
Xpirit
Magazine

Other articles are: n Scaling Scrum Professionally using Nexus and Visual Studio Team Services - Jesse Houwing n Using
the Actor Model to create distributed applications with Akka.NET - Pascal Naber n Enhancing your insights with Power BI
- Jasper Gilhuis n Integrating Protractor UI testing in Visual Studio, TFS and VSTS - Marcel de Vries n High availability and
disaster recovery in Azure - Loek Duys n Installing Cloudera on Azure - Alexander Bij / Tünde Alkemade n Building a Robot
Kit with a Raspberry PI 2 and Windows 10 IoT Core - Marco Mansi

Think ahead. Act now.

Sam Guckenheimer
DevOps for Mobile Apps

René van Osnabrugge
How Docker will change
Microsoft development

Alex Thissen
.NET Core: a familiar
and different .NET Platform

http://aka.ms/devops
ee assessment nowake the frTTake the fr

evOpsDster with af
et ket to marG

-assessment.ee, 10-minute selfDevOps success with a fr
f s seven key habits ot’fosoess aligns with Microgrpr

owth and see how your tunities for grFind your oppor

http://aka.ms/devops

 page 3

We love to celebrate our first year of operations with you in this second
edition of Xpirit magazine with great articles on insights that we have
gained last year, as well as the emerging trends that we are seeing. Since

our startup in 2014, we’ve worked with over 50 organizations, ranging from
independent software vendors to international utilities, finance institutions,

manufacturers and insurance companies. We helped them deliver real productivity gains
and take their IT systems into the next era through our full cloud transformation services
and bringing their application life cycle management under control. Along the way, our
team of leading IT specialist have been travelling the world to share and extend our
expertise in these latest technologies. In this edition we composed a great line-up of
articles on topics we encountered and that show trends in the changing eco-system for
developers on the Microsoft platform.

The success of our business and the compliments we’ve received from the industry have
stemmed from our core principles: People First, Quality Without Compromise, Customer
Intimacy, and Sharing Knowledge. By working closely with our customers and really
understanding their business and technology challenges, we’ve been able to turn our
customers’ needs into concrete solutions and clear operational roadmaps using the latest
Microsoft technologies. Almost all Xpirit’s customers who have been working with us since
our startup are still with us today.

At Xpirit, we work with the best people in the world to achieve outstanding results.
We are extremely proud of what our close-knit team of IT specialist has achieved. Xpirit,
as proudly part of Xebia Group, is able to roll out innovative solutions for a diverse clients
in a much broader range than just Microsoft technologies. In our partnership with Xebia,
we have been able to apply our expertise in Microsoft and embrace open source to develop
and deliver a wider range of business services at our customers as well.

This magazine will give you a fresh set of ideas that you can use daily and that will have
an impact on your organization. The adoption of Docker is really important for .NET
developers as is the new .NET Core and ASP.NET implementation. There is also hands-on
information on Cloudera on Azure, how to implement disaster recovery for cloud-hosted
web applications, and a tutorial that shows how to get started with actor model
development using Akka.NET. PowerBI is bringing big data within reach for those who do
not have a background in data science. In addition, we show you how to create an
extension to test adapters by incorporating new types of tests into Visual Studio. In the
downloadable version of the magazine you will also find an additional article on running
Windows IoT Core on Raspberry PI, which we encourage you to try out for fun coding.

It has been an exciting startup year, and we are looking forward to even bigger things
next year. We wish you an informative read, and look forward to working with you during
the coming year.

Pascal Greuter
Managing Director Xpirit

Colofon
Edition:
Xpirit Netherlands BV
No. 2 • February 2016

Editorial Office:
Xpirit Netherlands BV

This magazine was made
with the help of Pascal Greuter,
Sam Guckenheimer, Alex Thissen,
Rene van Osnabrugge, Jesse
Houwing, Pascal Naber, Jasper
Gilhuis, Marcel de Vries, Alexander Bij,
Tünde Alkemade, Marco Mansi

Contact:
Xpirit Netherlands BV
Utrechtseweg 49
1213 TL Hilversum
The Netherlands

Phone: +31 (0)35 538 19 21
E-mail: pgreuter@xpirit.com

Layout and Design:
Reclamebureau Bij Dageraad
Winterswijk
www.bijdageraad.nl

©2016 All rights reserved.
No part of the contents of this
magazine may be reproduced or
transmitted in any form or by any
means without the written permis-
sion of the Xpirit Netherlands BV.

All trademarks are property of their
respective owners.

Advertisement
Microsoft 2
Xamarin 17
Xebia University 24
Go Data Driven 55

Welcome to
Xpirit Magazine #2!

Xpir i t Magaz ine
page 4

Table of contents

n Welcome to Xpirit Magazine .3

n Table of contents .4

n DevOps for Mobile Apps .5

n .NET Core: a familiar and different .NET Platform .7

n How Docker will change Microsoft development .13

n Scaling Scrum Professionally

 using Nexus and Visual Studio Team Services .18

n Using the Actor Model to create

 distributed applications with Akka.NET .25

n Enhancing your insights with Power BI .34

n Integrating Protractor UI testing in Visual Studio, TFS and VSTS 40

n High availability and disaster recovery in Azure .47

n Installing Cloudera on Azure .52

n Building a Robot Kit with a Raspberry PI 2 and Windows 10 IoT Core . . .57

 page 5

Three technology trends have dominated this decade. First, applications have become connected across mobile, cloud
services, and sensors, to the point where each part depends on connectivity to deliver a complete experience. Second,
DevOps practices and tools and tools have revolutionized the pace and quality of service delivery. Third, mobile devices
have become the primary means of consumer and employee access to these connected systems, but their practices and
tools have lagged behind impediments imposed by distribution and diversity.

Think ahead. Act now.

According to ComScore, mobile became to majority source of web

traffic in mid 2014.1 And Gartner believes that 60% of all business

processes will be optimized for mobile by 20202. This indicates a

permanent shift in technology usage and a permanent change in

the way software applications are being built.

DevOps evolved for web applications and defined a New Normal

for software teams. Lean management and continuous delivery

practices created the conditions for delivering value faster, sus-

tainably. For example, high-performing IT organizations report 30x

more frequent deployments with 200x shorter lead times, 60x

fewer failures and 168x faster recoveries3.

Unfortunately, these deployment pipelines are tuned for centrally

administered servers. When servers directly push data directly to

the web, it is relatively easy to monitor both the quality of service

and customer behavior. Errors can be corrected, performance can

be improved, and experiences can be enhanced with new server

deployments alone.

Unfortunately, deployment to mobile devices is typically gated be-

hind app stores, managed by the device vendors. This creates the

need for a dual release pipeline: one path for the service side and

one for the mobile devices.

What is needed to make DevOps for mobile applications effective?

The same kind of practices that apply for services apply for devi-

ces, tuned to the differences in technology:

1. A release pipeline. Continuous integration should produce mo-

bile packages for the appropriate operating systems (e.g. iOS

and Android) and versions and launch automated testing of

standard configurations and scenarios as part of a continuous

deployment pipeline. Integration with device clouds can allow

automation of testing across multiple form factors as part of

the standard release process.

2. Distribution of “beta” releases. Especially for consumer apps,

where star ratings are so important, beta releases need to get

thorough exploratory testing by cohorts of real users. This re-

quires the ability to have users directly load the beta versions

or to target cohorts with packages that have not had to go

through the official stores. This needs to be an iterative process

that allows as many redistributions as needed.

3. Test coverage should be tracked through all these phases, not

just against code, but also against all the device, OS, carrier,

network and language configurations. For Android, with thou-

sands of devices, this matrix expands to millions of configurati-

ons.

4. Remediation. When a user experiences a crash [or a perfor-

mance bottleneck], you need to learn of this instantly. Your ap-

plication’s crashes need to come back to you as stack traces,

matched to the right version of source code, with symbols and

environment details, so that you can fix them unambiguously.

5. Whole lifecycle. Any live error that the application generates

should be tracked as a bug so that you can tell whether you

have remediated it and create a regression test with the code

to prevent its recurrence.

6. Feedback. Experimentation is the essential juice of a modern

lifecycle, as you always make your apps better for users. You

want to be sure that your cohorts of testers can give you rich

feedback on their experiences so that you can make the apps

better.

DevOps for Mobile Apps

ALM

1 http://www.comscore.com/Insights/Blog/Major-Mobile-Milestones
 -in-May-Apps-Now-Drive-Half-of-All-Time-Spent-on-Digital
2 Gartner AADI Keynote, December 2015
3 2015 State of DevOps Report

Xpir i t Magaz ine
page 6

In a DevOps world, these practices are taken for granted, but they

have been very hard to implement for mobile. This has motivated

Microsoft to introduce HockeyApp to extend DevOps to mobile

apps too. Together with Visual Studio Team Services and the

developer’s IDE, it builds the foundation for the Mobile DevOps

cycle.

Gene Kim has suggested that DevOps goes through a progression

of the “Three Ways”.4 The first is the automation of the release

pipeline to allow the continuous flow from Development to

Operations, or in this case, Mobile Deployment, as that is the initial

bottleneck. The second is the feedback from Deployment to

Development, to allow Development to become increasingly aware

and responsive of operation al issues. The third is the continual

amplification of the feedback loops, so that improvements can

flow faster and faster. HockeyApp is one tool that seeks to close

these gaps in practice from the server-side to mobile develop-

ment, so that your team can apply the best learnings of DevOps

to both halves of the application and both parts of the release

pipeline.

SAM GUCKENHEIMER

GROUP PRODUCT PLANNER
MICROSOFT

Sam has 25 years of experience as an
architect, developer, tester, product
manager, project manager and general
manager in the software industry in the
US and Europe. He holds five patents on
software lifecycle tools. A frequent
speaker at industry conferences, Sam is
a Phi Beta Kappa graduate of Harvard
University.

4 Gene Kim, Kevin Behr and George Spafford, The Phoenix Project
 (Portland: IT Revotion Press, 2013)

Figure 1

 page 7

Think ahead. Act now.

.NET Core: a familiar and
different .NET Platform

The ASP.NET team has taken .NET in a new direction in order to achieve the vision for a new cloud-optimized web frame-
work. The team envisioned a redesigned framework to overcome the limitations of the original 15-year-old .NET Framework
4.5 and a modern cross-platform story to be able to quickly adapt to the changing Web. The Web stack was redesigned
and rebuilt nearly from scratch and along with it, the .NET Framework. Now, more than a year down the road, the .NET
rework has been adopted by Microsoft to serve as the future of a brand new .NET Platform, starring .NET Core.

More than meets the eye

ASP.NET introduces a new implementation of .NET Framework li-

braries and new runtimes plus additional tooling. Together these

are named .NET Core. A casual glance at .NET Core might give the

impression that this is merely a trimmed-down, lightweight ver-

sion of the original .NET Framework. To some degree that is true.

A closer look at .NET Core reveals a complete overhaul of the way

.NET is engineered, implemented, and offered as a modern plat-

form to build a variety of application types. The new version of.NET

is called .NET Core 1.0. This new version number of 1.0 is chosen to

indicate the revolution of .NET, as opposed to a natural evolution

of the previous iterations of 1.0 through 4.6, that 5.0 would sug-

gest. The framework libraries largely remain unaffected from a

functional perspective and your current knowledge of program-

ming for .NET is still valid. Underneath the familiar surface of .NET

is a new runtime, NuGet as a packaging format for the distribution

of .NET libraries, and brand new tooling to manage the globally

installed runtimes for .NET. All in all, a lot of significant changes

that deserve attention that goes beyond .NET Core.

A shift in strategy

The most obvious changes are easy to see and have been advo-

cated by the ASP.NET and .NET team: the new .NET Core is now a

much smaller and self-contained framework and runtime for ap-

plications. This means that .NET Core does not have to be installed

globally on machines that use a particular version. Moreover, mul-

tiple versions can exist side-by-side and be deployed as part of

the application. Also, .NET Core can be used on multiple operating

systems and allows Windows, Linux, FreeBSD and MacOS to host

applications built on top of .NET Core.

The small footprint and isolated deployment combined with the

cross-platform story opens up new scenarios for .NET applications.

One important scenario is the ability to create and run Docker con-

tainers for Linux and Windows with the appropriate version of .NET

Core. This makes .NET a valid choice when adopting a container

approach for building and hosting your applications.

Another important change is the decoupling of versions of the .NET

Runtime from the framework. This means that multiple versions

of runtimes for different operating systems and processor archi-

tectures can run your executables and libraries. Your binaries

might be based on .NET Framework libraries that are not neces-

sarily of the same version as the runtime, nor compiled specifically

for a platform on which the runtime exists. This does require a

new approach to the way libraries are compiled and made com-

patible across runtimes and platforms.

Multi-targeting

Traditionally the .NET Framework Software Development Kit (SDK)

had a specific version targeting a single version of the .NET Run-

time and Framework. Later editions of tooling such as Visual Stu-

dio introduced multi-targeting. This allowed a code project for an

application or library to choose the version of the framework and

runtime they depend and build upon. Still, the compiler was able

to build binary images solely for a single framework version, one

at a time.

With .NET Core come new compilers such as Roslyn, the Compiler-

as-a-Service facilities of .NET that allows actual compiling your

source code for multiple framework targets.

Each of these targeted frameworks is denoted by a Target

Framework Moniker (TFM) that is a short symbol representing the

ARCHITECTURE

Xpir i t Magaz ine
page 8

intended version. For example, net451 is the TFM for .NET Frame-

work 4.5.1 and dnxcore50 represents .NET Core 1.0 with CoreCLR.

The TFM is nothing more than a well-defined name that is used

by tooling to refer to a .NET Framework implementation on a plat-

form. You will encounter and use the TFMs when you want to de-

fine a compilation target in your project definition.

Preferably, you compile for only one target that allows your code

to run anywhere. But this is not as trivial as it may seem. There is

more than one .NET Framework and multiple platforms add to the

complexity.

Platforms and frameworks

The .NET Platform has long been a broad and general term to

capture several elements that together form a platform for

building and running applications. The .NET Framework, the Soft-

ware Development Kit, the Windows desktop and the server ope-

rating system were the most important elements. More operating

systems were supported at a later stage, not only Windows, but

also Windows Phone, Linux and OS X through Mono (a partial

cross-platform port of part of the full .NET framework). Most

recently the Windows 10 wave with Universal Windows Applicati-

ons spanning across desktop, server, mobile and Internet of Things

(IoT) devices were added. Each of these operating systems are

separate .NET Platforms with their own version (or multiple

versions) of a .NET Framework. This year .NET Core will be added

to this list of platforms.

.NET Platform Standard

Transitioning your code to .NET Core requires your code and the

libraries it depends upon to be available and compatible with the

environment you run in. If you use an open-source library, it might

use certain APIs that are not. For example, a library could have re-

ferences to assemblies from the full .NET Framework 4.0 that have

not been ported to run cross-platform on Linux or OS X. When the

code tries to call such assemblies they are not available, essenti-

ally causing your code to not work. Luckily Microsoft has come up

with a way to indicate how much of .NET is supported where. Stay-

ing within these boundaries will guarantee your code to run whe-

rever you intend it to run.

Originally, Portable Class Libraries (PCL) was the first solution to

these challenges of a variety of different platforms, with their dif-

ferent capabilities and specific .NET Framework implementations.

PCL introduced a reduced subset of the .NET Framework that

works on each of the compatibility-targeted .NET platforms.

This subset is based on the lowest common denominator of

support per .NET platform, so there is a guarantee that it will stay

within the boundaries of the supported functionality in the .NET

API. The .NET API per platform is defined by a set of assemblies

that define the shape of .NET types without implementation.

These so-called ‘reference assemblies’ form the build-time

contracts of .NET Framework per platform.

The approach of PCL to provide cross-framework compatibility has

evolved. The .NET Platform Standard provides an open-ended way

to represent binary portability across platforms. It is a standard

that uses versioned sets of reference assemblies to define the

surface API of the .NET Framework that is available to library

developers on each of the platforms. The targeted platforms

themselves have an actual implementation per reference

assembly that you as a developer can use in your code. Reference

assemblies are explicitly used to define a contract for the API

surface and are now referred to as ‘contract assemblies’. Contrary

to PCL, which defines the included platforms at build time, a .NET

Platform Standard version defines the surface API that must be

supported. This allows newer platforms not available at the time

of build to also use the libraries compiled against a specific version

of a .NET Platform Standard reference set, without having to

recompile the app to support the new platform.

The .NET Platform Standard defines multiple versions of such

reference sets of contract assemblies, named .NET Standard 1.0,

1.1 up to 1.4. More will be added in the future when new APIs are

created and the reference contracts in the surface API change in

an incompatible manner. Each of the reference sets promise and

require compatibility with the specific .NET Platforms and frame-

works. This has the important implication that platforms might be

dropped from support for newer version of the .NET Platform

Standard. Fewer platforms are supported, but a bigger .NET sur-

face API will be available to those that remain.

The following matrix shows the supported .NET platforms for each

of the current .NET Platform Standard versions. Start from a .NET

Platform Standard version (e.g. version 1.3) and read that column

downwards. Each colored horizontal block that crossed the column

indicates compatibility. A library targeted at .NET Platform Stan-

dard 1.3 can run on .NET 4.6 and 4.6.x, UWP 10.0 and .NET Core 5.0.

 page 9

Think ahead. Act now.

Figure 1

* indicates that the platform version that is supported for Mono

and Mono/Xamarin is yet to be determined.

The surface API defined in the contract assemblies of the .NET

Standard 1.0 is small enough to be available on the full .NET Fra-

meworks 4.5, and later on Windows, the Universal Windows Plat-

form, Windows Phone 8.0 and 8.1, .NET Core and Mono. Higher

versions of the .NET Standard have a bigger surface API but are

only available on the newer platforms (since the older ones will

not be updated anymore). .NET Core is the new kid on the block,

and offers an implementation for the highest .NET Standard with

the broadest surface API.

Once you create a library and target a Platform Standard of a cer-

tain version, you know it is compatible and able to run on the sup-

ported .NET Platforms. Like all platforms, the standard version also

has a TFM: netstandard1.0, netstandard1.1 to netstandard1.4. You

need these monikers when you create a library assembly yourself

and want to have a certain level of compatibility.

The .NET Standard Library

Circling back to .NET Core: the .NET Framework implementation

targeted at the .NET Core Platform is called CoreFX. It has an im-

plementation according to .NET Standard 1.4. The list of contract

assemblies in 1.4 is captured in the .NET Standard Library: a com-

bination of assemblies specific to the Platform Standard for mul-

tiple platforms and platform-agnostic assemblies that are the

same across platform versions. The following figure shows the

platform structure.

The center of the figure contains the Platform Standard libraries,

which comprises the implementation according to a .NET Platform

Standard as outlined before. However, some as-

semblies are implemented as part of the Platform

specific runtimes, such as the full .NET Framework

set or .NET Core. Usually these assemblies contain

operating system calls that are abstracted away in

.NET libraries. An example would be System.IO that

has a different implementation for Windows, Linux

and OS X. These ‘anchored’ assemblies can only be

updated by updating the particular framework.

