/scrum/professional-scrum-developer-
psd-with.net?utm_source=xpirit&utm_medium=website&utm_
content=title-link&utm_campaign=xpirit

Xpir i t Magaz ine
page 30

Lessons learned:
migrating an N-Tier web app

to microservices
Microservice architectures are all the craze nowadays. In my opinion it is the next evolutionary step for loosely coupled
and scalable architectures. It builds upon the foundations we laid with Service Oriented Architectures, when it was not
spoiled by Erroneous Spaghetti Buses or people who thought it was a good idea to throw a bunch of SOAP webservices
at a problem and call it SOA. After all, it’s service orientation, right?

One important thing is that you learn to disassociate webservices

with the concept of services. They are not the same, and mixing

these two has led to the abominations we have started to link to

“SOA”. In SOA, a service is the technical authority for a given

business domain, and can use multiple technologies to implement

its goals.

In this magazine, you can read more about what Microservice

architecture is according to Xpirit, so I will not go deep into its

definition or characteristics. Rather, I want to focus on how to get

there if you do not have a fresh green field to build your software

in. What if you have a system that consists of said SOAP webser-

vices, an N-tier web application with a fair amount of legacy?

How do you transition that to microservices? And why should you,

even?

This article is based on my own lessons learned while migrating

such an application to a more loosely coupled architecture, using

the NServiceBus framework as its foundation. But even if you are

not into NServiceBus, the concepts and steps taken are basically

technology agnostic. NServiceBus just makes things a lot easier.

You could also look at using MassTransit, RabbitMQ or Azure

Service Bus for messaging. The key requirement is that you have

some infrastructure to facilitate in hosting your autonomous

services and to provide the transport for your messages and

events.

So what is wrong with N-Tier anyway?

The application I inherited when I came into the project was a

multi-tenant SaaS application that dealt with scheduling work for

employees in supermarkets, a Workforce Management System.

It consisted of a single database per tenant and a Silverlight front

end backed by WCF SOAP webservices. While Silverlight may

seems like an obsolete technology now, this is not really relevant

because we would have had the same issues if the UI was built

as a Single Page Application with AngularJS.

We had a couple of challenges:

• We were about to scale out to many more customers, and

subsequently: users, and we knew the system wasn’t able to

handle that at the time, for reasons that will become clear in

this article

• We also had some work to do to make the system a real

multi-tenant system

• There was an increasing demand for standardized integration

with other external systems, such as HRM or Payroll systems

and the existing solution was based on point-to-point

webservices and under high load, was known to lose data.

ARCHITECTURE

 page 31

Think ahead. Act now.

So what is wrong with this multi-tier architecture? We learned

that layering is good because it helps separation of concerns and

abstracts many technicalities as you move up the stack. Above all,

layers provide loose coupling, right?

Let us take a look at this conceptually first: from 10,000 ft., this

architecture looks like basically any web based application. It is a

pretty generic structure. And there is the first problem: the archi-

tecture is driven by a technical breakdown. We have our database,

our service layer containing application logic, and our UI layer. But

what does this architecture say about what the application

actually does? Sure, if we zoom in a bit, there are areas in the

code to be found, such as Budgeting, Scheduling and Payment,

but this is not its top level structure.

Moreover, this architecture forces us to shoehorn all functionality

into these layers, forcing us to implement repositories, catalogs,

webservice facades, webservice client wrappers, UI modules and

end user screens for every feature or entity what was added.

Layers upon layers upon layers, with the occasional data mapping

in between.

Loose coupling you say? Try changing the datatype of a field, or

adding a field to an entity and you will see that it is not loosely

coupled at all. The point is: apparently there is inherent coupling

from top to bottom within a certain functional area of the system

and no amount of layering is going to decouple this. Adding layers

will just amount to more code, more plumbing, more indirections

and needless abstractions. Why bother? This vertical kind of

coupling is quite natural and you should not fight it. What is even

worse: this technical layered approach encourages developers to

create high and unwanted coupling within a layer. On our case,

the architecture of the system on a 300 ft. level, looked like this:

Why are these four functional areas irregular shapes, and why do

they appear to overlap? It is because none of these modules had

a clear boundary, and all modules took the freedom to peek and

poke in each other’s database tables, or use each other’s reposi-

tories to achieve their goal. So in essence, we were dealing with

a monolith.

