
XPRT.
Five reasons why digital
transformations fail

Is ChatGPT a Better Software
Engineer than Me?

Identity Access Management
in Microsoft 365

Zero Trust - "Never trust,
always verify"

Preventing Identity Crisis
in Azure

Magazine N° 14/2023

X
PRT. M

agazine N
° 14/2023 Exploring new

 horizons: Identity Evolution

Exploring new
 horizons: Identity
Evolution

View all training options online.

Transforming your
business will not
work without the
right knowledge

Certified Microsoft Azure Fundamentals (AZ-900)

Certified Microsoft Azure Administrator (AZ-104)

Certified Microsoft Azure Developer (AZ-204)

Designing Microsoft Azure Infrastructure Solutions (AZ305)

Certified Microsoft DevOps Engineer Expert (AZ-400)

Learning Journey

Azure DevOps Engineer Expert (AZ-900 • AZ-104 • AZ-400)

Azure DevOps Engineer Expert (AZ-900 • AZ-204 • AZ-400)

Azure Solutions Architect Expert (AZ-900 • AZ-104 • AZ-305)

Azure Developer Associate (AZ-900 • AZ-204)

Azure Administrator Associate (AZ-900 • AZ-104)

https://xebia.com/academy/en/training/certified-azure-foundation?queryID=7cad81fe92977ae8f70d3b1632315443
https://xebia.com/academy/en/training/microsoft-azure-administrator?queryID=40f8e067af35fe3de59beea369020de6
https://xebia.com/academy/en/training/certified-azure-developer?queryID=40f8e067af35fe3de59beea369020de6
https://xebia.com/academy/en/training/azure-architect
https://xebia.com/academy/en/training/microsoft-azure-devops-engineer?queryID=7cad81fe92977ae8f70d3b1632315443
https://xebia.com/academy/en/search?query=Microsoft
https://xebia.com/academy/en/search?query=Microsoft
https://xebia.com/academy/en/search?query=Microsoft
https://xebia.com/academy/en/search?query=Microsoft
https://xebia.com/academy/en/search?query=Microsoft

Colophon
XPRT. Magazine No 14/2023

Editorial Office
Xebia | Xpirit Netherlands BV

This magazine was made by Xebia | Xpirit
Alex Thissen, Andre Geuze, Andreas Läubli,

Andriy Chevychalov, Anne Meijer, Annelies Wauters,
Annemie Vandenberghe, Arjan van Bekkum

Artur Kordowski, Bas van de Sande, Bernd Winkler,
Bruno Van Thournout, Bryan Knox, Camiel

Eggermont, Casper Dijkstra, Charlton Trezevant,
Chris van Sluijsveld, Climon Galunza, Danny van der

Kraan, David Sanchez, Davy Davidse, Dennis Thie,
Diederik Tiemstra, Duncan Roosma, Erick Segaar,

Erik Oppedijk, Erwin Staal, Esteban Garcia, Floor
Nobels, Frederik Beeremans, Geert van der Cruijsen,

Gema Morilla Guirado, Gill Cleeren, Hans Bakker,
Heidi Araya, Hindrik Bruinsma, Ilayda Tezcan,

Immanuel Kranendonk, Jasper Gilhuis, Jasper van
Mensel, Jeroen van de Kraats, Jesse Houwing,

Jesse Swart, Jesse Wellenberg, Jordi Borghers,
Josh Garverick, Karina Moscoso, Kees Verhaar,

Kim Ellermann, Kimberly Martin, Koen Luyten,
Kristof Riebbels, Kristof Van Hees, Laurenz Ovaere,

Lesly Bernaola, Liuba Gonta, Loek Duys, Maik Müller,
Maira Camu, Manuel Riezebosch, Marc Bruins,

Marcel de Vries, Maria Stepanova, Mario Mamalis,
Mark de Haas, Mark Foppen, Marko Sawall,

Martijn Tieland, Martijn van der Sijde, Matthew
Olson, Matthias Walgers, Matthijs van der Veer,