Some assemblies are agnostic of the platform, such

as System.Linq. Such assemblies build upon the

Platform Standard and framework assemblies, but

are not different for different versions, platforms or operating sys-

tems.

The .NET Standard Library is the combination of the .NET Platform

Standard designated contract APIs and the platform agnostic

ones. By referencing that library, you know that your code uses a

.NET API that allows you to target, compile and run your code on

Full .NET, .NET Core or Mono. You will start seeing the related

NuGet package appear as a convenient way to reference .NET Plat-

form Standard implementations.

Figure 2

Inside the core

.NET Core is a cross-platform and open-source implementation of

.NET. It consists of three components:

n CoreFX: .NET Core base class libraries

 including implementation of .NET Standard Library

n Multiple compilers: RyuJIT, .NET Native, Roslyn and LLILC

n Two runtimes: CoreCLR and CoreRT

n Command-line interface tooling

 .NET Platform Standard
Target Platform Name Alias /TFM 1.0 1.1 1.2 1.3 1.4
.NET Framework net 4.6.x

Universal Windows Platform uap
Windows win

Windows Phone wpa

Windows Phone Silverlight wp 8.1
 8.0
DNX Core dnxcore 5.0
Mono/Xamarin Platforms *
Mono *

4.6
4.5.2
4.5.1

4.5
10.0

8.1
8.0

8.1
8.0

Xpir i t Magaz ine
page 10

These components show the clear separation of the .NET Core Fra-

mework and the runtimes. It is also visible in the ownership and

location of the implementations. Each of the components are se-

parate entities with their own Git repository, which allows each

individual component to evolve separately while providing a .NET

Platform together.

We will not drill into the different compilers that exist for .NET

Core, but suffice it to say that depending on your scenario, you

can choose for compilation to Intermediate Language (IL), native

code through C++ code generation. Ahead-of-Time (AOT) compila-

tion for creating single binaries that contain both your compiled

code together with the required runtime and libraries is also avai-

lable.

Of the two runtimes CoreCLR is the most important and complete

one. It is a Common Language Runtime much like that of the full

.NET Framework. The main difference is the cross-platform (Wind-

ows, Linux, OS X and FreeBSD) implementation that was created

for CoreCLR. CoreRT is a runtime for code compiled with .NET Na-

tive as it requires a different way of executing.

.NET Core tooling

Since .NET Core is cross-platform over Linux distributions, OS X,

FreeBSD and Windows, the development experience cannot rely

on the general availability of a rich Integrated Development Envi-

ronment (IDE) such as Visual Studio 2015. Microsoft has created

Visual Studio Code as a lightweight cross-platform IDE for Linux

and Mac. Command-line tooling is the common ground for devel-

opment on the various operating systems. This strategy allows

you to pick your favorite environment (VI, Emacs, Notepad, Sublime

Text or Visual Studio Code on your OS, or Visual Studio 2015 on

Windows) for working with code and perform operations from the

command-line.

.NET Core Command-Line Interface

.NET Core includes a set of stand-alone command-line interface

(CLI) tools that allow you to complete various tasks related to .NET

Core components. Currently, the CLI tooling is a separate

download and installation.

The previous incarnation of this tooling used dnu.cmd and dnx.exe

as two separate pieces of command-line tooling. The .NET Devel-

opment Utility (dnu) was for compilation and packaging, while the

.NET Execution Environment (dnx) was the bootstrapper for run-

ning .NET Core applications. Each of these tools is now bundled in

a new CLI tool dotnet.exe.

dotnet is the CLI for performing .NET Core related operations. It is

an extensible entry point to various operations related to .NET

Core projects and source code. dotnet.exe is a driver that takes a

command to indicate the actual operation. A couple of examples

will show what it can do:

Command Operation

dotnet new Scaffold a new empty .NET project

dotnet restore Restores dependencies of projects

dotnet build Performs a build of a project’s source code

dotnet pack Creates a NuGet package

for the compiled binaries

dotnet repl Interactive REPL session

(Read, Eval, Print, Loop)

Figure 3

Each of these commands can accept a number of arguments if

different options or behavior are needed. The dotnet tool has built-

in documentation for each of the commands, which can be viewed

by passing the --help switch for the particular command.

Each of the commands is actually a separate executable that is

spawned from the dotnet.exe tool. The convention is that the exe-

cutable for a command is named dotnet-command.exe, such as

dotnet-build.exe. The commands can be executed directly, but the

preferred way is to use the top level driver dotnet.

Initially you typically run dotnet from an empty directory with the

name of your .NET project. The folder name will be the default

name of your assembly. After that you can use Visual Studio 2015,

Visual Studio Code or your preferred code editor to program your

application or library. The two Visual Studio editions have built-in

support for the command-line tooling as part of their build system.

At the time of writing this article, this is still the precursor tooling

of dnx.exe and dnu.cmd, but this will probably be updated to

support the dotnet.exe tooling.

A short walk-through of Hello World in .NET Core

Let’s have a look at .NET Core by creating and inspecting a simple

Hello World application. Make sure you have .NET Core installed

on your operating system. Instructions for doing this can be found

on the GitHub repository for .NET Core CLR. Also, install the .NET

CLI tooling. The required links are listed at the end of this article.

Start a command prompt in your environment. This might be a

command or terminal window depending on your operating sys-

 page 11

Think ahead. Act now.

tem. Create a new folder on the file system named HelloWorld

and enter that folder from the console. Run the command dotnet

new and inspect the generated contents.

project.json:

{
"version": "1.0.0-*",
"compilationOptions": {

"emitEntryPoint": true
},

"dependencies": {
"NETStandard.Library": "1.0.0-rc2-23616"

},

"frameworks": {
"dnxcore50": { }

}
}

The frameworks section of the project.json file lists all the targets

for which this project will be compiled. It targets a single frame-

work dnxcore50, which is the TFM for .NET Core 1.0 (and might

change in the future). Since this project is a console application

and not a library, it targets the .NET Core Platform specifically, not

one of the netstandard targets. It depends on NETStandard.Li-

brary, which is a placeholder that bundles the dependencies for

platform agnostic assemblies (e.g. System.Linq, System.Runtime.

Numerics) and the NETStandard.Platform. In its turn the latter is

a placeholder package that contains contract assemblies

representing the surface API of the new .NET dependencies on the

base class libraries in the Platform Standard. The hierarchy of

dependencies is shown below.

Figure 4

The code for our skeleton application is as follows:

Program.cs

using System;

namespace ConsoleApplication
{

public class Program
{

public static void Main(string[] args)
{

Console.WriteLine("Hello World!");
}

}
}

The skeleton program is exactly the same as for .NET 1.0 back in

2002 since the basics of .NET have not changed much. It is only

when you start using more recent libraries that you will encounter

the differences. This is most noticeable when creating ASP.NET

Core 1.0 applications, as it is targeted at netstandard1.4. Referring

to the matrix with the netstandards, you can tell that libraries

from ASP.NET Core 1.0 can only be run on full .NET Framework 4.6.x

and .NET Core 1.0 (referred to in the picture as DNX Core 5.0). These

require the specific runtimes CLR and CoreCLR respectively, where

CoreCLR is the only one that has cross-platform implementations

for Linux, OS X and FreeBSD.

Now, run the commands

dotnet restore

dotnet build

This will restore the dependencies and build the code against the

packages that will be downloaded from the specified NuGet feeds.

The NuGet feeds are specified in the NuGet.Config file that was

also generated by the .NET Initializer tool (dotnet new). Most

notable is the inclusion of the feed for .NET Core itself at

https://www.myget.org/F/dotnet-core/api/v3/index.json.

Assuming the restore and build are successful, you should be able

to run the HelloWorld.exe executable by issuing the following

command from the project folder:

dotnet run

Xpir i t Magaz ine
page 12

This will only display the infamous words “Hello World!”. Although

not very impressive by output it is rather remarkable that this flow

will work regardless of the operating system you were working

on. Your executable was compiled targeted at dnxcore50 (i.e. .NET

Core 1.0). .NET Core has multiple CoreCLR runtimes for the various

OSes and can even use the .NET CLR runtime as an alternative on

Windows.

Managing runtime environments

The final piece of the puzzle of .NET Core is the management of

the various execution environments that have the runtimes. The

.NET execution environments (DNX) are versioned and targeted at

an operating system, processor architecture and runtime. The .NET

Version Management tool (DNVM) manages the environments that

are installed on a machine. Try running the tool from a command

prompt to print a list of the installed DNX versions:

dnvm list

The output is similar to this, but will vary based on what was

previously installed.

Figure 5

The tool also allows you to choose the active DNX that determines

the actual runtime (CLR or CoreCLR) for executing your application.

You can change the active DNX by commands like

dnvm use 1.0.0-rc1-final -r coreclr -a X64

where you specify the version, runtime and architecture of the

processor. This must be one that can run on the current operating

system if you want to execute your application. However, you are

free to install and package runtimes of other operating systems

to prepare deployments of the application to those OSes.

Conclusion

.NET Core is the latest addition to the existing set of .NET Plat-

forms. It is cross-platform and open source and a modernized im-

plementation that enables scenarios such as containerization of

the applications built with it. Although much is still the same, there

are substantial differences under the covers, including the exis-

tence of multiple runtimes, compilers and tooling that come with

.NET Core. The future of .NET is looking bright and .NET Core is a

first impression of what’s in store. The way .NET Core is designed

allows a quick evolution of the .NET Framework in new directions

and across platforms never deemed possible before.

Links

n Install .NET Core:

 http://bit.ly/coreclr

n .NET CLI tooling:

 http://bit.ly/dotnetcli

n .NET Platform Standard:

 http://bit.ly/netplatformstd

ALEX THISSEN

CLOUD LEAD CONSULTANT
XPIRIT

Alex assists companies in building web
applications and back-end solutions
using Microsoft technologies and frame-
works. He helps with the migration of
existing architectures to modern
standards and designs, as well as cloud
solutions running on platforms such as
Azure. Alex cares about security and
informs organizations and development
teams about secure coding and best
practices.

How Docker will change
Microsoft development

Within the developer community, Microsoft has always been known for their great IDE, Visual Studio, and their develop-
ment framework .NET. Together with products such as SQL Server, SharePoint and BizTalk, this was the basic set of tools
of every Microsoft Developer. In addition to the Microsoft toolset there were some additions such as HTML, JavaScript,
CSS or some other third-party frameworks and tools, but Microsoft’s portfolio constituted the main body of the tooling
required by developers.

The downside of this unified

toolset and the tight coupling

with Windows caused more

and more developers and com-

panies to shift away from the

Microsoft platform and for

various reasons. Companies did

not want vendor lock-ins or to

rely solely on proprietary soft-

ware. Moreover, developers

wanted more choice and

control over the frameworks

they used, preferring to move

to Open Source.

Times are changing

But Microsoft has changed its strategy – it is moving to a “mobile

first, cloud first” world and knows that there is more than

Microsoft alone. And this shift of strategy also impacts the Micro-

soft Developer.

Some major changes were made to overcome the difficulties faced

by companies and developers using the Microsoft platform, there

were. Microsoft does not only want to offer the best platform and

IDE for Microsoft developers, it also wants to offer the best plat-

form for all developers, regardless of the platform or technology

being used. We now see Microsoft adopting Open Source,

providing development tools on every Operating System (Visual

Studio Code) and it is even open-sourcing its own technology.

The .NET platform became Open Source and ASP.NET 5 was

completely rebuilt to be able to run on both Linux and Windows.

Microsoft created a lightweight version of the .NET runtime called

the CoreCLR. This CoreCLR is available on all the platforms and is

much lighter than the traditional CLR. And although it seems

trivial because most of the ASP.NET applications run on Windows

this actually opens up a whole new range of possibilities.

ASP.NET 5 is a powerful technology. However, the downside

always was that it was not Open Source. But now that it is Open

Source, ASP.NET has the power and curation of a large company

like Microsoft but all the benefits and community of Open Source,

allowing the technology to evolve even quicker.

With the CoreCLR, which is an important part of the ASP.NET stack,

every developer is able to build and run applications on all

platforms.

From mainframes to containers

With regard to application development and deployment, a lot of

attention is currently paid to Continuous Delivery and DevOps, i.e.

the ability to release an application on demand, and the ability to

remove all friction between the people building the application

and the people running it.

In a “mobile first, cloud first world”, where computing power is

ubiquitous, availability and performance is the most important

thing and where complexity is increasing rapidly, we see that the

industry is ready for the next step. What is needed is higher

density, less downtime, faster start-up times and immutable

software.

When we started out in IT, we used mainframes. Because

mainframes were not flexible, not accessible to everybody and

were expensive to run, physical servers became popular. After that

Virtual Machines were introduced, because physical servers did

ALM

 pagina 13

Think ahead. Act now.

Figure 1:

The ‘old’ Microsoft stack

Xpir i t Magaz ine
page 14

not scale very well, were hard to clone or move, and also involved

considerable operational cost.

And to take this a step further, the Virtual Machines moved

towards a Cloud Platform to further reduce costs and increase the

scalability and reliability.

And now it is time for the next step in computing: Containers.

Virtual Machines have a large footprint, are hard to maintain

because they all have their own Operating System and configu-

ration and they are quite heavy to run, allowing only a few Virtual

Machines on one physical host. To overcome this challenge,

containers are the ideal solution. They offer the benefits of a

Virtual Machine but without the related overhead and footprint.

So when Docker was introduced a few years ago, it built on the

already existing container technology in Linux, and containers

really took flight. Because Container Technology is the next step

in computing and because containers are currently only possible

on Linux, it is not surprising that Microsoft is working hard to sup-

port containers on the Microsoft platform as well. And this is what

will happen with Windows Server 2016 and Windows Nano Server.

Docker, Images and Containers

Before we discuss the possibilities that containers can offer the

Microsoft developer, let’s take a look at what container technology

is actually all about. What makes it different to Virtual machines?

It is important to understand the concepts behind a container,

especially because a single container cannot run on both Windows

and Linux. In other words, container technology in itself does not

offer OS transparency.

Figure 2: Virtual Machines

As illustrated in Figure 2, we can see how Virtual Machines work

conceptually. An Operating System is installed on the physical

Hardware, and by using a Hypervisor, Virtual Machines are created.

They run on virtualized hardware and are assigned resources by

the Hypervisor. We can run multiple Virtual Machines on one host

and they are totally independent of both the host and one

another. One Virtual Machine can run Windows 2012, one can run

Windows 2003 and one can run Linux. Applications are installed

on the Virtual Machine. As far as the application knows, it runs

on physical hardware. This also applies to the users and

administrators.

Figure 3: Containers

This independence of the operating system within a Virtual

Machine is perhaps the largest difference between Virtual

Machines and Containers.

As illustrated in Figure 3, containers run directly on the Operating

System, without using a Hypervisor or virtualization layer. The con-

tainer uses the underlying Operating System (or actually Kernel)

and only saves the delta as part of the container. For example,

actions such as installing software, changing settings or creating

files are all stored as a new layer on top of the base container

image, which is the same as the underlying OS. This means that

a container is much more lightweight than a Virtual Machine

because we don’t have the footprint of the full OS. This allows us

to run more containers on one host and be much faster in startup

time. Moreover, we keep the benefits of virtualization because the

containers are also independent of each other.

As you can see in Figure 4, containers are layered. You start out

with a base image, which is the “transparent layer” on top of the

underlying Operating System. In case of Windows containers this

is a Windows Server Core image or a Nano server image.

All actions you perform within the container, for example installing

Git or installing ASP.NET, are saved in a separate layer on top of

 page 15

Think ahead. Act now.

Figure 4: Containers are layers

the base image. The container including the layers can then be

stored as a new image and be reused as a new base image. This

way you can create an ASP.NET 5 base image that contains all

necessary files, and use that image to run your application on.

This makes it super easy to reuse images.

You can describe an image in a Docker file. This file describes which

base image you should use and what additional actions you want

to perform on this image. A Docker file could look something

like this.

Figure 5: Example Docker file

In this example, we take the windowsservercore base image, add

two environment variables, run a PowerShell Command to install

Git, add some files to a folder, navigate to the folder and run the

webserver kestrel.

This file describes the image of the container and can be stored

in source control, be stored in a public or private registry so it can

be distributed, and allows you to create new container images.

You can imagine the power of this approach.

Hyper-V Containers

One of the small downsides of containers running on the same

host (both on Windows and Linux), is that they are not completely

isolated. This possibly involves two problems1:

n The kernel is shared between the containers. In a single tenant

environment where applications can be trusted this is not a

problem but in a multi-tenant environment a bad tenant may

try to use the shared kernel to attack other containers.

n There is a dependency on the host OS version and even patch

level which may cause problems if a patch is deployed to the

host which then breaks the application.

This is where Hyper-V containers may be the game changer for

containers on the Windows platform. With Hyper-V containers a

mini Hyper-V VM is spun up, which is completely isolated from

other VM’s and the host kernel. Inside the mini VM, the container

is still used, but without the possible downsides. The only

downside you have is that you have a slightly larger footprint of

the larger container (or VM) and thus a lower density on the

server.

On Windows it will be possible to run your container as a “normal”

container or a Hyper-V Container. You can choose this during

deployment time, making this a real advantage.

The impact for the Microsoft Developer

Now that we know a bit more about the inner workings of a

container, and how it differs from a Virtual Machine, we can

explore some new possibilities that containers can provide to the

developer community.

A change in the developer experience

As a developer you use a lot of different tools, a lot of different

configurations and also a lot of different versions of tools.

However, managing all these configurations, or developing for a

specific target requires a lot of effort. What we usually do when

we want to run multiple versions of a tool in parallel is to install

a Virtual Machine. We can now run a VM quite easily in the cloud,

but we can also use a Virtual Machine on our own Hyper-V server.

Regardless of the option we choose, it requires a lot of resources.

With Docker containers, we can run lightweight containers, with

their own tools and configurations and versions, all on the same

host. And we can run many of them at the same time. But the

best part is, we can also throw them away and keep the

configuration of our development/test environment in a file

1 http://windowsitpro.com/windows-server-2016/differences-between-
 windows-containers-and-hyper-v-containers-windows-server-201

Xpir i t Magaz ine
page 16

instead of a large Virtual Hard Disk. So instead of only having the

code for a specific version of our application, we also have the

development environment. When we need it, we create a new

image and we run it in a matter of seconds. Of course, we can also

use containers to facilitate our dev/test experience on the local

workstation. Currently, Docker on Windows is in its early steps of

development and the developer tools are not yet adjusted to con-

veniently work with containers. Besides the Docker plugin2 in Visual

Studio, which allows you to directly publish an ASP.NET 5 website

to a Docker container3 and the Yeoman generator4 to scaffold a

Dockerfile for your application, there are no tools available yet.