For some of these webservice operations, the thread of execution

looked like this:

It went all over the place, basically because the way the system

was modeled led to the mindset that we had to do everything we

needed to do to make the system consistent within that same

webservice request, before returning to the calling front end ap-

plication. The upside of this is that the system is consistent across

all modules after the operation completes. Immediate consistency.

But the downsides are much bigger:

• Hard coupling between the functional areas of the system, re-

sulting in nearly unmaintainable code;

• Temporal coupling, because the caller has to wait for every re-

quest to complete

• A huge scalability problem because the more the system has

to do, the longer the operation will take, thereby blocking pre-

cious IIS threads in the resource pool, and finally:

• Locking and blocking on the database because everything is

handled inside a single huge transaction.

Under the increasing load we were adding to the system, we saw

it break with exponentially growing execution times, database

timeouts or even HTTP timeouts because the Silverlight client

Xpir i t Magaz ine
page 32

would give up waiting for an answer. This is what tends to happen

with these RPC style webservice interactions. As load increases,

throughput stagnates and breaks down at some point:

If it’s not by layers, then how do we decouple?

This is where the principles from microservice architecture come

in… Like Martin Fowler describes, a microservice is:

Roughly translated: a microservice is bounded by its (business)

domain, and decoupled in nature because it operates autonomou-

sly. (SOA, anyone?)

If we look at the system from this angle, surely we should be able

to transform the irregular shapes in the earlier figures to more

clearly defined ones. Something like this:

That looks much more structured. We see that some of the

layering is still there: we had that Silverlight frond end that runs

on the end user’s computer and it needs to cross the network in

order to reach the server logic. HTTP and webservices are fine for

that. Note that these webservices are now drawn inside the

“Presentation Layer” box. The reason for this is that I consider

them private webservices, used solely to serve the UI. Their logic

is part of presentation, and the physical webservice layer is only

there to cross that network boundary. This way, from an architec-

tural point of view layering only becomes a technicality.

We can clearly see that each microservice spans from top (UI) to

bottom (service logic and data storage). As mentioned earlier,

vertical coupling is natural. But horizontally, there is no direct cou-

pling anymore, which is the type of decoupling we want to achieve.

Communication between (micro)services happens through events

that are published by microservices, and I have introduced a

Message Bus to facilitate that communication. In our case, it was

NServiceBus that facilitated the publishing and receiving of these

events.

“But, where is the database?” you may ask. Well, in the true

microservices mindset, each microservice has its own datastore,

which can be anything ranging from an RDBMS to a Document

Database to a file share. It is part of the service.

Breaking up our application

So, how do we transition our existing codebase from A to B?

Here is a five step plan to help you out:

1. Together with your domain experts, identify significant business

events in your system. E.g. “employee created”, “employment

changed”, “budget finalized”, “payment finalized”. Start publis-

hing these events from your application, and roll out more and

more events with every update of your system, even if you don’t

handle them yet.

2. For new features, preferably the ones that happen “at the

edge” of your system, start using these events as triggers to

do the required actions. Examples are: export functionality,

calculating reports in the background, generating tasks for a

task list, deduplication of data for performance reasons. This

makes it easy to add new modules to the system without

touching much of the existing code.

[…] built around business capabilities and independently
deployable by fully automated deployment machinery.

 page 33

Think ahead. Act now.

3. Start thinking about how to create a composite UI to tie these

services together. As you break up your system into more

autonomous components, your UI must remain coherent to

the end user.

4. Over time, migrate existing code from your webservices to the

autonomous services where possible. Shrink the webservices

down to the bare essentials: make sure the webservice does

everything it needs to do to get a (command) message on the

message bus, and return as soon as possible. This will increase

the responsiveness of your webservices, and free up IIS request

threads to handle more load. Of course, if the front end requires

data, e.g. with a query, you should not shoehorn asynchronous

messaging into the scenario. It is OK to call a repository directly

to retrieve the necessary data.

5. When you are ready for it, split up the database so that you

can give each service its own storage.

Your system will probably look similar to this during the

transition:

The irregularly shaped modules will start to shrink and lose their

overlap. Some modules may even get a different name because

you have found their purpose. In our case, a chunk of code with

the generic name “Common” was renamed “Organization” because

it dealt with concerns surrounding the customer’s organizational

structure. Along the edges of the system, connected via the

Message Bus, new services will appear that leverage events to do

their work. And along the way, inside your database, it will become

apparent which tables belong to which microservice.

Adding messaging to your system will generally give your system

better throughput. Up to a certain point the throughput will keep

up with the load on the system, but at its peak it will remain

constant because we introduced decoupling:

Side effects

With this transition to microservices, you might see some side

effects. Some of them are a result of a different style of thinking

once you let go of the “everything needs to happen inside one

web request” mindset.

Task based UI paradigm

As you introduce messaging and events, you will start to think in

terms of commands to fulfil some user intent and events that

arise from those actions, in turn triggering (sub) processes in other

microservices in the background. A Task Based UI is a natural fit

for this command-style interactions. For example: once a budget

is finalized, a task will come up for the user to start working on a

schedule. But also: actions from the UI will become much more

intentional. Instead of CRUD-like data interaction, where the user

edits a set of data fields and presses “Save”, buttons and actions

will be much more modeled to capture the actual user intent:

“renew employee contract”, or “finalize budget”.

Keep in mind that a task based UI requires a different mindset

from everyone in the team. Your domain experts and system

analysts (those who write your user stories or system specs), have

to be the first to understand and embrace this style of thinking.

The same goes for eventual consistency. You must engage with

them in a discussion about where (ACID) transaction boundaries

lie, and where you can divide things up. It all has to make sense

from a functional angle as well.

Xpir i t Magaz ine
page 34

Performance

Do not think that throwing in a message bus and putting

commands on a queue alone will alleviate your performance

problems. If the code that handles these commands is still the

same spaghetti code that does too much, this execution will still

take too long. While the system will be able to handle this load

more comfortably, the end-to-end waiting time for the user may

become much longer, because of the queueing. Only migrate code

from your webservices if you can successfully break it down into

distinct and (ideally) small responsibilities. This usually involves

rewrites or large refactorings, so this is something that will take

time and multiple releases to get right.

Closing thoughts

Because you are in a brown field situation, prepare to make

concessions at first. You will have to take it one step at a time,

and sometimes it makes sense to release the system with some

code duplication while you move logic to the background in

increments. But always be aware of when you are creating this

type of technical debt: make sure to clean it up at the first

opportunity.

What about my Big Ol’ Database?

It is unrealistic to think that you can just give each newly defined

microservice its own database right from the start. You will find

that there is a lot of hidden coupling inside or via the database

which you need to disentangle step by step. Therefore it is more

realistic to start out by keeping that same single database, and

instead try to sketch the microservice boundaries into the data-

model as you assign sets of tables to each microservice’s area of

responsibility. Over time, you will find out where you can cut out

parts of the database and move it to a separate store, and where

you will need to apply data duplication by means of events across

services. Just as long as you manage to designate which micro-

service is responsible for that part of the data. I.e. which service

is responsible for the creation of that data, and who only

consumes it?

Monitor, measure and learn!

Add monitoring and instrumentation to your system as soon as

possible. Especially as you start publishing and handling events,

you have to have insights into whether all these autonomous

services are doing their job, let alone how the overall system

performs. We used New Relic to handle that at the time but there

are also other options, such as Application Insights, which is part

of Microsoft’s Azure offering.

Once you have monitoring in place, it can even drive your

transition:

n Usage analysis

Find out from your usage statistics which parts of the system

are used the most, and focus on transitioning those parts of

the system first. You may even find out that some parts are

never used, and you can decide to remove them over time, or

find other ways to achieve the same goal.

n Performance analysis

Look for the performance hotspots in your system. Which web-

services are causing the most contention or slowness in the

system? Try to break those up first.

The most important thing is to learn from your system as you

perform the transition to microservices. I found things I had never

anticipated just by studying our user’s behavior.

Be prepared to take around a year or more for a transition like

this.

Roy Cornelissen

Lead Consultant

https://xpirit.com/
specialists/roy-cornelissen

Start with Visual Studio
Release Management vNext

Team Foundation Server 2013 Update 3 came with Visual Studio Release Management vNext. vNext is, next to the
deployments with agents, another way of doing deployments with VSRM. Deployments to machines, without having to
install an agent, is the most important feature of vNext.

This is because VSRM vNext uses PowerShell Desired State

Configuration (PowerShell DSC) as the tool/engine to execute

PowerShell on different machines.