But imagine the power of a container that can be used as a

development tool. You build your code and publish it to a Docker

container and spin it up. Once running, you can debug your code

within the container. No caching trouble, or files that were still

installed or version-specific issues. You can create images of

containers that represent the state of the production environment

that you are developing for. And the best thing is, the container

definition becomes part of your source code because you can store

it along with your code in source control.

A change in the Continuous Delivery process

The most obvious change containers will bring, is a shift in how

we build, test and deploy our applications. One of the biggest

advantages of a container is that it is immutable. You create the

image, which describes everything that should be in the container

and configure its properties. The application is deployed within the

container and configured as well, and this immutable container

moves through the various stages of Test, Staging and Production.

This is a dream in a DevOps world where we do not want big

documents and configuration settings being handed off to

someone who can do this on a production machine.

When containers are used for moving an application though the

various stages, it also means that automation becomes even more

important than it already is. It means that the creation of the

container image, the building of the application and the

configuration all need to be done automatically. Build Servers,

Release Management and Configuration as Code become crucial.

Testing the application becomes easier as well. Instead of

deploying to one Test Environment, each version of an application

can be spun up as an extra Test Environment, allowing testers to

have fine-grained control over the bits they are testing.

The following figure gives an idea of the structure of a typical

delivery pipeline:

Figure 6: Continuous Delivery workflow

The figure shows that a developer pushes code and a Dockerfile

to the source code repository. The build server picks up the latest

version and builds a container image from the source code and

Dockerfile. The container contains the application and configura-

tion, and is sent to the Docker repository (DockerHub) or a private

Docker repository. Such a repository keeps a copy of Docker

images that you can pick up and reuse.

A typical example could be the creation of a base container image

that contains all the prerequisites, and then adding the compiled

sources to this container. From here the container images can be

pulled by developers but also by Visual Studio Release Manage-

ment (or a build server etc.). VS Release Management installs (or

spins up) the containers in the Test, Staging and Production

environments.

A change in application architectures

When you run lightweight containers that are immutable and

disposable, it makes no sense to run a big monolith inside the

containers. The results will become visible in the future, but the

fact is that using containers and using a loosely coupled,

microservices-like architecture are related to each other. We could

start using containers for our microservice architecture, or perhaps

we will move to microservices because we want to use containers.

Whatever the results may be, containers will play a major role in

how we architect and build applications. Because when we have

a disposable resource that we can recreate by using a file and

spin up new instances in a matter of seconds, it makes no sense

to architect our application for updates. We always create a new

instance, and we can use this to our advantage. We can create a

new version of a container and spin it up next to an old one.

Services that use the old container can start pointing at the new

2 http://aka.ms/dockertoolsdocs
3 https://visualstudiogallery.msdn.microsoft.com/
 0f5b2caa-ea00-41c8-b8a2-058c7da0b3e4
4 http://aka.ms/yodocker

Think ahead. Act now.

one and the old ones can be shut down. If needed, we just spin

up a new instance of the container.

For example, take the following situation: imagine that you have

a tax office and need to calculate tax. Every year the application

is changed: new rules, new data. The calculation takes a fair

amount of time, so incoming requests are stored in a queue.

In a traditional situation you would probably have a Load Balancer

and distribute the requests to multiple servers. When using con-

tainers, you can use a completely different approach. Instead of

one application that is updated from time to time, the processor

that takes the top of the queue, gets the latest version of a

container and spins it up. The container processes the request and

is then thrown away.

If a newer version is released, the newer version is used instead.

No downtime and no traditional problems of an application that

takes a long time to run.

Summary

Containers have been around for quite a while on the Linux

platform and now they are coming to the Windows platform.

A container is really different from a Virtual Machine, because it is

small, fast and immutable. When it comes to developing software,

containers will change the way we work. Developer workflows will

be optimized for building and testing in containers, the delivery

workflow will be optimized for delivering containers, and the entire

application architecture will be modified to be able to deal with

that.

Extra Links

n Channel 9 Videos – http://aka.ms/dockerfordotnet

n Getting started – http://aka.ms/windowscontainer

RENE VAN OSNABRUGGE

ALM LEAD CONSULTANT
XPIRIT

René is constantly promoting improve-
ment in all areas. Using modern techno-
logy, implementing Continuous delivery
and DevOps practices, and coaching on
Scrum and Agile, he assists companies
in improving their software delivery pro-
cess. As an MVP in Visual Studio and De-
velopment Technology, Rene is an active
blogger and speaker at both national
and international conferences where he
shares his knowledge of his passion:
Application Lifecycle Management.

Xpir i t Magaz ine
page 18

All of these cases require some form of scaling, but the element

which is scaled is different in each of these situations. Yet in all

of these cases, dependencies are increased, between teams,

between Product Backlog items and sometimes even between

different products. Managing these dependencies requires

changes in the way people work (processes and people) and this

is difficult without the help of supporting tools.

Many organizations have been scaling Agile and Scrum for years.

And for a long time there was a list of commonly used practices

and patterns used in the Agile Community, but nothing fully

defined. More recently, scaling frameworks such as SAFe and LeSS

have been released. SAFe appears to be a complete methodology

that tries to encompass large and complex organizations from

portfolio management and budget allocation all the way down to

the team organization. On the other hand, LeSS mainly focuses

on large development organizations with a single product or

product family, while it also includes mandatory organizational

changes.

Scrum.org has released its vision on scaling in the same succinct

way that Scrum is defined, i.e. with the release of the Nexus Guide1

that introduces the Nexus Framework, as well as the Scaling

Professional Scrum course and assessments. The course introdu-

ces the Scaled Professional Scrum practice library. The iterative

and incremental approach to scaling is what makes Nexus stand

out from the alternatives. The Nexus framework strongly empha-

sizes technical excellence in order to scale Scrum sustainably,

recognizing that many people who use Scrum are still having

trouble delivering a Done increment of working software as one

team. Obviously, things only get worse when scaling up, when

more teams are involved.

Personally, I am much more comfortable with this empirical

approach of technical excellence than any big-bang scaling effort

which tries to change the tools, technology, teams and organiza-

tion all at once.

Microsoft has developed a Scrum template in the past, and the

Agile experience in Visual Studio Team Services has recently been

revamped. Most of these new agile features have also shipped as

part of Team Foundation Server 2015 update 1.

In this article we will focus on the way in which Nexus relates to

Scrum and then look at some of the challenges experienced by

teams and how tools such as Visual Studio Team Services can

support them.

Introducing Nexus

In order to scale Scrum, the creators of Nexus stayed away from

a prescriptive approach to scaling, because experience shows that

no single solution to Scrum, let alone at scale, works in every pos-

sible environment, not even within the same organization. Over

time, and with every release of the Scrum Guide since 2010, Scrum

has been simplified by removing things that were too prescriptive.

Scaling Scrum Professionally
using Nexus and Visual Studio

Team Services
If you have been using Scrum to develop products, you have probably found that the Scrum Guide only describes the
core rules of Scrum, regardless of scale. A lot of companies want to use Scrum to work on multiple products or to develop
a comprehensive product that requires multiple teams. The question then arises of how to organize product ownership.
Even more common are situations in which the eyes are bigger than the stomach, where the list of features is much
longer than their current team can deliver and where companies need to scale to multiple teams to deliver more items
of the backlog within a given timeframe.

ALM

1 https://www.scrum.org/Resources/The-Nexus-Guide

 page 19

Think ahead. Act now.

No scaling method or process should undo those simplifications.

This is why it shouldn’t be a surprise that Nexus is a lot like Scrum.

As Ken Schwaber, co-creator of Scrum.org describes it, Nexus uses

Scrum to scale Scrum. Nexus focuses on complex product devel-

opment in which multiple teams work on the same product or

product family.

When working on one product with one or two teams, Scrum

suffices and the overhead of a scaling framework doesn’t add

value, it may even do harm. When working with multiple products

and multiple teams, each product can use Scrum or Nexus to

manage their product development, in addition, portfolio manage-

ment may be required for budgeting and prioritization across

products, projects and other invest-

ments. However, Nexus does not cover

this topic.

Balancing multiple products across a

single team tends to be chaotic. As long as the work is not com-

plex, this may be possible, but for complex work such as software

development, this approach is not sustainable. Kanban can help

organize the work, but only if the level of complexity can be kept

to a minimum (support, operations and maintenance are examples

that tend to work relatively well in this model).

The various combinations can be visualized in the following way

Figure 1

Nexus does not attempt to resolve the challenge of an Agile

organizational transformation, nor does it resolve the common

situation in which one team tries to balance its capacity across

multiple products at the same time. It provides a simple frame-

work in which multiple teams can learn how they work best

together on one or several products.

To better understand how Nexus is an extension of Scrum, let’s

look at the differences and similarities between Scrum and Nexus.

Nexus uses Scrum
to scale Scrum

Multiple Products

Multiple Teams

One Team

Kaban
or chaos

Portfolio Management
with Nexus or Scrum at

for each product

One Product

Scrum

Nexus

Scrum

Scrum is a Framework, and it can

encompass many good agile prac-

tices. Practices that work for one

product and one organization may

work differently for other products

and organizations.

Scrum focuses on teams of 3-9

people. Fewer people don’t need

the overhead of scrum. More pe-

ople cause communication to

break down.

A Scrum Team has all the skills re-

quired to deliver an increment of

working software.

A Scrum Team works on a single

Product.

A product has a single Product

Owner, though some responsibili-

ties may be delegated to the

teams.

A Scrum Team delivers an integra-

ted increment of working software

every Sprint

Nexus

Nexus is a Framework, and to

make it work, it needs to be ex-

tended with good agile practices.

Practices that work for your pro-

duct and organization may be dif-

ferent than those of another

organization. Due to the added

complexity of working with multi-

ple teams, these practices are

even more important.

Nexus focuses on 3-9 Scrum

teams, which as a whole are refer-

red to as the Nexus. Fewer teams

don’t really need the overhead of

a scaling framework. More teams

will be unable to work together

effectively.

A Nexus consists of teams who

have the skills required to deliver

an increment of working software.

Nexus allows for the existence of

component or layer teams, but all

work done in the Sprint across all

teams must deliver value toge-

ther.

A Nexus works on a single product

or product family.

A product has a single Product

Owner, though he may delegate

some of his responsibilities to the

teams.

A Nexus delivers an integrated in-

crement of working software

every Sprint.

Xpir i t Magaz ine
page 20

Figure 2

Even graphically Nexus looks remarkably similar to Scrum, which

makes it easy to understand for organizations that have been ap-

plying Scrum for some time now. You can see the word Nexus pop-

ping up a number of times, usually just before or just after a

standard event.

Figure 3

n Scrum Team and Development Team - unchanged. The Scrum

Team still consists of a Product Owner, a Scrum Master and a

Development Team, consisting of people with all the skills

required to deliver the work required.

n Product Backlog – Unchanged. It is still a single ordered list of

Product Backlog items owned by a single Product Owner.

n Product Backlog Refinement is introduced as an official event.

It happens during the Sprint and there may be multiple events

(sometimes in parallel) to which teams send one or more team

members. It is important that these events are attended by the

right representatives from the individual teams. One of the

primary goals of these refinement events is to see how work

can be broken down or combined to remove dependencies

between teams.

n Sprint – Unchanged. It is still a time-box in which all the events

of Scrum and Nexus take place.

n Sprint Planning is extended. Before teams start their Sprint,

the Product Owner shares the vision and the primary goals for

the next Sprint. Delegates from each team come together to

discuss Product Backlog items that are mutually dependent.

Afterwards, each team launches into a normal Sprint planning

meeting, so all teams plan their Sprints at the same time. This

works best when all teams are in the same room, although this

is not mandatory. This combined event is called the Nexus

Sprint Planning.

n Each team still has its own Sprint Backlog to ensure that all

work is transparent within the teams. One additional artifact is

created, the Nexus Sprint Backlog. This shows the Product Back-

log items each team will work on during the Sprint. It also

visualizes the dependencies between these items and teams.

Scrum

Sprints are 30 days or less.

The main events of Scrum are

Sprint Planning, Daily Scrum,

Sprint Review and Sprint Retro-

spective. They are contained in a

Sprint.

The main artifacts of Scrum are

the Product Backlog, Sprint Back-

log and the Increment.

The Product Owner, Scrum Master

and Development Team are the

only roles that exist in Scrum. . . .

Nexus

Sprints are 30 days or less.

The main events of Scrum are

Sprint Planning, Daily Scrum,

Sprint Review and Sprint Retro-

spective. They are contained in a

Sprint.The main events of Nexus

are the same as those in Scrum

with the addition of Product Back-

log Refinement as a new time-

boxed event.

Most events are extended to han-

dle cross-team interaction, indica-

ted by the addition of a Nexus

component. So there’s a Nexus

Sprint Planning, Nexus Daily

Scrum etc.

The main artifacts of Nexus are

the same as those in Scrum, with

the addition of the Nexus Sprint

Backlog, which shows the depen-

dencies between the Sprint back-

logs of the individual teams.

Nexus adds a Nexus Integration

Team (or NIT) which consists of

the Product owner and those

members of other teams required

to facilitate integration.

 page 21

Think ahead. Act now.

n The Nexus Daily Scrum happens on a daily basis, and takes

place before each individual team meets in their Daily Scrum.

In the Nexus Daily Scrum delegates from all teams come toge-

ther to flag any impediments or dependencies from other teams

that will impact the plan for the next 24 hours. The primary

source of inspection of a Nexus Daily Scrum is the state of

integration of the work of the Nexus.

n All work that’s been done, i.e. work that is fully integrated across

all teams and delivered as an integrated Increment of product,

is presented at the Nexus Sprint Review for feedback. All teams

deliver this review together. There are no individual Sprint

Review events.

n The Sprint ends with the Nexus Retrospective, during which all

teams together discuss how the Sprint went at the Nexus level

and which things may need to be improved. The outcomes are

taken into the Sprint Retrospectives of the individual teams.

At the end all teams come together to share changes to their

process, team or tools, and share anything that might be useful

for the other teams.

n Nexus introduces one new “virtual” team, the Nexus Integration

Team. Its role in the Nexus is to facilitate collaboration and in-

tegration across the teams, and remove impediments at the

Nexus or organizational level. The team is made up of the

Product Owner and the “right selection” of team members from

all Scrum Teams. Its composition may change over time, as the

problems they try to solve changes.

Nexus assumes that the Scrum Teams will know how to solve the

problems they are facing and how to best implement the work on

the Product Backlog. It does not

provide prescriptive guidance on how

to conduct a Sprint Planning meeting

with 9 teams, nor does it specify how

to remove dependencies between

teams. This is where Scaled Professi-

onal Scrum provides building blocks to extend the Scrum

framework to the level of 3-9 Scrum Teams developing and

sustaining one product.

Introducing Scaled Professional Scrum

The main reason why Nexus can be explained in only 10 pages is

also the reason why Scrum.org is developing Scaled Professional

Scrum (SPS). Nexus provides a framework that shows how to work

together and how to improve incrementally. Scaled Professional

Scrum is a library of practices that have been proven in the field

in different situations. It also includes practical guidance and a

two-day workshop to gain hands-on experience. You may compare

it to the good old Gang-of-Four Patterns and Practices book. If you

use Nexus and Scaled Professional Scrum, you will discover what

is the best way to scale Scrum for your organization.

You can test your knowledge of Nexus, Scrum and common scaling

practices by taking the Free Nexus Open assessment. Certification

can be achieved by passing the Scaled Professional Scrum

assessment.

Combining Nexus with the practices from SPS and tools from

Visual Studio Team Services

We have observed how even one Scrum Team often has a hard

time producing a releasable increment at the end of each Sprint.

This becomes exponentially more difficult when you are integra-

ting and testing work that needs to happen across multiple teams,

at least every month, or less frequently.

Most agile practitioners, coaches and trainers will swear by

physical boards, and actually holding sticky notes in their hands.

Indeed, it changes the level of involvement of people, and it may

give them a feeling of accomplishment when physically moving a

task or PBI to Done. Yet when working with nine teams, especially

if they’re not all in the same location, it is unlikely that teams can

be effective with physical boards only. It has become common to

work together remotely, in different time zones or have team

members working part-time for the company, tools and techno-

logy become extremely important for providing the required

support to deal with these collaboration issues.

While the physical world works best to facilitate communication,

collaboration and knowledge sharing, technical practices such as

Source Control, Continuous Integration and automated testing

help teams to work together and integrate at a technical level.

Any team who has used these tools is unlikely to go back.

Let’s take some of the most common scaling challenges and look

at how people, processes and technical practices can help us ‘re-

solve or reduce these.

n Coordinating dependencies

The first way to resolve dependencies between teams is to

proactively identify them, and try to work around them. This is

why Nexus introduces Product Backlog Refinement as an official

Scaled Professional Scrum is
a library of practices that
have been proven in the field
in different situations

Xpir i t Magaz ine
page 22

event. When working with multiple teams, Refinement is no lon-

ger an optional activity. Instead, it becomes a crucial forward-

planning event. Refinement is not about writing User Stories

and acceptance criteria; it is about figuring out which depen-

dencies exist in the current Product Backlog and how to reduce

or completely remove the dependencies. The means to do so

may include knowledge exchange, shared code ownership,

rewriting Product Backlog items or decomposing or splitting

functionality.

To reduce dependencies between teams and increase their

autonomy, it helps to have teams that are able to work inde-

pendently in defined areas of the product you’re building. Cross-

functional teams centered around one or multiple related

feature areas are strongly recommended as opposed to

component or layer teams.

However, some coordination across teams will always be requi-

red, and the Nexus Sprint Backlog makes these dependencies

transparent. The teams share useful updates on integration and

other dependencies in the Nexus Daily Scrum, prior to the

individual teams’ Daily Scrum.

At a higher level, the Product Backlog is an ordered list of items.

To ensure that the Product Backlog does not become fragmen-

ted, it is important to assign work to teams only just before or

at the start of each Sprint. If you don’t, you will end up with

one Product Backlog for future work and a Product Backlog for

the work each team has claimed.

Figure 4

This is detrimental to transparency. It will be very hard to see

how work on one team’s backlog relates to that of another

team, and it may be that more valuable work is delayed when

one team is delivering faster than another.

In many tools, including Visual Studio Team Services, it is easy

to lose the grand overview of the backlog when work is preas-

signed to Sprints and teams. Visual Studio Team Services

provides some good alternatives: it is better to rely on the

Forecasting capabilities2 to identify which work will be delivered

in a future Sprint combined with Tagging3 so teams can

pre-emptively volunteer for specific items on the Product

Backlog. Visual Studio Team Services also provides integration

with tools such as HipChat and Slack, which helps teams

communicate quick status updates and find answers to ques-

tions from other teams more effectively. These digital channels

make it easy to share links to Product Backlog Items, Build

artifacts, etcetera.

Figure 5

2 https://msdn.microsoft.com/library/vs/alm/work/scrum/velocity-and-
 forecasting
3 https://msdn.microsoft.com/en-us/Library/vs/alm/Work/track/add-
 tags-to-work-items

 page 23

Think ahead. Act now.

n Delivering a fully tested product every Sprint

When working on a large product in short Sprints it is easy to

spend most of the Sprint’s time on testing, or to simply not run

all tests during each Sprint. Defects may sneak into areas of

the product when it is least expected, causing teams to accu-

mulate technical debt, often unknowingly. Testing is essential

to deliver a fully integrated increment of working software.

It should be part of every team’s definition of Done and should

thus be performed every Sprint. Testing is an important

strategy to identify unwanted dependencies that were not

caught proactively. The only way to prevent a manual test-

avalanche, and omitting important tests, is automation. Auto-

mation can be applied at multiple levels, and Continuous Inte-

gration will ensure that the sources build, while running the unit

tests will ensure that no breaking changes are introduced.

Automated deployment to test envi-

ronments for automated integration

and system test ensures that compo-

nents will work together as expected.

With complex environments, it may

also be required to automate the

provisioning of such environments.

Visual Studio Team Services provides

Build, Test and Release Management features that can help

your teams with these continuous integration problems.

n Effective meetings

In a Nexus you’ll have an absolute minimum nine people, three

Development Teams, each consisting of three members, and up

to nine Development Teams, each consisting of nine members

(81). Six teams of six people might be an optimal size (36).

Obviously, the Scrum Masters and Product Owner need to be

added to this number. Effective meetings with such large

groups are impossible or at bestincredibly expensive for any

given organization, unless this is facilitated effectively. This is

why most Nexus events are attended byrepresentation from

each team. It is extremely important that the right people are

selected to represent a team. Sending the Scrum Master or the

team lead may not be the most effective way to smooth de-

pendencies or resolve issues between teams. Instead, sending

the person who has the most knowledge about the subject may

be required.

Some coordination around stakeholder communication and

sharing of the outcomes of such meetings may be required to

prevent a stakeholder from being overloaded. Tools such as

Visual Studio Tea Services can help capture the outcomes of

such meetings as Product Backlog items and Acceptance

Criteria, but it may not be enough to just capture the informa-

tion in a tool. The most effective way of communication remains

face-to-face.

The shared Nexus Sprint Review is hard to maintain as an

effective and valuable meeting for all people attending when

each team does a show-and-tell of their individual work

performed during the last Sprint. Many teams have found that

a “Science Fair” or “Open Space”4 format works well. In these

cases, teams generally start with announcements and an

explanation of the agenda. Each team then presents its Done

functionality and receives feedback in multiple parallel slots,

allowing stakeholders to attend the topics most valuable to

them.

Since meetings are most effective when conducted face-to-face

and visually, having an open laptop or computer screen can

reduce the value of a meeting by being a distraction. Yet, not

many people take the time to create sticky notes so they can

use free format ways to play with backlog items and tasks.

Visual Studio Team Services can still help you make your

meetings more interactive and effective though. Extensions

such as “Print cards” enable you to quickly transform your digital

backlog into a physical one5, allowing teams to conduct visual

meetings where they can annotate, arbitrarily group, physically

split in two items on a board, unbound by process and tools.

While the above are some common challenges and practices, you

may find yourself in a different situa-

tion. Don’t be afraid to experiment, try

out new things and continuously

try to improve the way you work as an

individual, a Scrum Team and a Nexus.

Conclusion

Nexus is an effective way to scale Scrum; it was developed by one

of the original founders of Scrum. Unlike SAFe and LeSS, which

enforce a lot of structure and process on organizations, it takes

into account that not all organizations are equal and that they

don’t have to be in order to scale effectively. It introduces a

Not all organizations are
equal and that they don’t
have to be in order to scale
effectively

Sending the Scrum Master or
the team lead may not be
the most effective way to
smooth dependencies or
resolve issues between
teams

4 http://openspaceworld.org/
5 https://marketplace.visualstudio.com/items/ms-devlabs.PrintCards

number of new concepts to help teams collaborate effectively

when they grow past a certain size (generally when there are

three or more teams), but it tries to limit its prescriptiveness to a

minimum.

“Scrum is simple, but hard” is an often-heard phrase. Nexus isn’t

any different. While the framework is remarkably simple, it’s very

hard to carry out complex, creative software development with

multiple teams and deliver new, releasable software every 30 days

or less.

With technical excellence, a focus on continuous improvement and

hard work, it is possible though. You will find some great examples

to try in the SPS curriculum and there are boundless other great

resources for ideas. Nexus as a framework allows me extend it by

borrowing some practices from comprehensive methodologies

such as SAFe and try them to see how they can be adapted to

resolve a team’s challenge.

Tools such as Visual Studio Team Services provide a complete en-

vironment to support one or more teams to work together effec-

tively. They cover a broad spectrum from work management

through to source control all the way through to building and

releasing your software to production. Configuring them correctly

and using the right features to accomplish the job is paramount

to getting the best value. With a little guidance and an empirical

approach to applying the tools and practices, amazing results are

possible.

A simple framework with the support of these comprehensive

tools can help you effectively scale your product development

from a single scrum team to nine teams, and if need be work

around the hurdles caused by distribution across time and place.

JESSE HOUWING

LEAD CONSULTANT &
SCRUM TRAINER
XPIRIT

Jesse Houwing is a Professional Scrum
Trainer with Scrum.org and a Microsoft
ALM MVP. Together with his colleagues
at Xpirit he helps teams improve their
process, skills, tools and environment to
work together effectively. Scrum and
Visual Studio Team Services are his
tools of choice.

rainerScrum T Trainer
ofessional Pr

Scrum.org

‘Professional development is a continuous learning process’
For those who want in-depth knowledge, Xpirit also offers a wide variety of trainings, in close cooperation with our colleagues from Xebia.
Also in-company courses or customized/tailored courses are possible, https://xpirit.com/training for more details and quotes. If you want to
know more about our trainings and workshops, don’t hesitate to https://xpirit.com/contact/ and we will be happy to answer your questions.

R.Cornelissen €1250

Native Mobile Apps Using C#
and Xamarin Across All Platforms
http://bit.ly/NativeMobileCsharp

Mar 7, 2016 Xebia Office, Hilversum

A. Thissen €1250

Building micro services architecture
with Service Fabric
http://bit.ly/MSAServiceFabric

May 9, 2016 Amsterdam

L. Duys €1250

Azure - Beyond Cloud Services
http://bit.ly/BeyondCloudServices

Mar 21, 2016 Xebia Office, Hilversum

R. van Osnabrugge €1250

Continuous Delivery 3.0
on the Microsoft stack
http://bit.ly/CDOnMicrosoftStack

Oct 12, 2016 Xebia Office, Hilversum

Using the Actor Model
to create distributed applications

with Akka.NET
Akka.NET is an Actor Model framework for building highly concurrent, distributed, fault-tolerant and
event-driven applications on .NET. This article explains what Akka.NET is, and when and how to use
it. It also describes how to get started with Akka.NET, using a simple example to guide you through
the possibilities.

Why concurrent systems

Just imagine you are ordering a menu at a fast-food restaurant;

the employee would need to carry out the following steps:

Figure 1. Steps to carry out by an employee

*In the Netherlands we actually order mayonnaise with our menu,

see also Pulp Fiction on YouTube: http://tinyurl.com/qjzk7g6 1:30)

The employee will carry out all tasks sequentially. However, if there

is only one employee, he cannot tap the milkshake at the same

time as when he is frying a hamburger, and this will result in extra

waiting time for the customer. But the employee doesn’t have to

do all these things himself in the fast-food restaurant. Usually,

multiple employees are performing tasks at the same time to give

you your menu as quickly as possible. Now imagine, the fast-food

restaurant is a CPU and the employee is a thread. You do not want

all tasks running on one thread. But running programs in multiple

threads comes with a price. There are challenges to overcome. One

of the hardest things to handle in a multi-threaded world is the

mutable state. In the example, six tasks are changing data at the

same time. In order to handle this, you will need to use read-and-

write locks to prevent multiple threads from mutating the data at

the same time. A lot of code is required to handle this and still it’s

hard to get it right, to make it perform properly and bug-free. Con-

sider deadlocks for example.The Actor Model is an approach that

hides these hard parts for you.

Actor Model

The Actor Model uses Actors to create concurrent applications.

When you apply the Actor Model you will not be bothered with

complex programming concepts like

concurrency and parallel programming.

The Actor Model hides threads and loc-

king for you, allowing you to focus on

business logic. The business logic can be written in light-weight

classes – called Actors – that are only responsible for a single task.

A popular framework that implements this model is called

Akka.NET. The Actor Model that Akka.NET offers is called The

ActorSystem.

ActorSystem

Console applications

In this example we use Console

applications to host our Actor

System. For production use we

recommend Topshelf – Topshelf is

a framework to create a simple

console application that can be

installed as a Windows service.

The class in Akka.NET that represents the Actor Model is called

ActorSystem. All Actors are created by an ActorSystem and live

within the context of that ActorSystem. Let’s see this ActorSystem

in action.

ARCHITECTURE

 page 25

Think ahead. Act now.

Xpir i t Magaz ine
page 26

We will create a very simple application that shows you how to

use Akka.NET. If you follow the steps in the article you will end up

with a simplified, distributed Fastfood restaurant application. This

first version will be a Console application using Akka.NET that

introduces you to the ActorSystem, Actors and messaging. Later

on this will be changed to a distributed application.

Open Visual Studio, create a Console Application called Client, and

create a class library called Shared. For now the Shared project is

optional, but it is required as a preparation for later steps in this

article. Add a reference from Client to Shared. Add the latest ver-

sion of Nuget package Akka to both projects. Open Program.cs in

Client and type:

The ActorSystem always has a name and implements IDisposable,

which is the reason the using statement is used. You are now

ready to create an Actor. Actors may sound like a new term, but

actually it’s not new at all. The term Actor has been around for a

long time.

History

Origins of the name Akka

Akka (pronounced: Áhkká)

The name comes from the goddess in

the Sami (native Swedish) mythology

who symbolized wisdom and beauty

in the world. It is also the name of a beautiful mountain in Laponia

in the north of Sweden

Back in 1973, Carl Hewitt wrote a paper in which the concept of

Actors was introduced. The Actor Model was implemented in the

Erlang programming language and runtime system in 1987. Erlang

offered high reliability and the use of many processors without

the need to have explicit code. Jonas Bonér created Akka in 2009

to bring the capabilities of Erlang to Scala and Java. Since then,

Akka has become the defacto standard for building distributed so-

lutions with the functional programming language Scala.

Akka.NET was created by Roger Johansson and Aaron Stannard

and is a port of Akka for .NET projects on Windows and Mono

supporting both C# and F#. Both Akka and Akka.NET are open-

source. Version 1 of Akka.NET was released in April 2015.

Akka.NET is not the only Actor Model framework for .NET. Microsoft

Research designed and created Orleans. The first version was

released in February 2015. This project became known through the

use of the cloud services for Halo 4.

Later this year Microsoft will release Azure Service Fabric; the

preview can currently be downloaded. One of the programming

models is also an Actor Model.

Actor

All objects in the ActorSystem

are Actors. An Actor contains

behavior and state.

The Actors can only communi-

cate to other Actors using

messages. Actors run inde-

pendently of other actors.

After receiving a message, an

Actor can execute a piece

of code. Like business logic, it

can call a database, write to

a file or change its state. In

short: anything you like.

Figure 2: Actor

Besides this, Actors can create other Actors. An Actor is single-

threaded and handles one message at a time.

Actors do not have a unique thread of their own. If this were the

case, you would run out of resources very soon. A thread can run

many Actors. When a message is sent to an Actor, the message

is stored in a queue. This queue is called the Mailbox. The Dispat-

cher which handles the messages will notice that there is work

for an Actor because the mailbox is full.

This Dispatcher starts a thread,

brings the Actor to life on this

thread, and then delivers the

message to it. Perhaps you

are thinking about your own

domain now and trying to visu-

alize it in Actors and coming up

with a couple or even dozens

of Actors.

There are Actors and Actors

 page 27

Think ahead. Act now.

In practice Akka.NET can handle millions of Actor instances! This

changes the game of developing concurrent software and is one

of the reasons why Akka is very suitable for the Internet of Things

(IoT). IoT is introducing a new order of complexity for back-end sys-

tems because of the number of things, which Akka can handle by

having an Actor for every “thing”.

Let’s define an Actor in project Shared, which can receive two

types of messages. A BurgerMenuRequest and a SaladRequest.

The requests, both messages, are just classes without logic or

state.

There are multiple ways to define an Actor: by means of the Un-

typedActor, the ReceiveActor or the TypedActor. Each will be ex-

plained in the following paragraphs:

UntypedActor

When you extend the UntypedActor it needs to implement the On-

Receive method which takes an untyped message. This is conve-

nient when you want to receive any message. This version makes

it possible to use pattern matching on messages which can decide

to process the message or not.

ReceiveActor
The ReceiveActor requires you to register messages in the con-

structor. The message is handled in two ways in the codesnippet:

both inline and as a method.

TypedActor

When you use the TypedActor, you also need to implement the

IHandle<> interface for each message that you want to react to.

If the logic in the Actor can handle typed messages, this is the

most explicit way to implement your Actor. Therefore, create the

Employee class as follows in project Shared:

Let’s create another Actor, which you will need in a second:

For the example in this article only those two Actors are needed.

If you wish, you can create Actors for all actions needed for a

menu.

Creation of Actors

The example of the menu involves two Actors: Customer and Em-

ployee. How do you create an instance of an Actor? Not as usual

by calling the constructor. When you do this, an ActorInitializatio-

nException will be triggered, telling you to use the ActorSystem

or that another component should be used to create Actors. So

let’s listen to that advice and let the ActorSystem create an in-

stance of the Customer Actor.

Xpir i t Magaz ine
page 28

The ActorOf method requires a Props and optionally a name. The

Props instance configures which Actor to create. The name should

be unique within the ActorSystem. You don’t get a reference to

the Customer instance, the result is an IActorRef. The instance

implementing the IActorRef interface is an ActorRefImpl.

Actors can only communicate with messages, so we don’t need a

reference. The IActorRef is a proxy to the actual instance. This in-

stance might live within the current process or may be in a process

on another computer. Akka.NET hides this for you and this is called

location transparency.

Communicate with Actors

First the customer has to know that he is hungry to kick off the

process. So let’s communicate this through messaging:

The Tell method does not send the message directly to the OnRe-

ceive method or Handle method of the Actor. Instead the message

will be sent through a fire-and-forget mechanism to the Mailbox

of the Actor. You will not receive a response. The message will be

handled asynchronously from this thread.

By default, a message in Akka.NET is delivered At-Most-Once. This

means there is no guaranteed delivery. Akka.Persistence is a

module that offers At-Least-Once delivery semantics. However,

this is not described in further detail as it is beyond the scope of

this article. The Customer Actor can handle the message with the

following code:

The ActorSystem is not the only class that can create Actors. An

Actor can create other Actors as well. This way a whole hierarchy

of Actors can be created. This hierarchy is described in more detail

later in this article. Every type of Actor has a Context property

which can be used for this. Now that we have a proxy to the

CustomerActor, we will send a BurgerMenuRequest Message. How

should the Customer be notified about the finished menu when

request-response messaging cannot be used? It is possible to

send a message back to the caller, also known as the parent.

Of course this also happens completely asynchronously using

messages.

The Customer will handle the Bill Message as follows:

Until now all code handles the Happy flow. But what if an

exception is raised?

Fault Handling

The way Akka.NET handles exceptions, re-

sults in isolation of faults by handling the

exception locally. This way the rest of the

system is not bothered and continues run-

ning. Separation of concerns is applied

within an Actor regarding business logic

and handling exceptions.

Restart (default) The Actor will be recreated and will

 process messages, resetting internal state.

Resume The Actor will continue processing messages,

 keeping internal state.

Stop The Actor will be terminated.

Escalate The Supervisor doesn’t know how to handle

 the exception and escalates it to its parent,

 also a supervisor.

 page 29

Think ahead. Act now.

Both business logic and fault recovery logic are two different flows

within an Actor. The recovery-logic monitors child Actors. An Actor

that monitors child Actors is called a Supervisor. An Actor doesn’t

try to solve its exceptions; it will just crash, also known as the Let

It Crash semantic. The Supervisor decides how to handle the ex-

ception coming from a monitored child Actor and can choose one

of the following Supervision directives:

Because the parent actor handles the lifetime of a child Actor, you

should not mix your business logic code with other risky code such

as calling a webservice. The call to the webservice should be

handled by a separate Actor. When the webservice is not available,

the parent will decide how the Actor should react to the

exception.

Because the Supervisor can receive multiple types of exception, a

Supervision strategy can handle multiple exceptions and can de-

cide what directive to apply to the failed Actor. There are two built-

in Supervision Strategies and it’s also possible to create a

customized strategy.

OneForOneStrategy Stop the child actor that failed.

AllForOneStrategy Stop all child actors of the Supervisor.

The following code snippet shows how to program a Supervisor-

Strategy. Just override the SupervisorStrategy method on an

Actor and return a AllForOneStrategy or OneForOneStrategy. In

this case, when an ApplicationException is thrown from a child

actor, the child is restarted. Any other exception will escalate the

Exception to a parent Actor.

In this example, when an ApplicationException occurs, the Actor

who raised the Exception is restarted. Any other exception will

escalate the Exception to the parent of this Actor. If an Applicati-

onException occurs 3 times within 5 seconds, the Actor will

be stopped.

When the Actor is restarted it will continue processing other

messages in the mailbox. This means that by default, the message

which was responsible for the exception will have been removed.

The simplest mechanism to keep processing the offending mes-

sage is to use the PreRestart to send the message to the Actor

itself.

This solution keeps trying to process the same message, which

can be a good thing for transient faults such as web-service con-

nection-faults. But if the exception is not transient, the message

will be processed forever. For this reason, you have to come up

with a solution for production systems. One possibility is to apply

a Circuit breaker pattern like Polly.NET.

Fault handling in Akka.NET can be done with SupervisorStrategies,

but what happens when the first-created Actor, a top level Actor,

throws an exception? It has no parent Actor that can handle the

exception. Well actually it does.

Actor Hierarchies

Because of the parent-child setup for Actors, all Actors in a system

represent a hierarchy of Actors. Akka.NET contains some out-of-

the-box Actors that are available when you create an

ActorSystem.

The /user Actor also referred as Guardian Actor or Root Actor is

the Supervisor for the top level actors. This Guardian will handle

exceptions by default with a restart directive.

All Actors have a unique address. An Actor can be placed anywhere

in the hierarchy. In this example, the Employee is placed below

the customer. An Actor can send a message based on the address

to another Actor. To send a message, both an absolute and a

relative address can be used.

Xpir i t Magaz ine
page 30

Figure 3: Actor Hierarchy

The unique address of an Actor has the following structure:

Location Transparency

Until now the Actors in the

example run on the same ma-

chine. When the application has

reached the hardware capacity

limit on the machine, you can

apply a scale-out scenario.