Although TFS 2015 will contain a whole new Release Management

implementation, this article guides you through a setup of the

current version of Release Management

1. Check your prerequisites

In order to use RM vNext you will need the following prerequisites

n Azure subscription where I can create a Virtual Machine

n Team Foundation Server 2013.4 or 2015 RC installed

n Release Management Server + Release Management

 Client 2013.4 or 2015 RC installed

n TFS Build Server + Agent 2013.4 or 2015 RC installed

n Visual Studio 2013.4 (Pro/Premium or Ultimate) or 2015 RC

n An empty Team Project (RMvNextForDummies)

2. Create the simplest web application ever

n Start up your Visual Studio and create a new Web

 Application

n Run to test the solution. If you want to make it pretty you

 can always change the color or the title.

3. Check in Solution and create a Build

Check in the solution in Source Control in your newly created Team

Project. Easiest way is to just right click the solution and choose

[Add Solution to Source Control], choose the right Team Project

to add the solution to, Navigate to the [Pending changes] hub in

Team Explorer and check in your changes.

ALM

 page 35

Think ahead. Act now.

Xpir i t Magaz ine
page 36

Navigate to the [Build Hub] in Team Explorer and create a [New

Build Definition]. Leave everything default. On the [Build Defaults],

fill in a valid drop location, and on the [Process] Tab, make sure

you selected the solution you just created.

MSDN Documentation can be found here

Run the build to check if it builds successfully!

4. Set up Release Management to use your Azure account

Start up the Release Management Client and navigate to the

[Administration | Manage Azure] Tab. Click [New] and fill in the

details that are asked. The information that should be filled in is

described perfectly on MSDN. Click this link and follow the steps

described here.

Now create a Virtual Machine with Windows 2012R2 on Azure. Do

nothing yet on this virtual!

http://www.visualstudio.com/get-started/deploy-no-agents-

vs#SetupAzure

Get the SubscriptionID and ManagementCertificate from the pu-

blishsettingsfile you downloaded. Create a new storage account

on Azure especially for using in Release Management. Use the

name of the storage account as [Storage Account Name]

MSDN on how to create a storage account

Create a vNext Environment and link your newly created Azure

Server

5. Create a Release Template and Path

No you need to create stages (our deployment pipeline) and a re-

lease template by following the steps described on MSDN

(http://www.visualstudio.com/get-started/deploy-no-agents-

vs#CreateReleaseTemplate). Keep it simple and add only 1 stage!

This is my result for the Release Path

 page 37

Think ahead. Act now.

My Component

And my Template (still empty)

6. Start my first Release

Now. No further hassle, I want to start a release!

Drag the [Deploy using PS/DSC] to the surface.

When you try to choose the [Componentname] it cannot be

chosen yet. In order to do this, you need to add the component

to the toolbox first. Right click the components “folder” in the

toolbox and add the component.

Now select the ComponentName and trigger a [New Release].

Select the latest build and start. You‘ll end up in an approval

screen where you can approve the release of the first stage.

Approve it and watch what happens.

Sure! I know there is no PowerShell DSC script yet, let’s try to

make the communication work.

7. Troubleshoot and make it work

When your deployment fails, take a look at the following things:

n Open your firewall ports for PowerShell (default on 5986

 and 5985)

n When deploying to a non-domain machine, skip the certifi-

cate check in Release Management or upload a certificate from

the target machine (as described here:

http://fabriccontroller.net/ blog/posts/using-remote-powershell-

with-windows-azure-virtual-machines/)

Xpir i t Magaz ine
page 38

• Make sure you type your username as .\username. So with the

period

8. Check some artefacts

We have our end-to-end scenario. Deploy (doing nothing yet) suc-

ceeded and we are in the validation step. The steps performed

are:

• Upload all the build output to your azure storage. You can check

this by logging in to your azure account, navigate to storage,

select the storage you configured in RM and choose container.

There you see the files from the build.

• On the target machine you have a directory [DtlDownloads] in

your c:\windows (c:\windows\dtldownloads). Here you find all

the files downloaded from storage and ready for further

processing on your machine.

9. Create a simple DSC script that we can execute

Now that we have our connectivity, we can start building some

DSC. There are some good posts around the internet about DSC

and also some in combination with Release Management. You can

find those in the resources section at the bottom of this post.

For now, I will suffice by copying the website bits to the

inetpub/wwwroot directory on the target machine. The DSC script

we want to execute must be send to the server as well. The ea-

siest way to do this is to make the DSC part of the build.