That’s actually quite easy be-

cause Akka is distributed by de-

sign. Actors can run on any

machine without a code change,

and for the application it doesn’t

matter where the Actor runs. This is also called Location Transpa-

rency. Remoting is the feature in Akka.NET that offers location

transparency, and it can be configured with HOCON.

HOCON is the abbreviation for Human-Optimized Config Object

Notation. This is the configuration format that Akka is using.

This configuration can be read from a separate file or the

configuration can be embedded in the app.config or web.config

inside a CData section.

To host a remote ActorSystem you first need to create a new

Console application called Server. Add a reference from Server to

Shared, and add Nuget package Akka.Remote to the Client and

Server project in the solution.There are two possibilities for run-

ning Actors remotely: Remote Deployment of an Actor, or send a

message to a remotely running Actor.

Remote Deployment of an Actor

To run an Actor on a different node (Server) it’s possible to deploy

it with Akka.Remote.

First we create the server. The code is the same as the code we

created for the client; only the name of the ActorSystem differs.

This name is important for the configuration of the client, which

will follow.

Notice you don’t initialize any Actor on the Server.

The server needs an app.config file that looks like this:

Figure 4: One Node

Figure 5: Remote - Deployment

 page 31

Think ahead. Act now.

The remote part tells the ActorSystem on which host and port

number it is running. This is also important for the configuration

of the client. The code of the client does not have to change.

An Actor is deployed to a remote ActorSystem by changing the

configuration in HOCON. The app.config of the client is configured

like this:

There are two parts in the HOCON configuration: actor and remote.

Remote configures the ActorSystem on this node, the client in this

case, where it is hosted. When port 0 is configured, Akka chooses

a port. The actor part of the configuration configures the Remo-

teActorRefProvider of Akka.Remote and allows the employee Actor

to run on the address of the configured server. Also the name of

the ActorSystem of the Server is configured in the address.

This way, when the Actor is created, it’s created on the Remote

ActorSystem. This is done without a code change; all actions are

performed in configuration.

In this example the two host projects are called Client and Server.

Akka Remote uses peer-to-peer communication between nodes,

so actually every Node is both a Client and a Server.

Send a message to a remotely running Actor

An alternative to creating an Actor on a remote ActorSystem is to

host multiple ActorSystems (Client and Server) and send a mes-

sage from the client to an Actor on the Server. This means that

the Actors have already been deployed. To do this, first create the

remotely running Actor. Create an ActorSystem like the one the

Server created earlier, but with one line of code added to start

the Actor to which the client will send a message.

The configuration of the Server stays the same as above.

The Client configuration needs a small change, but it is not

necessary to remotely deploy an Actor anymore. For this reason,

the deployment part is removed.

The code of Customer in Shared should be changed slightly. It is

not necessary to create an Actor with Context.ActorOf. Instead,

select an Actor based on an address with Context.ActorSelection.

Figure 6: Remote - Send Message

Xpir i t Magaz ine
page 32

After getting the proxy, you can send the message in the normal

way. Because the EmployeeActor is the Top-Level-Actor in this

ActorSystem, the address does not contain the customer.

The message BurgerMenuRequest is now sent to the Remote

Actor. It’s easy to use Akka.Remote, but the number of nodes is

fixed and should be known in advance. A more advanced step is

to apply Akka.Cluster.

Cluster

A cluster is a dynamic group of nodes. Just as we saw with

Akka.Remote, every node represents an ActorSystem. Akka.Cluster

makes it possible to create truly elastic applications by dynami-

cally growing and shrinking the number of nodes. Cluster ensures

that Actors run in a location-transparent manner; an Actor can run

on any node.

Figure 7: Cluster

Akka.Cluster makes Akka.NET highly available, fault-tolerant

andensures that there is no single point of failure for your appli-

cation. Because of all these characteristics, Akka.Cluster makes it

really interesting to create Microservices with

Akka.NET.

To create a Cluster, you need to create nodes.

It’s possible to configure nodes as a Seed-

Node or as a Non-Seed-Node. Seed nodes en-

sure that Non-Seed-Nodes can join the cluster.

For this reason, Seed-nodes have a known ad-

dress. The addresses of Seed-Nodes are confi-

gured at a Non-Seed-Node’s configuration.

Because Seed-Nodes may also fail, you should

have at least two Seed-Nodes in the cluster.

Akka uses peer-to-peer communication between nodes. This

means that a node is aware of all other nodes in the cluster, and

communicates with them.

Akka.Cluster is not released yet. Fortunately, there is a prerelease

available on Nuget.

Let’s change the Client console application to create a Cluster. We

will configure Client as a Seed-Node.

To create a cluster no code changes are required. You need to add

a Nuget package: install-package akka.cluster -pre. The configura-

tion should look like this:

It’s important that you use IP-addresses or host names, but do

not mix them. Also make sure that all ActorSystems have exactly

the same name, otherwise the ActorSystem cannot join the clus-

ter. If you want to run the Cluster on a single PC, just copy the

bin folder of Client and change the port in the configuration.

 page 33

Think ahead. Act now.

Both Seed-Nodes can be started already. To create a Non-Seed-

Node just copy the bin directory again and change the configura-

tion slightly:

Create three Non-Seed-Nodes by copying the bin folder three

times and start all clients. The logging in the Console on each node

should tell you that it’s connected and will start processing the

message.

You have created a cluster of five running nodes now and with

that you have created a Distributed application with Akka.NET that

is highly available and elastic.

Conclusion

This article covers enough topics of Akka.NET to allow you to get

startedbuilding applications with Akka.NET. There are many more

topics to cover, for example Finite State Machines, Reliable mes-

saging, Persistence and Routers. Not every application is suited

to be programmed in an Actor-based framework like Akka.NET. If

you have ever programmed multi-threaded code, Akka.NET is a

blast to use. Also for applications that need millions of instances,

Akka.NET gives you possibilities that are very hard without actors.

The use of message-driven architectures requires a mind switch

and the use and design of Actors can be challenging. Akka.NET is

not as mature as Akka.

Akka, for example, provides monitoring tools and a way to create

non-blocking REST-ful services with Akka.Http (Akka Spray). This

way it’s much easier to make the ActorSystem available through

REST. Microsoft is about to release Azure Service Fabric which of-

fers an Actor Model programming model. Akka.NET runs on Mono

too, it is open-source and has a very active community. Azure Ser-

vice Fabric is not available as open source yet. Because of all this,

Akka.NET is a framework worth watching, and, if you so wish, to

contribute to.

Sources:

n The complete source code for this article can be found on

 GitHub at https://github.com/XpiritBV/XpiritMagazine/tree/

 master/Edition-2

n https://petabridge.com/blog/

n http://getakka.net/docs/

n http://akka.io/docs/

PASCAL NABER

CLOUD CONSULTANT
XPIRIT

Pascal is a passionate software deve-
loper and technical software architect,
dedicated to quality and simplicity. He
has a great interest in everything rela-
ted to Microsoft software development
and new technologies.

Xpir i t Magaz ine
page 34

Enhancing your insights
with Power BI

Being informed and up-to-date on information is part of our daily routine. Just think about the number of times you
reach for your phone or look at your smartwatch to see an update on headline news or a customer email. This is true in
your work, but also in your personal life. If you focus on the former, you will see that there is always a need to be
informed, in any organization, and especially around agile processes. This ranges from information on whether a particular
feature has been released to progress of an epic that will allow the release of a new product.
The Agile Manifesto states that people and interactions should take precedence over process and tools. And it is obvious
that tools will never replace human conversation and communication.

This article describes the process of enhancing reporting solutions

with Team Foundation Server with the capabilities of Power BI,

showing tools that can play an important role in providing

adequate information.

Reporting History

Let’s start by looking back at the reporting capabilities that came

with Team Foundation Server (TFS). Since TFS 2005, reporting ca-

pabilities were primarily based on Microsoft SQL Server Reporting

Services (SSRS) or the use of Microsoft Excel. These types of re-

ports needed to be designed by developers who had knowledge

of SSRS tools and application data, as well as the ability to trans-

late people’s questions into valuable reports. Developing these

kinds of reports has proven to be quite time-consuming. Further-

more, performance has always been an issue, and browser sup-

port and compatibility has never been optimal. What’s more, most

of the time reports were quite static and interaction was limited

to setting a large number of parameters to filter data. Changing

a single parameter for filtering or refining data would require you

to re-run the entire report. Figure 1 shows the parameter selection

for an SSRS Report.

In addition to numerous updates of TFS, there are also updates

of SQL Server Reporting Services. However, the paradigm has not

changed much. Figure 2 shows RTM releases of the two products

plotted on a timeline.

Figure 1: SSRS Report Example

Figure 2: RTM releases of TFS and SSRS

With the introduction of Microsoft Excel’s 2010 Power Pivot came

functionality that allows you to create reports and shape data

with filters, which results in fast switching and filtering data to

compare it to other selections. The use of slicers was actually a

very convenient and interactive way of interacting with your data.

Figure 3 shows an example of a report that combines multiple

slicers to filter data.

CLOUD

 page 35

Think ahead. Act now.

Figure 3: Power Pivot Report Example

Power Pivot makes it easy to create new reports. Moreover, overall

development time is much shorter, but it turns out that this only

sustainable works with a limited number of reports. Using multiple

tabs with multiple charts quickly leads to large excel files, some-

times too large for excel. In that case, refreshing data can become

very slow and it may sometimes lead to unrecoverable errors.

Enabling scheduled refreshes is only possible by integrating them

with SharePoint. However, an Enterprise SharePoint edition for

publishing files or reports does not prove to be the most

affordable solution.

The challenging question

Today your information needs to be updated more often. Insights

need to be up-to-date when you look at them and they need to

be based on today’s data. Correctness and accessibility is not

something you are willing to cut corners on. In addition, you want

to be able to do it yourself, and get a feel of what is going on.

Call it ‘Do it yourself reporting’ if you like. This was nearly impos-

sible with the technologies that existed until now.

Power BI is here to change all this. Once data sources have been

made available to you, you can actually create reports yourself!

Polar Express

Imagine the following scenario. You are a stakeholder for a com-

pany called "Polar Express". Your IT department consists of two

development Scrum teams: Team Penguins and Team Polar Foxes.

Your company objective is to be the most successful parcel ship-

ment company in the arctic area. The teams are adding value to

your company's product portfolio (Website, Mobile Apps, etcetera).

You are responsible for the IT department. Your teams are spen-

ding money fast, but when the value delivered is well received,

the company's future is guaranteed to be successful.

As a stakeholder you want to be up-to-date on the progress and

performance of your teams. To satisfy the informational needs

and your management peers, you want to be able to monitor and

respond to activities that impact the teams, without disturbing

them. During a chat with one of the product owners it occurs to

you that recent progress is not what it used to be. Analysis of the

situation with the product owner has revealed that integration

problems between the teams have led to decreased velocity.

In order to gain insight into the situation, you spoke to the product

owner and told him that you would like to have detailed informa-

tion on lead times as well as cycle times. However, the look on

the product owner’s face says it all. He does not have a report like

that. A question like that has never come up before, and after a

brief moment the product owner says: "I think I have a solution”.

The solution

Microsoft Power BI consists of a variety of tools, a desktop appli-

cation, a mobile solution as well as a web-based environment.

Each of these tools allows you to connect to a multitude of data

sources1.

This article focuses on the analysis data of an on-premise TFS

server. When you design reports, it is very handy to have a po-

werful desktop editor, along with the power provided by BI. This

allows you to play around before integrating with your corporate

environment. When you work with Power BI Desktop, the context

for datasets, reports and dashboards can be saved into a Power

BI file (.pbix). This is great for working with the environment before

sharing it in the organization.

Having the ability to connect to data in Power BI allows you to

create a report for it. This report can be displayed on almost any

device or browser. An even better solution consists of the native

support for mobile applications, which allows remote users to see

and interact with reports on mobile devices. This enables users to

be informed anywhere and at any time.

Shaping the data

The data for Polar Express are gathered from the on-premise TFS

2015 warehouse and analysis database. To support custom

queries and custom tables, we need to use a custom database2.

1 http://blogs.technet.com/b/dataplatforminsider/archive/
2015/10/29/microsoft-business-intelligence-our-reporting-
roadmap.aspx

2 http://bit.ly/1JYiV36 blogpost by colleague Rene van Osnabrugge on
creating a custom database to support custom views for reporting
purposes.

Xpir i t Magaz ine
page 36

In the context of this article we use a query that retrieves data

from the analysis database, which is then combined with local

data to produce the desired view for our report. There are many

ways to connect or shape the data sources to the desired format.

The primary input for the report is a view that queries the analysis

server, and that will return the required data. The output of the

view can be seen in figure 4.

Figure 4: View Results

The required source for the supporting table and views are

provided in a script3 that can be downloaded from the Xpirit GitHub

repository.

Once the data are available, the next step is to create a data

source in Power BI that retrieves the data.

To do so, start by connecting to the SQL Server Database and then

use the Navigator to select the view. Figure 5 shows the data

navigator.

Figure 5: Data Navigator

Use the Data Tab of Power BI for Desktop to verify that our data

has the correct data types. To do so, click each column header and

inspect the Data Type properties.

The modeling tabs in figure 6 show several options available for

data type modifications.

Figure 6: Data Tools, validate Data Types

Creating the report

Once the data are available in Power BI, you can start to create a

report. To do so, drag a clustered column chart to the empty

report. Naming the tab allows you to make a distinction between

multiple reports. Set the graph to fill the page, and then configure

the graph.

The right hand side shows the data available in the Fields Explorer.

The left hand side shows the chart Visualizations pane. This is

where you configure the chart to use the fields from the view.

Figure 7 shows the section for configuring the report.

Figure 7: Configure Visualizations

Set the Axis, Legend and Value properties, and the report is

immediately updated to reflect the changes. It will look similar to

the report shown in figure 8. You now have a solution that you

can always use in Power BI Desktop. You can save this as a .PBIX

file and share this across the organization. However, that does

not sound like a real improvement to previous solutions.

3 http://bit.ly/xpowerbi

 page 37

Think ahead. Act now.

Figure 8: Report result

Publishing the report

You can extend this solution by using the Power BI Web capabili-

ties, but you need to get a Power BI account4 to be able to use

these capabilities.

To extend to the Power BI Web environment, you need to publish

the report, which can be done by using the Publish button from

the ribbon (see figure 9).

Figure 9: Publish Button

After a successful publish to your Power BI environment, the mes-

sage shown in figure 10 will be displayed.

Figure 10: Publish results

Now let’s go and see the Power BI Web environment for the

report. Navigate to https://powerbi.microsoft.com and log in using

your credentials.

Under Datasets and Reports you will see the On-Premise TFS item.

This looks exactly the same as in Power BI for Desktop. Exposing

data will be secure by using the Power BI Gateway, which will be

introduced later. While reports and data are available, you want a

better experience. To be able to view this report easily alongside

other data, put the report on a dashboard. To do so, select the

top right pin icon and pin to a new dashboard (see figure 11).

Figure 11: Pin a report to a new dashboard

Your report is now pinned to a dashboard as can be seen in figure

12.

Figure 12: Dashboard overview

Mobile experience

While this is nice, you want to be able to view this on your mobile

phone. In the old reporting days, this would typically mean the

end of the challenge. However, Microsoft has really done a nice

job by creating a native application for every available mobile plat-

form. Although the stakeholder uses a great deal of Microsoft

technology, he does run an iPhone, so he downloads the Power

BI Application from the App Store. After you have installed the

app and signed in with the Power BI account, navigate to the

On-Premise TFS Dashboard and see the report created.

4 https://powerbi.microsoft.com/en-us/documentation/powerbi-admin-
administering-power-bi-in-your-organization/

Xpir i t Magaz ine
page 38

Figure 13 shows the dashboard with the report.

Figure 13: Dashboard in Power BI iPhone App

Clicking on the graph lets you navigate to the details as shown

in figure 14.

Figure 14: Report details in Power BI iPhone App

Up-to-date information

To meet the stakeholder’s requirements, you need to have an

automatic data refresh schedule order to make things easier for

the teams. To have the ability of Data Scheduling, you need to

have the on-premise data source available for the Power BI envi-

ronment. A safe way to do so is to use the Power BI Gateway tool.

Installation of the gateway is straightforward. Just run the

downloadable executable5 and configure to connect to your Power

BI environment.When the gateway is configured successfully, you

will see the configuration as shown in figure 15.

Figure 15: Power BI Gateway configuration

After correctly configuring the gateway you can now use the

Power BI Web environment to configure a data refresh schedule.

Use the context menu and choose the “Schedule Refresh” option.

Figure 16 shows the context menu.

Figure 16: Power BI schedule refresh

This pulls up the settings page. It is possible to schedule a data

refresh for a particular dataset. Always check whether the Gate-

way status is OK, and check whether the Data Source credentials

have been provided correctly. If they are correct, configure a desi-

red data schedule refresh. Figure 17 shows the available settings

for creating the desired schedule.

5 https://powerbi.microsoft.com/en-us/documentation/powerbi-
personal-gateway/

 page 39

Think ahead. Act now.

This enables an automatic refresh of the dataset. You now have

completed an end-to-end scenario enabling on-premise TFS

warehouse data in an enterprise mobile application! This should

definitely satisfy the stakeholder!

Figure 17: Power BI refresh schedule configuration

Conclusion

Visual Studio Team Services offers powerful extensibility capabi-

lities that allow you to connect to the operational store to create

reports. In doing so, you can retrieve data in a different way while

the report creation experience is similar. Microsoft recently re-

leased a development API for Power BI. Integrating Power BI into

your own applications is now possible, and it enables you to de-

velop great reporting solutions. Moreover, Microsoft is working on

new functionality in the SQL Server Reporting Services in SQL Ser-

ver 2016. Enhanced integration between these platforms is to be

expected. Content Packs are the solution for distributing dash-

boards and reports towards other people in your organization. In

short, the capabilities of Power BI allow you to really enhance your

insights!

Resources and information

n https://msdn.microsoft.com/en-us/library/dn594433.aspx

n https://msdn.microsoft.com/en-us/library/

 ms181634(v=vs.80).aspx

n https://powerbi.microsoft.com/en-us/documentation/

 powerbi-personal-gateway/

n https://msdn.microsoft.com/en-US/library/ms170438.aspx

n http://blogs.technet.com/b/dataplatforminsider/archive/

 2015/10/29/microsoft-business-intelligence-our-reporting-

 roadmap.aspx

JASPER GILHUIS

ALM LEAD CONSULTANT
XPIRIT

Jasper’s greatest drive and motivation
is process optimization. In addition to
processes, he helps users make better
use of Microsoft platforms tools such as
Team Foundation Server. Jasper provi-
des consultancy, training, and facilitates
workshops in the area of ALM and
Scrum.

Xpir i t Magaz ine
page 40

Integrating Protractor UI testing
in Visual Studio, TFS and VSTS

Automating software development helps to minimize the development cycle time, and in trying to achieve this, it makes
a lot of sense to use the most suitable and effective tools. Out of the box solutions offer several options to test your
software. For example MSTest for unit testing, CodedUI for automated UI testing, etc. With the growth of test automation,
a huge open source eco system of test tools has become available that have specific advantages when using specific
frameworks in applications. This article will show how you can integrate any test tool by adding a little piece of glue
code called a test adapter.