Open your web application, and add a folder DSC to your web ap-

plication. Add a file CopyWebSite.ps1 to this folder and put this in

the file.

configuration FullSetup
{

node MACHINENAME {
WindowsFeature IIS
{

Ensure = "Present"
Name = "Web-Server"

}

WindowsFeature ASPNet45
{

Ensure = "Present"
Name = "Web-Asp-Net45"
DependsOn = "[WindowsFeature]IIS"

}

File CopyDeploymentBits
{

Ensure = "Present"
Type = "Directory"
Recurse = $true
SourcePath = join-path $application-

Path "_PublishedWebsites"
DestinationPath = "C:\inetpub\wwwroot"
DependsOn =

"[WindowsFeature]ASPNet45"
}

}
}

FullSetup

 page 39

Think ahead. Act now.

Make sure you replace MACHINENAME with the name of your

target Azure machine. Make sure you set the file properties in VS

to Copy Always so that your file ends up in the build.

In your Release Template, add this file to the PSScriptPath

Check in the file, run a build and start a new release.

When this succeeds, you have configured an IIS, Framework 4.5

and copied the bits of your build to a directory.

10. Try more with DSC and RMvNext

Now try more with DSC. You can install applications, configure

firewalls, set security. All scenarios that are very useful when doing

your deployment. Follow the posts listed below for more advanced

use.

Summary

Release Management is the bridge between Development and

Operations. Using PowerShell DSC and storing your server confi-

guration as code in Source Control allows you to really automate

your deployment pipeline. Release Management vNext allows you

to do create these pipelines and allows you to enable your appro-

val workflow to production. And realize this with TFS 2015 there is

much more to come !

Resources

n Jasper Gilhuis’ – Curah on Release Management

 (a selectin of links)

n http://blogs.msdn.com/b/visualstudioalm/archive/2014/07/

 07/how-to-deploy-to-standard-or-azure-environments-in-

 release-management-2013-with-update-3-rc.aspx

n http://www.colinsalmcorner.com/post/using-powershell-dsc-

 in-release-management-the-hidden-manual

n http://blogs.msdn.com/b/musings_on_alm_and_software_

 development_processes/archive/2014/11/21/release-

 management-and-dsc.aspx

n http://fabriccontroller.net/blog/posts/using-remote-powers

 hell-with-windows-azure-virtual-machines/

n http://www.visualstudio.com/en-us/get-started/deploy-no-

 agents-vs.aspx

n http://blogs.msdn.com/b/visualstudioalm/archive/2014/07/

 07/how-to-setup-environments-for-agent-less-deployments-

 in-release-management-release-management-2013-with-

 update-3-rc.aspx

n http://blogs.msdn.com/b/visualstudioalm/archive/2014/07/

 22/deploying-using-powershell-desired-state-configuration-

 in-release-management.aspx

n http://roadtoalm.com/2014/09/24/silently-install-and-

 configure-a-tfs-build-server-with-powershell-dsc/

DSC

n https://gallery.technet.microsoft.com/scriptcenter/DSC-

 Resource-Kit-All-c449312d

n http://blogs.msdn.com/b/powershell/archive/2014/08/07/

 introducing-the-azure-powershell-dsc-desired-state-

 configuration-extension.aspx

n http://blogs.technet.com/b/privatecloud/archive/2013/08/30/

 introducing-powershell-desired-state-configuration-dsc.aspx

n http://blogs.msdn.com/b/powershell/archive/2014/04/03/

 configuring-an-azure-vm-using-powershell-dsc.aspx

n https://technet.microsoft.com/en-us/library/dn249921.aspx

n http://blogs.technet.com/b/privatecloud/archive/2014/04/

 25/desired-state-configuration-blog-series-part-1-learning-

 about-dsc.aspx

n http://www.colinsalmcorner.com/post/install-and-configure-

 sql-server-using-powershell-dsc

Rene van Osnabrugge

Lead Consultant

https://xpirit.com/
specialists/rene-van-osnabrugge

Xpir i t Magaz ine
page 40

API MANAGEMENT

It is for vendors of products very difficult to make mobile applications for every possible mobile platform. Of course by
preparing and making a good responsive mobile website available will enhance your reach. Not getting the most out of
the mobile devices is the downside of a mobile website.

Because of this vendors make their back-office via API’s available

to the world. As a vendor you want earn some money on the

usage of your API. This means you need a Developer portal where

you can divide developers in groups, generate help pages, provide

demo/example code, monitoring of the usage, place to get issues,

FAQ, but also block or blacklist certain developers/users/applica-

tions. In short there is more needed then simple provide some

webservices.