Integrating a popular AngularJS UI test tool Protractor

Many applications are built that use AngularJS as the UI frame-

work of choice. When these applications need to be tested, a large

number of options is available. You can choose to test the UI using

Microsoft CodedUI that is part of Visual Studio, Team Foundation

Server (TFS) and Visual Studio Team Services (VSTS). But when

you build a user interface with AngularJS, you may prefer to write

your tests in the same language as your UI. One of the frameworks

that supports this is Protractor. However, Protractor is not with a

standard component of Visual Studio and TFS. So let’s have a look

at how you can change this and make Protractor a fully supported

test framework by writing a test adapter. But before you write

the adapter, let’s take a short look at Protractor.

Introducing Protractor

Protractor is a popular test framework for building UI tests by wri-

ting a Spec in a JavaScript file. Before you can run these tests,

you need to set up the Protractor toolchain. This toolchain uses

Node.js, Jasmine, Selenium and the Protractor tools. To install all

the required components, you need to install Node.js (downloa-

dable from http://nodejs.org), then you run the following com-

mand from the command line using the Node Package Manager

(npm) tools:

npm install -g protractor

This command installs the Protractor tools. The –g flag ensures

that the tools are installed for all users on the machine. As a next

step, you need to ensure you have the latest Selenium web driver

tools installed on your machine. To do so, you can run the following

command from the command line:

webdriver-manager update

After running these commands you have all the tools you need.

When you run Protractor from the command line but a crash oc-

curs, you probably have not installed the Java Virtual Machine on

your computer. If this is the case, you also need to install the la-

test JVM from http://www.java.com

Now you are ready to write your first tests. Write Protractor tests

in JavaScript and do this by using the Jasmine framework. A Jas-

mine test is defined by specifying a function that can be used by

a describe function. Below you see a basic test using the Jasmine

framework (describe function) and Protractor elements (browser

object):

describe('Protractor Demo App', function () {
it('should have a title', function () {

browser.get('http://juliemr.github.io/protrac-
tor-demo/');

expect(browser.getTitle()).toEqual('Super Calcu-
lator');

});
});

ALM

 page 41

Think ahead. Act now.

This test is called a spec and it can be run using the command

line. You can specify the configuration on the command line. You

can also define a configuration file that defines which browser you

want to use to run this UI test.

To run this test from the command line, you will need to save the

file – to e.g. firstspec.js – and then run the following command:

protractor --specs firstspec.js --framework jas-
mine --browser chrome

This will run the standalone Selenium server and will use Jasmine

as the test framework and the Chrome browser.

The expect keyword defines an assertion and will show up in the

test results. The result of this test will be: 1 spec, 1 assertion and

0 failures. If you specify an additional option – resultJsonOutputfile

– you can specify a json file in which the results will be logged.

To learn more about the Protractor framework, follow the tutorials

at: http://angular.github.io/protractor/#/tutorial

Integrating Protractor into VS, TFS and VSTS

Now that you know about some fundamentals of Protractor, the

question remains: how can you integrate this as a first class test

framework in Visual Studio, Team Foundation Server and Visual

Studio Team Services in the cloud? If you would be able to make

this work, you would have best of both worlds.

Fortunately, this is possible by creating a Test Adapter. A Test

Adapter fully integrates in the IDE, the test window and the build

system of TFS, so you can report the test back as part of your

build and release process. Figure 1 shows a conceptual picture of

a test adapter.

Figure 1: Test adapter

A test adapter provides a common way to discover and run tests.

The test discovery part accepts files and checks whether they

contain tests and if so, the name of those tests and the test

executer to be used to execute those tests. The test Executer also

accepts files and knows how to execute a test it can find in the

file. Microsoft introduced these test adapters to provide the flexi-

bility to use any test tool and enable any vendor or open source

initiative to fully integrate in their development tools. This is not

only limited to Visual Studio, but also allows tests during the build

phase on the build server or in the various stages that can be de-

fined in the release pipelines using release management.

Creating a Test Adapter

You can build a Test Adapter by implementing a set of predefined

interfaces in a Test Adapter assembly. Start with a simple Class

Library Project type, and then add references to the assemblies

that define the interfaces and fundamental types to get the inte-

gration to work. You need to add references to the following as-

semblies:

n Microsoft.VisualStudio.TestWindow.Interfaces

n Microsoft.VisualStudio.TestPlatform.Core

n Microsoft.VisualStudio.TestPlatform.Common

You can find these assembles at the following location:

%system drive%\Program Files (x86)\Microsoft
Visual Studio 14.0\Common7\IDE\CommonExtensions\
Microsoft\TestWindow

Now implement the discovery of tests by creating a class that

implements the interface called ITestDiscoverer. This interface only

has one method to be implemented. It is called: DiscoverTests,

and gets the following parameters passed when called:

a list of sources, the discovery context, a message logging inter-

face and the ITestCaseDiscoverySink.

The list of sources is a list of files that have the required extension.

To ensure that only the correct file types are passed, specify an

attribute on top of the implementation class. This attribute is

called FileExtensionAtttribute, which is passed inthe file extension.

In this case you only want JavaScript files as input, so specify “.js”

as extension.

The implementation of the test discovery is shown in code sample

01:

Xpir i t Magaz ine
page 42

[FileExtension(".js")]
[DefaultExecutorUri("executor://ProtractorTes-
tExecutor")]
public class ProtractorTestDiscoverer : ITest-
Discoverer
{
public void DiscoverTests(IEnumerable<string>
sources,

IDiscoveryContext discoveryContext,
IMessageLogger logger,
ITestCaseDiscoverySink discoverySink)

{
GetTests(sources, discoverySink);

}

Code sample 01

One additional attribute you see specified on the implementing

class is the DefaultExecutorUri attribute. This attribute specifies

the unique Uri for the implementation of a class that knows how

to execute the tests discovered here. This executor Uri is defined

in the class that implements the Executor.

To discover the actual tests, you need to implement the method

GetTests, which reads the contents of the source file and then

checks whether the keyword “Describe” can be found. Describe de-

notes the start of a test as you have seen in the previous part of

this article. If a test is found, you need to create an instance of a

type called TestCase and pass the name of the test that will be

shown in the UI, together with the actual file location and line

number where the test was found. If the adapter is used inside

the Visual Studio IDE, the discoverySink is available and the test

case is sent to this implementation. The discoverySink will then

show the test case in the IDE test window. The basic implemen-

tation of this method is shown in code sample 02:

internal static IEnumerable<TestCase>
GetTests(IEnumerable<string> sources, ITestCase-
DiscoverySink discoverySink)
{

var tests = new List<TestCase>();
foreach (string source in sources)
{

var testNames =
GetTestNameFromFile(source);

foreach (var testName in testNames)
{

var testCase = new TestCase(testName.Key,
Protractor-

TestExecutor.ExecutorUri, source);
tests.Add(testCase);
testCase.CodeFilePath = source;
testCase.LineNumber = testName.Value;
if (discoverySink != null)
{

discoverySink.SendTestCase(test-
Case);

}
}

}
return tests;

}
private const string DescribeToken = "des-
cribe('";
private static Dictionary<string, int> GetTest-
NameFromFile(string source)
{

var testNames = new Dictionary<string,
int>();

if (File.Exists(source))
{

int lineNumber = 1;
using (var stream =

File.OpenRead(source))
{

using (var textReader = new StreamRea-
der(stream))

{
while (!textReader.EndOfStream)
{

var resultLine = textReader.Read-
Line();

if (resultLine != null && result-
Line.Contains(DescribeToken))

{
var name = GetNameFromDescri-

beLine(resultLine);
testNames.Add(name, lineNum-

ber);
}

lineNumber++;
}

}
stream.Close();

}
}
return testNames;

}

private static string GetNameFromDescribe-
Line(string resultLine)
{

//find describe('
int startIndex = resultLine.IndexOf(Descri-

beToken) + DescribeToken.Length;
int endOfdescription =

 page 43

Think ahead. Act now.

resultLine.IndexOf("',");
var testname = resultLine.Substring(startIn-

dex, endOfdescription - startIndex);
return testname;

}

Code sample 02

Now you have the foundation for discovering your tests from

JavaScript files. The next step consists of implementing a test.

When you select a test in the IDE, a second interface implemen-

tation is needed that will execute it. To do so, you need to create

an implementation of the interface ITestExecutor. This interface

consists of RunTests and Cancel. RunTests has two different over-

loads, i.e. one where a reference is created to the raw source files,

the other overload accepts TestCase objects as arguments. Both

overloads need to do the same thing: just run the test using the

information already learned about Protractor tests.

The implementation of the two different method signatures of

RunTests is rather simple. The implementation is shown in code

sample 03:

[ExtensionUri(ProtractorTestExecutor.ExecutorU-
riString)]
public class ProtractorTestExecutor : ITestExe-
cutor
{

public const string ExecutorUriString = "exe-
cutor://ProtractorTestExecutor";

public static readonly Uri ExecutorUri = new
Uri(ProtractorTestExecutor.ExecutorUriString);

private bool Cancelled;
public void RunTests(IEnumerable<string>

sources, IRunContext runContext,
IFrameworkHandle frame-

workHandle)
{

IEnumerable<TestCase> tests = Protractor-
TestDiscoverer.GetTests(sources, null);

RunTests(tests, runContext, framework-
Handle);

}

public void RunTests(IEnumerable<TestCase>
tests, IRunContext runContext,

IFrameworkHandle framework-
Handle)

{
m_cancelled = false;
foreach (TestCase test in tests)
{

if (Cancelled)
{

break;

}
frameworkHandle.RecordStart(test);

var testOutcome = RunExternalTest(test,
runContext, frameworkHandle,test);

frameworkHandle.RecordResult(testOut-
come);

}
}

public void Cancel()
{

Cancelled = true;
}

}

Code sample 03

When you receive a call to the RunTests overload that accepts a

list of sources, you simply call into the previous class that was

created to discover the tests in the source files and that will return

all the TestCases found. After that, call into the second method

RunTests that accepts the list of TestCases.

In the implementation of RunTests you need to check whether

there was a call to Cancel while the tests are executed. To do so,

use the flag Cancelled. You need to signal the test infrastructure

that you started with the run of a single test, and then run the

actual tests. When this is finished, signal that this was done by

calling RecordResult on the frameworkHandle. This will show the

results in the IDE or will ensure that you get the test output re-

corded to the *.trx file when you run this from the build infrastruc-

ture in TFS.

The final step consists of executing the test. To do so, call the Pro-

tractor command line as shown at the beginning of this article.

Then specify you want the json result file to record the results.

Then parse those results and report this back as the test outcome.

The implementation of the test execution is shown in code sample

04:

private TestResult RunExternalTest(TestCase
test, IRunContext runContext,

IFramework-
Handle frameworkHandle, TestCase testCase)
{

var resultFile = RunProtractor (test, run-
Context, frameworkHandle);

var testResult = GetResultsFromJsonResult-
File(resultFile, testCase);

return testResult;

Xpir i t Magaz ine
page 44

}

public static TestResult GetResultsFromJsonRe-
sultFile(string resultFile,

TestCase testCase)
{

var jsonResult = "";
if (File.Exists(resultFile))
{

using (var stream = File.OpenRead(result-
File))

{
using (var textReader = new

StreamReader(stream))
{

jsonResult = textReader.ReadToEnd();
}

}
}
var results =

JsonConvert.DeserializeObject<List<ProtractorRe-
sult>>(jsonResult);

var resultOutCome = new TestResult(testCase);
resultOutCome.Outcome = TestOutcome.Passed;
foreach (var result in results)
{

foreach (var assert in result.assertions)
{

if (!assert.passed)
{

resultOutCome.Outcome =
TestOutcome.Failed;

resultOutCome.ErrorStackTrace = as-
sert.stackTrace;

resultOutCome.ErrorMessage = assert.er-
rorMsg;

break;
}

}
}
return resultOutCome;

}

private string RunProtractor(TestCase test,
IRunContext runContext,

IFrameworkHandle
frameworkHandle)
{

var resultFile = Path.GetFileNameWithoutExten-
sion(test.Source);

resultFile += ".result.json";
resultFile = Path.Combine(Path.GetTempPath(),

resultFile);

ProcessStartInfo info = new ProcessStartInfo()
{

Arguments = string.Format("--resultJsonOutput-
File \"{0}\" --specs \"{1}\" +

" --framework jas-
mine", resultFile, test.Source),

FileName = "protractor.cmd"
};

Process p = new Process();
p.StartInfo = info;
p.Start();
p.WaitForExit();
return resultFile;

}

Code sample 04

Additional implementation required for non dll based tests

Since the Protractor spec files are JavaScript files, these files are

not tracked by default inside the Visual Studio IDE. To do so, you

need to implement some additional infrastructure using Shell In-

terop and you need to watch the files for changes. This implemen-

tation falls beyond the scope of this article, but what you have

seen thus far is the full implementation of the real adapter part.

This additional work is only needed for Visual Studio Integration

and the details can be found in the implementation that you can

find at the GitHub repo (http://bit.ly/ProtractorAdapter) , where

the full implementation of the Protractor adapter is published. The

adapter is available as a NuGet package and as a VSIX integration

package for full support in the Visual Studio IDE.

Deploying the Test Adapter in Visual Studio

The test adapter itself is something you can deploy as a NuGet

Package and then upload to Nuget.org. This is also what I have

done with the Protractor Adapter. I published it as a package on

Nuget with the name ProtractorTestAdapter. If you want to use

the test adapter in any of your projects, you have to get a refe-

rence to the implementation from NuGet. To test the adapter that

was just created, you can create a simple web application and

from there install the NuGet package with the following package

command:

Install-Package ProtractorTestAdapter

This will add two references to the project. One that is the Pro-

tractor.TestAdapter assembly and the second one is the Json.net

assembly – this is required because the adapter depends on it for

result parsing.

 page 45

Think ahead. Act now.

When you build the adapter, you will also find a VSIX package. To get full support in your IDE for the Protractor spec files, you will also

need to install this VSIX package. Now you can create a JavaScript file and the adapter will automatically discover the specs from the

files. The following screenshot shows a simple web application project with one spec file that specifies the test of the Angular home

page:

Figure 2

If you click the Run All option in the test window, you will see the Protractor test run, while the results are reported back to the test

explorer window:

Figure 3

So now you have Protractor spec files as first class citizens in your Visual Studio IDE. Because you created a test adapter and provided

it as a NuGet Package, it now also automatically integrates into the build infrastructure.

Using the Test Adapter in TFS and VSTS builds

If you commit the ProtractorValidation

project to your version control reposi-

tory, you can define a Build on the TFS

server. To show how this is done, I am

using Visual Studio Team Services, but

this also works for TFS on premises.

To define a minimum build that can

run your tests, you need to get the

sources, then build the solution and

finally run the tests.

The build definition is as follows:

Figure 4

Xpir i t Magaz ine
page 46

You can see that for the Visual Studio Test step, you had to spe-

cify that you are interested in the test files that are JavaScript

files. This is why you replaced the default search for dll’s by a

search for JavaScript files. In the advanced options you need to

specify that you want to get the test adapter you referenced

using NuGet. Therefore specify a path to Custom Test Adapters to

point to the packages folder. This will do a recursive search in all

packages downloaded from NuGet.

This includes the custom adapter that will be used. In order to suc-

cessfully execute the tests, you need a build agent that can run

interactively. This can be done by configuring a custom build host.

This build host can be a simple Azure machine on which you

download the build agent and run the configure command.

Here you can specify that you do not want the build agent to run

as a service and this enables the agent to run interactively.

Figure 5

On the build server you also need to install the Protractor tools

as described in the beginning of this article. Once you have the

interactive build agent registered on your TFS server, you can run

the tests as part of your build. When you run this build on your

custom build server, you will see the following results as shown

in the figure above.

Conclusion

This article demonstrated how you can turn a very popular frame-

work for UI testing of Angular websites into an integral part of the

daily tools you use. By using the standard extensibility options of

Visual Studio, Team Foundation Server and Visual Studio Team

Services, you can build a so-called custom test adapter that inte-

grates in the Visual Studio IDE and in the standard build and test

infrastructure. Custom Test Adapters allow you to turn any fra-

mework you would like to use in your daily build and test cycle

into a fully integrated experience. This will make it easy to use

these tools and ensures that you don’t have to step outside of

your daily flow in the IDE. As you can see, Visual Studio, the TFS

and VSTS ALM tools have come a long way. Instead of dictating

what you need, it is now an open and flexible work environment

that can integrate any test tool you would like to use.

MARCEL DE VRIES

CTO XPIRIT

Marcel spends most of his time finding
new technologies and methodologies
that help organizations to build superior
quality software in a more productive
way. Marcel has a passion for sharing
knowledge. He is a regular speaker at
industry events such as Visual Studio
Live, Tech Days, Dev Intersection, etc.

 page 47

Think ahead. Act now.

High availability
and disaster recovery in Azure

Continuity is of vital importance for all companies, and today it is extremely important that software runs properly at all
times, i.e. 24/7/365. Companies such as Microsoft and Amazon sell their products in many countries all over the world,
and at any given time customers are shopping. There’s never a good moment for downtime, as downtime immediately
costs money. Many companies choose to move their software into the Cloud, but how does this help? Applications must
be tolerant to failures at many levels. In order to build resilient, fault-tolerant applications you need to think about two
key concepts: high availability (HA) and disaster recovery (DR). In this article you’ll learn about these concepts and what
the Microsoft Azure Cloud-platform will offer you in this context.

High Availability

Figure 1: System Availability with two parts

The availability of a system is determined by the availability of its

parts, and the availability of the entire system is calculated by

multiplying the availabilities of each part in a chain of dependen-

cies. Take for example a system with two parts A and B, as shown

above. Because part A depends on part B, the availability of this

system can be calculated by multiplying the availability of the

individual parts:

𝐴𝜏=𝐴1.𝐴2

This leads to a system availability of 98,9%, which means that the

overall availability is lower than that of the lowest part! It is,

therefore, important to know the availability of each part when

you are creating a system that is intended to be highly available.

High Availability is all about eliminating single points of failure in

every part of a system by introducing redundancy. This redun-

dancy can be achieved by replicating data and running multiple

servers. This increases fault tolerance in order to eliminate outage.

In order to know where these single points of failure are located,

you need to know about fault domains.

Fault Domains

Consider an application running in a datacenter like Azure. Things

may go wrong in different areas: a virtual machine may fail or the

entire datacenter could go offline due to a power outage. Fault

domains are therefore layered, as shown in figure 2. Obviously this

is a simplified view, because every layer comprises multiple other

layers, e.g. power supplies, network switches, hypervisors, etc.

From this perspective, an application can be made highly available

by running it in multiple datacenters – perhaps even using multiple

cloud vendors - using multiple virtual machines running in

separate server racks.

Figure 2: Layered Fault Domains

Disaster Recovery

Disaster Recovery assumes outage and describes ways to deal

with an outage. An example of this would be to restore a database

backup to a new server after the original database experienced

hardware failure.

CLOUD

Xpir i t Magaz ine
page 48

RTO

A relevant aspect of Disaster Recovery is the maximum accepted

time it takes to recover from a disaster until the system is once

again fully available. This is called the Recovery Time Objective

(RTO). For example, if it takes a day to set up, configure and start

using a new database server after a disaster has made the origi-

nal database unavailable, the Recovery Time would be a day. If

the RTO is equal or larger than one day, you meet this objective.

RPO

The maximum accepted amount of data loss after a disaster is

called the Recovery Point Objective (RPO). For instance, if a data-

base is (incrementally) backed up every 30 minutes, the Recovery

Point value would also be 30 minutes. If your RPO is equal or larger

than 30 minutes, you also meet this objective.

Both values are shown in figure 3. Your system should be built

and configured to meet the Recovery Point and -Time objectives.

Figure 3: RPO and RTO

If you want mission-critical applications to be highly available and

tolerant to failures, both of these values must be close to zero.

However, costs will multiply as you move closer to zero.

Operations

Managing High Availability (HA) and Disaster Recovery (DR) for en-

terprise systems can be a daunting task for IT-pro’s. It involves

managing large amounts of servers and data, often distributed

over multiple datacenters and dealing with large volumes of data.

Fortunately the Microsoft Azure platform reduces a lot of this com-

plexity because it offers many HA and DR features as a service.

We will now describe some strategies you can use to deal with

such disasters and that will help make your mission-critical appli-

cation highly available and tolerant to disasters. We will do so by

using a fictitious web shop as an example project.

ACME Global Shopping

Introducing, ‘ACME Global Shopping’. A globally available web shop

that ‘sells everything’. For ACME it is of vital importance that their

web shop is available for shoppers around the globe. They chose

Microsoft Azure as a platform for running their software.

Figure 4 shows a simplified schematic overview of the deployment

model of their.

Figure 4: System Conceptual Deployment Model

ACME has a website, which – for write operations – is loosely

coupled with two back office systems by means of a queue. Data

is then written to several types of data stores and an external

analytics service. Read operations are

separated from write operations, and

are performed on a specialized data

store. In order to make its web shop

‘highly available’, ACME created the

following configurations for the various components in their

architecture. When running this architecture on Azure provides you

will get some excellent HA and DR features straight out of the

box. Some other features, such as the use of the CQRS design

pattern (separating reads from writes) were implemented by

ACME employees.

Data Storage

ACME faced a number of problems in earlier versions of their

systems. All data was simply stored in one SQL Server Database.

They were reaching the limits of their server, queries were running

slower as the customer base increased and the amount of stored

data grew. ACME realized it needed to start storing data based

on the characteristics of its use. For instance, the product catalog

needs to be highly optimized for search operations, but customer

data will mostly be queried by user name. The product catalog

changes every day, but data about a customer hardly ever

changes. Based on these very different types of use, the most

efficient storage type can be selected. For now, we will limit our

scope to just two types of storage: relational storage (SQL) and

key/value-set storage (NOSQL). When thinking of your own

storage policies, you will definitely need to consider document

databases as well as blob storage.

 page 49

Think ahead. Act now.

SQL

The advantages of using a SQL data store is that it supports trans-

actions and rich querying. It works well for relational data, but

unfortunately it has a number of disadvantages: limited perfor-

mance, limited scalability and relatively high costs. ACME has cho-

sen Azure SQL Database for relational storage, which is Microsoft’s

Database As A Service Platform. For High Availability, Azure SQL

Database data is replicated over three nodes. An SQL transaction

only completes when the data is persisted in at least two physi-

cally separated nodes. As a result, if a node fails – perhaps due to

hardware failure – it can be recovered using the remaining

synchronous node without downtime and without resulting in a

single point of failure.

To ensure Disaster Recovery, you can create and restore backups

of the data, in order to deal with data loss due to application er-

rors or user errors. Creating backups can be done in multiple ways,

depending on the selected database pricing tier and of course

configuration. Backups are created automatically, and the files are

stored in Globally Redundant Storage by default. It is also possible

to manually create backups to be stored in a Blob container in a

Storage Account.

Restoring backups can also be done in several ways. First, there

is Point in Time restore according to which your database is

backed up on a regular interval. The backup files are persisted up

to 35 days. If required you can restore your database using the

backup of any of those intervals. This is often used to compensate

for human errors.

Another option is Geo Restore, which will copy database backups

to geographically redundant storage. By having your backups

available in multiple regions, the system can restore your

database in a different region when the primary region becomes

unavailable. Finally there is Geo Replication, which comes in two

flavors: Standard and Active. Standard Geo Replication will create

a replica of your database in the paired Azure region, but this da-

tabase is not accessible. If the primary region fails, the replica can

be used as a fail-over, but this process is not automated. Active

Geo Replication is similar to Standard, but allows up to four

readable replicas. The read-only replicas provide additional

capacity for read-only queries.

NOSQL

The main advantage of using a NOSQL data store is the processing

speed. Queries and write operations are generally a lot faster than

their SQL-based counterparts. Also the costs for both transactions

and storage are significantly lower. Data is partitioned by default,

which results in substantial scalability. The downside is that query

support is rather limited. Queries perform best when done using

the partition/row keys, in order to avoid table scans across parti-

tions which may reside on multiple machines. In addition, trans-

action support is limited to records within one partition.

ACME relies on Azure Table Storage for persistence of their

non-relational data.

Data stored as part of Storage Accounts is also replicated by

default to make it highly available. In this case, one of the options

is Locally Redundant Storage (LRS), in which three synchronous

copies are made in the same datacenter. You can also configure

data to be replicated in an additional region to make it durable

even when a complete datacenter goes down. This is called Geo

Redundant Storage (GRS). The additional non-readable copies are

created asynchronously with an RPO of 15 minutes. This means

that there is no additional latency, but if a datacenter goes down,

the data in transit could be lost. In this context, it is important to

note that different partitions may sync at different speeds, so

cross-partition operations on the primary or secondary datacenter

may yield different results after disaster. Optionally, the replica

data in the paired region can be made accessible for read access

(Read Access GRS, or RA-GRS), providing a means to run your ap-

plication in a reduced functionality mode. However, write operati-

ons are not possible at that time.

Only if Microsoft declares a datacenter as being lost will your

paired region become the primary region, but there is no SLA on

the time between disaster and this decision, so the RTO for this

situation is undefined.

If you feel you need to have a close to zero RPO & RTO with full

control over your Disaster Recovery while using Table Storage, you

will need to write custom code to have clients access multiple

datacenters for each write operation and deal with disasters. For

inspiration, have a look at Microsoft Research’s ‘Replicated Table

Library for Microsoft Azure Storage’ on GitHub . Note that this will

increase both latency for write operations and storage costs.

In order to deal with user errors, you could use tools such as

AzCopy , which is a command-line utility that will let you copy data

to and from Table Storage tables (or blob and file storage).

It supports exporting table entities into CSV files, as well as

copying data into different regions.

Xpir i t Magaz ine
page 50

Caching

By carefully thinking about what data store to use, ACME systems

is back on track. However, the new architecture still contains SQL

Server database servers, which, as we now know, have limited

scalability and performance. So, whenever an expensive query is

run and the results are reusable for other customers, it makes

sense to hold on to the results for a while. The same thing goes

for data that is more or less the same for every customer, such

as items from the product catalog. Replacing unnecessary queries

on the database with queries from memory (caching) saves data-

base server resources and therefore money. Caching can also help

make your systems’ availability higher because it reduces the de-

pendency on the data stores. The caching strategy itself does not

play an active role in Disaster Recovery, but there are caching

systems that offer some support to rebuild the cache after disas-

ter by persisting the data durably. In order to keep your system

highly available, a cache should not be a single point of failure.

This is why distributed caching exists.

For read operations performed by the Query Processing

components, ACME put a Redis Cache (Azures’ Distributed Cache

as a service) in place as one of the Query Stores. The Azure Redis

Cache Service is an in-memory cache that can hold up to 530GB

of memory. It can be used in three pricing tiers: Basic, Standard

and Premium.

The Basic tier has one node – there is no formal SLA for this tier

and it runs on shared infrastructure, which is why usage is recom-

mended for non-critical workloads.

The Standard tier consists of two nodes – one master and a slave

to make it highly available. There is a 99.9% SLA for this tier.

The most expensive tier is Premium. It builds on the Standard tier

and adds the data persistence capability, which periodically stores

a snapshot of the entire cache in a (Premium) Storage Account in

the same Region, in order to recover from when disaster strikes

all nodes. Please note that there is currently no way to rebuild a

cache using data from a secondary datacenter, so if the datacen-

ter is lost, the cache will still need to be rebuilt in another way.

The Premium tier also adds Redis Clustering, which enables one

cache to be shared across up to 10 nodes, thus allowing more data

to be stored. Finally, it adds Virtual Network support to isolate the

cache nodes and restrict access to virtual network clients.

From the Standard tier up, when accessing the cache, you are

actually talking to a load balancer, which will redirect your opera-

tion to the master node. Whenever the master node fails, the load

balancer will make sure a healthy slave node becomes master.

This makes the cache highly available.

ACME decided to use the Standard tier; having a highly available,

distributed disposable cache works sufficiently for their needs.

Service Bus

ACME uses Azure Service Bus for reliable messaging. This will

ensure guaranteed (‘at least once’) delivery of messages from the

website to the Command Processing components. This creates a

loose coupling, allowing the front end to stay operational even

when the Command Processing is not.

When a message is put on the Service Bus and received by the

service, the message is first persisted in a messaging store. By

default, this is one SQL Database per queue. Just like a custom

Azure SQL Database, the data is replicated three times for High

Availability. For high performance scenarios a different dedicated

messaging store is available, which is similar to the store that is

used for Event Hubs.

To make a Service Bus Message Queue more fault tolerant, it can

be configured to be a partitioned queue. This will use a separate

store for each partition, and messages can be directed into those

partitions. Not only will this perform better, but partitions will also

serve as backups for each other. When the system fails to store

a message in one partition, it will try another. Only if all partitions

fail to accept the message, the message is rejected.

Because Service Bus Namespaces are tied to regions, you will

need to configure two identical queues in two regions to recover

from datacenter-level disasters. Your message-sending application

needs to decide whether to put messages in both (active / active)

or the last known working namespace (active / passive). For Ser-

vice Bus Relay only the latter option should be used. Your receiving

application will need to be capable of receiving messages from

both and must have some de-duplication capabilities (use mes-

sage id, or correlation id for this). The downside of this approach

is having multiple Service Bus resources, which incurs double costs

for ownership and usage.

As an alternative, the message-sending application could also opt

to store messages in a local store (e.g. MSMQ), until the datacen-

ter becomes available again.

Web Apps

The ACME website is running as a Web App, using multiple instan-

ces. Websites run as part of Azure App Services. Several pricing

tiers are available here: Free, Shared, Basic, Standard and

Premium. Free and Shared allow you to host apps in a shared en-

vironment. These very limited environments are intended to be

 page 51

Think ahead. Act now.

used for dev/test scenarios and offer no SLA.

Starting from the Basic tier up, there’s a 99.95% SLA. It is also

possible to configure multiple instances of one app here, which

means that single points of failure can be eliminated. Another nice

feature is automated backups, which allows backing up files and

databases to a storage account. These backups can be restored

to recover from a disaster. The Standard tier adds Geo-distributed

deployment to make your Web App highly available. This allows

the deployment to take place in multiple fault domains at the

highest level (datacenter). When used together with the globally

available Traffic Manager service (that routes requests to the dif-

ferent datacenters), a fully duplicated environment can be created.

Traffic Manager itself is a distributed, highly available service, so

it won’t be a single point of failure.

Figure 5: Conceptual architecture (Front End)

You also get up to five deployment slots that can be used in a

deployment pipeline. ACME uses this feature to perform automa-

ted User Interface testing on a staging environment before taking

new versions of their web shop into production, thus preventing

data loss due to bugs. The Premium tier adds an isolation feature

called App Service Environment. This

provides an isolated, highly available

environment for securely running App

Service apps on a large scale. They can

be created inside a virtual network

spanning multiple Azure Regions and

can contain up to 50 dedicated com-

puting resources. Access to and from the virtual network can be

controlled on a fine-grained level, significantly increasing applica-

tion security. For optimal availability performance and security,

ACME has opted for the premium tier. Figure 5 shows their con-

ceptual architecture. For the sake of simplicity, only four Web App

instances are displayed. In reality, this number would probably be

higher for a popular Web site. By putting every App instance into

an App Service Environment, access to the API instances is limited

to the Web App calling it. External parties are blocked from acces-

sing it. This adds an additional security layer and prevents unaut-

horized use of the API.

Cloud analytics

No highly available system is complete without proper analytics.

After all, how would you know whether your system is down if

nobody is watching it? You don’t want to wait for an unhappy

shopper to call and tell you your site is not working. You need to

respond quickly and effectively at the first signs of trouble, and

fortunately Azure also provides a nice feature for this. It is called

Application Insights – an analytics service that can monitor your

application. It provides two main features: analysis of usage pat-

terns and detection of performance issues. The collected data can

be analyzed using the Azure Portal, but also using Microsoft Power

BI, which is a great tool to analyze and visualize data. Its SDK

allows you to trace usage and error events from every layer in

your application and correlate them. Check out the previous issue

of this magazine if you want to learn more!

Conclusion

In this article we’ve discussed a number of ways to make resilient

applications that are tolerant to failures on multiple levels, and

how using the Azure platform can help you to realize this.

LOEK DUYS

CLOUD CONSULTANT XPIRIT

Loek is an avid Cloud Software Architect
who focuses on creating secure, scala-
ble and maintainable systems. He is
always looking for ways to leverage the
latest additions in the Microsoft stack in
order to create even better solutions.
He likes helping organizations raise
both their technological knowledge and
security awareness.

Disaster Recovery assumes
outage and describes ways
to deal with that

Xpir i t Magaz ine
page 52

Installing Cloudera on Azure

In order to help a client to explore and analyze large amounts of unstructured data, GoDataDriven installed a Cloudera
cluster on Microsoft Azure. In this article we discuss how to install Cloudera on Microsoft’s cloud solution. Processing
large amounts of unstructured data requires serious computing power, powerful database technology like Cloudera, and
scalable infrastructure. A cloud solution, like Microsoft Azure, that is able to scale up and down over time and due to
seasonal influences, can be a flexible and cost-effective hosting solution.

Cloudera

Cloudera, founded in 2008, was one of the first organizations to

develop an Hadoop distribution. Today, Cloudera delivers a modern

data management and analytics platform built on Apache Hadoop

and the latest open source technologies. Cloudera Enterprise is

the a fast, easy, and secure data platform. Organizations that use

Cloudera efficiently capture, store, process and analyze vast

amounts of data, empowering them to use advanced analytics to

drive business decisions quickly, flexibly and at lower cost than

has been possible before.

Microsoft Azure

Microsoft Azure is a cloud service for both infrastructure-as-a-

service (IaaS) and platform-as-a-service (PaaS), with data centers

spanning the globe.

The following service offerings are relevant when deploying

Cloudera Enterprise on Azure:

n Azure Virtual Network (VNet), a logical network overlay that

can include services and VMs and can be connected to your

on-premise network through a VPN.

n Azure Virtual Machines enable end users to rent virtual ma-

chines of different configurations on demand and pay for the

amount of time they use them. Images are used in Azure to

provide a new virtual machine with an operating system. Two

types of images can be used in Azure: VM image and OS

image. A VM image is the newer type of image and includes

an operating system and all disks attached to a virtual

machine when the image is created. Before VM images were

introduced, an image in Azure could have only a generalized

operating system and no additional disks. A VM image that

contains only a generalized operating system is basically the

same as the original type of image, the OS image. From one

VM image you can provision multiple VMs. These virtual

machines will run on the Hypervisor. The provisioning can be

done or using the Azure portal or with PowerShell or Azure

command line interface.

n Azure Storage provides the persistence layer for data in

Microsoft Azure. Up to 100 unique storage accounts can be

created per subscription. Cloudera recommends Premium

Storage, which stores data on the latest technology Solid

State Drives (SSDs) whereas Standard Storage stores data

on Hard Disk Drives (HDDs). A premium storage account

currently supports Azure virtual machine disks only. Premium

Storage delivers high-performance, low-latency disk support

for I/O intensive workloads running on Azure Virtual Machines.

You can attach several Premium Storage disks to a virtual ma-

chine (VM). With Premium Storage, your applications can have

up to 64 TB of storage per VM and achieve 80,000 IOPS

(input/output operations per second) per VM and 2000 MB per

second disk throughput per VM with extremely low latencies

for read operations. Cloudera recommends one storage

account per node to be able to leverage higher IOPS.

n Availability Sets provide redundancy to your application,

ensuring that during either a planned or unplanned mainte-

nance event, at least one virtual machine will be available and

meet the 99.95% Azure SLA.

n Network Security Groups provide segmentation within a

Virtual Network (VNet) as well as full control over traffic that

ingresses or egresses a virtual machine in a VNet. It also helps

achieve scenarios such as DMZs (demilitarized zones) to allow

users to tightly secure backend services such as databases

and application servers.

Deployment Modes To Start A Cluster

At the moment Azure has two deployment modes available:

1. ASM (Azure Service Management)

CLOUD

 page 53

Think ahead. Act now.

2. ARM (Azure Resource Manager)

The ASM API is the “old” or “classic” API , and correlates to the

web portal. Azure Service Management is an XML-driven REST

API, which adds some overhead to API calls, compared to JSON.

The Azure Resource Manager (ARM) API is a JSON-driven REST API

to interact with Azure cloud resources. Microsoft recommends de-

ploying in ARM mode. One of the benefits of using the ARM API is

that you can declare cloud resources as part of what’s called an

“ARM JSON template.” An ARM JSON template is a specially-craf-

ted JSON file that contains cloud resource definitions. Once the

resources have been declared in the JSON template, the template

file is deployed into a container called a Resource Group. An ARM

Resource Group is a logical set of correlated cloud resources that

roughly share a life span. Using the ARM mode you are able to

deploy resources in parallel, which was a limitation in ASM.

The new Azure Ibiza Preview Portal is used to provision Azure cloud

resources with ARM instead of the ASM API. You are not limited

to the portal to deploy your templates. You can use the Power-

Shell or the Azure command-line interface to manage all Azure

“resources and deploy complete templates. The Azure CLI is based

on NodeJs and thereby available on all environments. Both ARM

and ASM are modes which can be configured using the CLI.

Resources deployed in the ASM mode cannot be seen by the

resources deployed in the ARM mode by default. If you want to

achieve this, you would need to create a VPN tunnel between the

two VNets.