A while ago I had such a dream too. I wanted to create an evalu-

ation app for the SDN. Attendees of a SDN event should be able

to fill in an evaluation form via their mobile devices. The evaluation

was stored on Azure in a datastore. Of course I did not want to

store my tokens/connection strings/passwords etc with my mobile

app. And I am not able to create an app for every platform, so I

definitely did not want to share my secrets with some

unknown/wild developers.

So I thought of preparing some WebApi services and expose them.

But like I described above, I needed a portal to explain my services

and their responses. That is a lot of work for a small API like this.

This is my portal now; http://sdnevalapp.azurewebsites.net/.

Ok, this solution was an older one. Made in the period where the

project template for WepApi wasn’t integrated in Visual Studio. If

you us the proper WebApi template you will get some sort of do-

cumentation by default. Which depends most of your documen-

tation in code.

To make this help page more interactive I could use Swashbuckle

(NuGet package). Your users get more details and even can try

the methods.

CLOUD

 page 41

Think ahead. Act now.

If you are using the newly introduced API Apps you get the

swagger stuff out-of-the-box. It is also nicely integrated in the

preview Azure portal. At this moment the try-it-out part is not

implemented, perhaps it will come soon on the fast changing

preview portal.

But still all these solutions are far from optimal. The documenta-

tion is part of the source, which means redeploying an API after a

documentation typo change. There is no monitoring and auditing

on the API for individual users/developers/apps. If I give the API

uri’s to a developer which uses the API’s in a very chatty way and

makes it almost impossible for other developers to use my API. It

is impossible to revoke the rights of a specific user on using the

API.

Luckily there is a solution on the Azure platform. The API manage-

ment service (documentation site).

At the settings is the place to make the webservices available.

The different operations, HTTP actions, the response codes, which

URL, description and informational texts. If you have a Swagger

doc or an ApiApp url, based on these an API can be imported

without the manual labor.

After creating the service, there is a different portal (https://

marcelmeijer.portal.azure-api.net/admin) to do the settings,

looking at the metrics, the applications, the usage etc.

Xpir i t Magaz ine
page 42

The URL to the source services can also be hosted on-premises.

Of course it is smart and wise to secure the endpoints on this URL

with Certificates, Username/Password combination or with OAuth

.

This was the management portal for the admin of the API

(https://marcelmeijer.portal.azure-api.net/admin), for the develo-

pers there is a separate portal (https://marcelmeijer.portal.azure-

api.net/). Which can be styled and changed within limits.

This Developer portal is rather complete. All the mentioned func-

tionality can be found on it.

There is a handy overview of the available API’s.

From the available API you can see the endpoints. You see the

descriptions and the URI for calling the endpoint. To use the end-

point in an application the addition of a subscription key.

 page 43

Think ahead. Act now.

The whole idea of this portal is to regulate usage and with these

subscription key is bound per API to an application/developer.

Because the base endpoints are secured by Certificaten, User-

name/Passwords or with OAuth, bypassing the API management

is useless.

On this Developer portal there is even a possibility to try out the

API method for the different HTTP actions. The trace and the result

is shown.

At the bottom of the page you can find example code for a lot of

programming languages. Everything to help your ‘customers’ of

your API.

As I told in the beginning of this article, making an API available is

one thing, but document/manage it is another thing. By using the

Azure service you can focus on the fun and most important part

of the API, the functionality.

An API isn’t a hype anymore, but more used for business creation.

Here the adage is: “build an API around your Business Model and

not a Business Model around your API”.

Using the specialized products for API management for third

parties gives you more focus on your API and less on the manage-

ment part. Why develop it yourself, when you can use the

expertise of others. “You can reach further while standing on the

shoulders of giants”

Marcel Meijer

Lead Consultant

https://xpirit.com/
specialists/marcel-meijer

Think ahead. Act now.

Xpirit is the youngest member of Xebia family. We operate as Microsoft Business Unit under our own
label. Accompany us on our first steps into a new era of Microsoft Consulting. We strive for authority
by embracing new technologies such as Azure, Enterprise Mobile, ALM and security and adapting
them for fit-purpose solutions.

Think ahead. Act now.

Xpirit Netherlands BV

Utrechtseweg 49 1213 TL Hilversum The Netherlands

+31 (0)35 672 9063

n Pascal Greuter, Managing Director

mobile +31 (0)6 53 45 96 94

pgreuter@xpirit.com

n Marcel de Vries, Chief Technical Officer

mobile +31 (0)6 35 11 54 91

mdevries@xpirit.com