Requirements & Design

GoDataDriven’s goal was to build a production ready Hadoop

cluster, including provisioning machines, that took client specific

requirements in account, including enabling single sign-on, the

deployment of 3 master nodes to handle load expansions,

Cloudera connected to the Active Directory to authenticate users,

assure access control using Sentry, install RStudio and IPython on

the gateway for analysis. The following installation was designed:

The GatewaySubnet is needed to set up the Site2Site VPN

between the client’s network and the Azure network where the

Hadoop cluster resides.

For user management two Active Directory servers were set up in

their own subnet, acting also as Domain Name Server.

High traffic between the nodes in the cluster

Because of the high traffic between all nodes in the cluster, the

Hadoop machines are in their own subnet. A reason for this is that

when you write a file into HDFS, this file is split into blocks (block

size is usually 128 MB) and these blocks are placed on the Data-

nodes. Each block has a replication factor of 3. Only the master

node (Namenode) knows which block belongs to which file. The

Namenode does not store blocks, but it does maintain the active

replication factor. If a client wants to read a file from HDFS, it will

first contact the Namenode, get the location of the blocks and

then read the blocks from the Datanodes. The Datanodes send

heartbeats to the Namenode and the when the active Namenode

notices that a block hasn’t got the requested replication factor, it

instructs another Datanode to copy that given block.

There is also a ClientSubnet for the machines which can access

the cluster. Users can connect to the machines in this subnet, do

their analysis, but are not able to SSH to the machines in the

Hadoop subnet.

Because of the single sign-on using the Active Directory on the

Linux level and configuring Kerberos using Active Directory for the

Hadoop services, users can use a single password everywhere.

How To Install Cloudera On Azure?

There are multiple way in which you can install Cloudera on Azure,

of two were considered:

1. Install everything from scratch:

 n Provision machines and network using Azure CLI

 n Use a provisioning tool (like Ansible) to do the Linux

 configuration

 n Install Cloudera Manager

 n Install CDH (Cloudera Distribution for Apache Hadoop)

 using Cloudera Manager

2. Using the ARM template that Cloudera provides to install a

Hadoop cluster. This template, available on GitHub, includes OS

and network tuning and Hadoop configuration tuning. There is

also an Azure VM image, available on the Azure Marketplace,

built and maintained by Cloudera which is used during

deployment.

Out-of-the-box features of the template:

 n Create a Resource Group for all the components

 n Create VNet and subnets

Xpir i t Magaz ine
page 54

 n Create availability sets. Place masters and workers in

 different availability sets

 n Create security groups

 n o Create Masternode and Workernode instances using the

 Cloudera VM Image (CentOS image built and maintained by

 Cloudera). The template automatically uses Azure DS14

 machines, which are the only machine types recommended

 and supported by Cloudera for Hadoop installations.

 n For each host a Premium Storage account is created

 n Add disks to the machines, format and mount the disks

 (10 data disks of 1 TB per node)

 n Set up forward/reverse lookup between hosts using

 /etc/hosts file

 n Tune Linux OS and network configurations like disable

 SELinux, disable IPtables, TCP tuning parameters, disable

 huge pages

 n Set up time synchronization to an external server (NTPD)

 n Set up Cloudera Manager and the database used by the

 Cloudera Manager

 n Set up Hadoop services using the Cloudera Python API

One of the disadvantages of the template is that it is meant to

start up a cluster, but you cannot create extra data nodes and

add them to the cluster. The template does not provision a gate-

way machine for you. After analyzing the gaps between the tem-

plate provided by Cloudera and the client requirements, a golden

middle-way was chosen:

n Use the Cloudera-Azure template to provision the network, set

 up the machines, configure the OS and install Cloudera

 Manager

n Use Cloudera Manager (so not the Cloudera-Azure template)

 to install the CDH cluster.

Best practices for a manual implementation

If you would not use the template, it is advisable to keep the

following best-practices in mind:

n When deploying a Linux image on Azure there is a temporary

drive added. When using the DS14 machines the attached disk

on /mnt/resource is SSD and actually pretty big (something

like 60 GB). This temporary storage must not be used to store

data that you are not willing to lose. The temporary storage

is present on the physical machine that is hosting your VM.

Your VM can move to a different host at any point in time due

to various reasons (hardware failure etc.). When this happens

your VM will be recreated on the new host using the OS disk

from your storage account. Any data saved on the previous

temporary drive will not be migrated and you will be assigned

a temporary drive on the new host.

n The OS root partition (where also the /var/log directory resi-

des) is fairly small (10GB). This is perfect for an OS disk, but

Cloudera also puts the parcels (an alternate form of distribu-

tion for Cloudera Hadoop) on /opt/cloudera and the logs into

/var/logs. These take up quite a lot of space so a 10 GB disk is

not enough. That’s why you should move the parcels and the

log file to a different disk. Normally the template takes care

of this for you. If you install Cloudera without moving these

files to a different disk, you will see warning messages in

Cloudera Manager that there not enough free disk space

available.

n In a distributed system, thus also for a Hadoop cluster (espe-

cially if Kerberos is used), time synchronization between hosts

is essential. Microsoft Azure provides time synchronization, but

the VMs read the (emulated) hardware clock from the under-

lying Hyper-V platform only upon boot. From that point on the

clock is maintained by the service using a timer interrupt. This

is not a perfect time source, of course, and therefore you have

to use NTP software to keep it accurate.

n If running Linux on Azure install the Linux Integration Services

(LIS) - a set of drivers that enable synthetic device support in

supported Linux virtual machines under Hyper-V.

ALEXANDER BIJ

BIG DATA HACKER

Alexander is strong skilled in listening
and analyzing issues and working out
the best solution. He aims to deliver
business value that at least fulfils a
clients needs.

TÜNDE ALKEMADE

BIG DATA HACKER

Tünde Alkemade is Big Data Hacker at
GoDataDriven, where she focuses on
installing, interconnecting and tuning
systems and also on implementing soft-
ware needed for data driven solutions.

Xpir i t Magaz ine
page 56

CODING 4 FUN

Building a Robot Kit
with a Raspberry PI 2 and

Windows 10 IoT Core
The Internet of Things (IoT) ecosystem is growing faster and faster, and with the introduction of Windows 10, Microsoft
has made it clear they do not want to be a spectator. Microsoft has already been present since the beginning with the
Windows Embedded operating systems, and Windows 10 IoT Core is the next generation OS designed specifically for use
in small footprint, low-cost devices and IoT scenarios.
In this article I intend to show how easy it is to use Windows IoT and the Universal Windows Platform.

About Windows 10 IoT Core and the Universal Windows Platform

Windows 10 IoT Core is a version of Windows 10 that is optimized

for smaller devices with or without a display. It runs on IoT devices

such as the Raspberry Pi 2. Software for Windows 10 IoT Core can

be written using the extensible Universal Windows Platform (UWP)

API.

In April 2015, a test version of Windows IoT was released, and in

November 2015, the official release was announced.

With the introduction of the Universal Windows Platform (UWP),

it is now possible to create applications for every device that runs

Windows 10. This evolution allows apps that target the UWP to

call not only the WinRT APIs that are common to all devices, but

also APIs (including Win32 and .NET APIs) that are specific to the

device family the app is running on. The UWP provides a guaran-

teed core API layer across devices. This means you can create a

single app package that can be installed onto a wide range of

devices.

What’s more, with that single app package, the Windows Store

provides a unified distribution channel to reach all the device types

your app can run on.

The Robot Kit

Let’s get started

Many people have an IoT device

without knowing it. For exam-

ple, a small Raspberry Pi which

they probably use for watching

TV. But there is much more that you

can do with these kinds of devices.

When you need inspiration for an applicable IoT device, you can

look at the Microsoft Windows IoT page on www.hackster.io.

A project that really teases everyone’s imagination is building a

robot, so let’s do this! This is how the result of the project should

be:

 page 57

Think ahead. Act now.

Components needed

Wooden robot frame in 7 pieces

The assembly

For the wooden frame there is a GitHub repo with cutting plans

that can be uploaded to an online laser cutting, 3D printing &

metal machining services, e.g. Ponoko for the U.S.A or Formulor in

Europe (Germany). I uploaded the sumbotjr-3mm_ponoko.eps

cutting plan from the GitHub repo and used a Plywood Birch 3 mm

on a 384x384 mm sheet.

The order process was really easy and it was nice to see the

existence of such online services. The final laser-cut package looks

like this:

The assembly is really

simple – just connect

all together like Lego

pieces.

A ball caster (Pololu Ball

Caster with 1/2� Metal

Ball)

2x continuous rotation ser-

vos (SpringRC SM-S4303R

Continuous Rotation Servo)

A digital switch

(D2F-01L switch)

6x 15cm (6") Male-to-Female

wires (2 red, 2 white and

2 black)

2x 15 cm (6") Female-to-

Female wires (1 red and 1 black)

A set of M2.5 screws, nuts,

bolts and standoffs

Raspberry Pi 2, a 2

Amp power supply,

SD card, network

Ethernet cable

Xpir i t Magaz ine
page 58

The Pin connections

The following pin layout is available from the Hackster Robot Kit

page:

I had to figure out which number belongs to a pin, but luckily after

some research I found the following images:

Installing Windows IoT

Set up your development PC

To set up your development PC, do the following:

n Make sure you are running the public release of Windows 10

 (version 10.0.10240) or better.

n Install Visual Studio 2015 with Update 1 (any version is good,

 Community, Professional, Enterprise) and be sure to have the

 Universal Windows App Development Tools installed.

n Install Windows IoT Core Project Templates. The templates

 can be found by searching for Windows IoT Core Project

 Templates in the Visual Studio Gallery or you can find the link

 in the references section.

n Enable developer mode on your Windows 10:

- On your device that you want to enable, go to Settings.

- Choose Update & security, then choose For developers:

Set up a Windows 10 IoT Core Device

(in our case the Raspberry PI 2)

When you have a Raspberry PI 2, you can set up and configure it

easily using the Windows 10 IoT Core Dashboard. The dashboard

can be used to set up the RTM (public) version of Windows 10 IoT

Core and requires a PC running Windows 10. I added a link to the

dashboard application in the References section. Put your MicroSD

card into your PC and carry out the following steps:

n Start the IoT Dashboard application.

n Click on Set up a new Device.

n Select Device Type: Raspberry Pi 2 and Windows IoT Core

 for Raspberry PI 2.

n Click on I accept the software license terms.

n Click on Download and Install.

The dashboard will start to download the Windows IoT image:

 page 59

Think ahead. Act now.

After the download has been completed, it will ask to install it on

the microSD card:

After the image has been written on the microSD, safely remove

it from your PC and insert it into the Raspberry PI.

Connect your Windows 10 IoT Core device to your development

PC:

In order to develop apps for your IoT device, the IoT Core device

and development PC should be on the same local network. There

are a few options for setting this up.

Option 1: Plug your device into your local network

The easiest and best way to connect to your device is to plug it

into a local network that your development PC is already connec-

ted to. Plug the Ethernet cable from the device into a hub or

switch on your network. To keep things simple, it’s best if you have

a DHCP server (such as a router) present on your network so the

device gets an IP address when it boots.

Option 2: Connecting your Windows 10 IoT Core device directly to

your PC & setting up Internet Connection Sharing (ICS)

If you don’t have a local network to plug your device into, you can

create a direct connection to your PC. In order to connect and

share the internet connection in your PC with your IoT Core device,

you must have the following:

n A spare Ethernet port on your development machine. This can

 be either an extra PCI Ethernet card or a USB-to-Ethernet

 dongle.

n An Ethernet cable to link your development machine to your IoT

 Core device.

Follow the instructions below to enable Internet Connection

Sharing (ICS) on your PC:

n Open up the control panel by right-clicking on the Windows

 button and selecting Control Panel, or by opening up a

 command prompt window and typing control.exe.

n In the search box of the control panel, type adapter.

n Under Network and Sharing Center, click View network

 connections.

n Right-click the connection that you want to share, and click

 Properties.

n Click the Sharing tab, and select the Allow other network users

 to connect through this computer’s Internet connection box.

After you have enabled ICS on your PC, you can now connect your

Windows 10 IoT Core device directly to your PC. You can do this by

plugging in one end of the spare Ethernet cable into the extra

Ethernet port on your PC, and the other end of the cable into the

Ethernet port on your IoT Core device.

Note:

The Sharing tab won’t be available if you have only one network

connection.

Boot Windows 10 IoT Core

If you have an HDMI cable and a monitor with HDMI input, connect

it to your Raspberry Pi. This is not required, but it makes it a lot

easier to see what is happening.

Now it’s time to connect the power adapter to the Raspberry Pi,

after which it will start loading the Windows IoT image on the mi-

croSD card. This can take some time, so be patient.

If you have connected the Raspberry Pi with a HDMI cable to a

monitor, the following information will appear on the screen:

Xpir i t Magaz ine
page 60

As you can see, the IP address of the Raspberry Pi is shown. Note

it because we will need it.

If you have not used the HDMI connection, you will need to open

the Windows IoT Dashboard application. To do so, go to My Devices

and after waiting a number of seconds, it will detect the Raspberry

Pi, and show you the IP address:

Connect to the Windows Device Portal through your browser

Enter the IP address into the address bar. Add :8080 onto the end.

In the credentials dialog, use the default username and password:

Username: Administrator

Password: p@ssw0rd

The Windows Device Portal should launch and display the web

management home screen!

You can also launch the Windows Device Portal tool from the

Windows IoT Dashboard application by clicking on your device, and

clicking on Open in Device Portal.

Installing the Robot Kit app

The Robot Kit application is on Github, so we need to clone the

repo. Open Visual Studio and clone the following git address:

https://github.com/ms-iot/build2015-robot-kit.git

Open the solution, search for the following string:

private static String defaultHostName = “tak-hp-
laptop”;

and change the string into your PC’s IP address (not the Raspberry

Pi address!).

Deploy Your App

nWith the application open in Visual Studio, set the architecture

 in the toolbar dropdown to ARM.

n Next, in the Visual Studio toolbar, click on the Local Machine

 dropdown and select Remote Machine.

At this point, Visual Studio will present the Remote Connections

dialog. Use the IP address of your Raspberry PI.

After entering the device IP, select Universal (Unencrypted

Protocol) Authentication Mode, then click Select.

You can verify or modify these values by navigating to the project

properties (select Properties in the Solution Explorer) and choosing

the Debug tab on the left:

When everything has been set up, you should be able to press F5

from Visual Studio. If there are any missing packages that you did

 page 61

Think ahead. Act now.

not install during setup, Visual Studio may prompt you to acquire

those now. The Robot Kit app will deploy and start on the

Windows IoT device:

If you attach a USB keyboard to

the Raspberry Pi and you press

one of the keys shown in the app

(W, A, D, X, Z, C, E, Q, S), the robot

will start to move!

If you surf on the Windows Device

Portal and click on Apps, you will

see that the Robot App has been

deployed and is running:

Run the application locally

From Visual Studio, stop the running application pressing the stop

button. In the configuration manager dropdown, choose x86 or

x64, and Local Machine:

Press F5 and the application will also run from your PC! This is be-

cause it is a Universal Windows Application, which can run on every

device running Windows 10 without changing a single line of code.

Leave the application running, go back to your browser and go to

the Windows Device Portal, click on Apps and from the dropdown

menu, select the Robot App (it should be something with a

strange GUID name in it), and press start:

From the Robot App running on your PC, again press one of the

buttons (W, A, D, X, Z, C, E, Q, S) and you will see that the Robot

will move again. However, now it is controlled from your PC!

Visual Studio

From Visual Studio you are now able to debug what’s happening

on the IoT device:

As you can see, the code is written in C#, which means everything

is managed, and there is no need to write in a lower level langu-

age such as C or C++ to talk with the hardware.

Conclusion

This article has demonstrated how Windows 10 IoT Core can be

used to work with low cost devices, and how the UWP ecosystem

makes it a lot easier to write software that can run in different

hardware environments without changing a single line of code.

Xpir i t Magaz ine
page 62

We didn’t dig into the code, but it certainly is worth checking it

out so you can learn how it works.

There is a starter pack that you can buy, and which contains all

the items required to learn the basics of programming with Wind-

ows IoT devices. The relevant link is included in the references

section.

The Internet of Things is becoming more and more popular, with

business companies creating new devices every day, for example

wearables (smart bands, watches etc.…) and domotica compo-

nents (smart thermostats, security systems etc.…). With Windows

10 IoT Core and the Universal Windows Platform there is now a

unified ecosystem that allows you to easily create software that

can interconnect with different devices, making it easier to focus

on business functionality.

References:

The following links are the sources for my article, or the sites

where I refer to.

n Starter Pack for Windows 10 IoT Core on Raspberry Pi 2

 http://ms-iot.github.io/content/en-US/AdafruitMakerKit.htm

n Get Started with Windows IoT

 https://ms-iot.github.io/content/en-US/win10/ConnectTo

 Device.htm

n Connect your Windows 10 IoT Core device to your

 development PC

 https://ms-iot.github.io/content/en-US/win10/ConnectTo

 Device.htm

n Windows 10 IoT Core Dashboard

 http://go.microsoft.com/fwlink/?LinkID=708576

n Set up a Raspberry Pi 2

 https://ms-iot.github.io/content/en-US/win10/RPI.htm

n Microsoft Hackster page

 https://microsoft.hackster.io

n Robot Kit Hackster page

 http://www.hackster.io/windowsiot/robot-kit

n Robot Kit Source Code on Github

 https://github.com/ms-iot/build2015-robot-kit/

n Servo Pin-out

 http://imgur.com/a/tDZY5

n Cutting plans

 https://github.com/makenai/sumobot-jr/tree/master/

 cutting_plans

n Ponoko locations

 http://www.ponoko.com/about/contact

n Formulor

 http://www.formulor.de/

n Windows IoT Core Visual Studio Project Templates

 https://visualstudiogallery.msdn.microsoft.com/

 55b357e1-a533-43ad-82a5-a88ac4b01dec

n Windows Device Portal

 https://ms-iot.github.io/content/en-US/win10/tools/

 DevicePortal.htm

MARCO MANSI

CLOUD CONSULTANT XPIRIT

Marco is dedicated to anything involving
technology, with a focus on software
development and architecture. He is
curious and interested in new develop-
ments, quickly investigating their poten-
tial and possible implementation in the
real world. Marco loves open source and
thinks that sharing knowledge is the
key to improvements.

Think ahead. Act now.

Xpirit is the youngest member of the Xebia family. We operate as Microsoft Business Unit under our
own label. Accompany us on our first steps into a new era of Microsoft Consulting. We strive for
authority by embracing new technologies such as Azure, Enterprise Mobile, ALM and security and
adapting them for fit-purpose solutions.

Think ahead. Act now.

Xpirit Netherlands BV

Utrechtseweg 49 1213 TL Hilversum The Netherlands

+31 (0)35 672 9063

n Pascal Greuter, Managing Director

mobile +31 (0)6 53 45 96 94

pgreuter@xpirit.com

n Marcel de Vries, Chief Technical Officer

mobile +31 (0)6 35 11 54 91

mdevries@xpirit.com