Max Verhorst, Michael Contento, Michael Kaufmann,
Michael van Rooijen, Michiel van Oudheusden,

Miranda ten Hoope, Natalie Reinford, Natascha
Former, Nathan Johnstone, Nico Orschel, Niels

Nijveldt, Olena Borzenko, Patrick de Kruijf, Patrick
Fell, Patrick van Kleef, Peter Szekeli, Pieter Gheysens,

Pieter Nijs, Pieter-Paul Luijten, Randy Jerome,
Reinier van Maanen, René van Osnabrugge,

Rik Groenewoud, Rob Bos, Robert Bremer, Robert de
Veen, Robin Konrad, Rocky Lhotka, Roy Cornelissen,

Rutger Buiteman, Sam Van Cutsem, Sander
Aernouts, Sander Trijssenaar, Sarah Michaud,

Sjoerd van der Meer, Sofie Wisse, Sorin Pasa,
Stefan Rapp, Stéphane Eyskens, Stieve Verheyden,
Stijn Compernolle, Stuart Celarier, Suraj Sewbalak,

Sven Ansem, Thiago Custodio, Thijs Limmen,
Thomas Tomow, Tiamo Idzenga, Tijmen van de

Kamp, Till Spindler, Tobias Mackenroth, Trish
Roberts, Troy Micka, Victor de Baare, Vivian

Andringa, Wesley Cabus, Wouter Van der Auwera,
Xander Buffart, Yuliya Khadasevich

Contact
Xebia | Xpirit Netherlands BV

Laapersveld 27 / 1213 VB Hilversum
The Netherlands

Call +31 35 538 19 21
mverhorst@xpirit.com

www.xpirit.com

Layout and Design
Studio OOM / www.studio-oom.nl

© Xebia | Xpirit, All Right Reserved
Xebia | Xpirit recognizes knowledge exchange

as prerequisite for innovation. When in need
of support for sharing, please contact

Xebia | Xpirit. All Trademarks are property
of their respective owners.

 004 Vertigo

 006 Five reasons why digital
transformations fail

 032 Extending Entity Framework Core

 050 Unpacking Access Packages

 071 Preventing Identity Crisis in Azure

 061 Zero Trust - "Never trust, always
verify"

 078 Infrastructure as Code on Azure:
Bicep vs. Terraform vs. Pulumi

 088 Adding Load Testing to your
CI/CD workflows in GitHub Actions

 015 Mutation Testing in C#

 011 Is ChatGPT a Better Software
Engineer than Me?

 038 Upgrade Your App to the Future:
Migrating from WPF/WinForms to
Blazor

 055 OAuth2 Device Authorization
Grant proxy

 074 Ten tips and tricks to secure your
Azure subscription

 042 Identity Access Management in
Microsoft 365

 019 Mock your OpenID Connect
Provider

Intro

State of the Art Software Development

Move The Business Needle

Smooth Delivery

Power Through Platforms

In this issue of XPRT. magazine
our experts explore new
horizons.

If you prefer the
digital version of this

magazine, please
scan the qr-code.

015

032

042

061

074

XPRT. Magazine N°

14/2023

mailto:mverhorst%40xpirit.com?subject=Xpirit%20DevOps%20Bootcamp
https://www.xpirit.com
https://www.studio-oom.nl

004 Intro

Vertigo
As Bono chants in the U2 song Vertigo: Unos, dos, tres, catorce! This is now
also true for this brand new magazine, XPRT Magazine 14! We have come a
long way since our first magazine in 2015. We went through various major
and minor rebranding. And this is also true in this edition. You will see some
major visual and structural changes to our magazine. This not only reflects
our push for continuous improvement, but also reflects our own transformation
at Xpirit. Although we have always been a proud part of Xebia, we recently
transitioned from Xpirit to Xebia | Xpirit. This move represents a significant
evolution in our organization's capabilities and scope, allowing us to offer
a broader range of services to our clients and take on even more complex
and challenging projects.

René van Osnabrugge

https://www.twitter.com/https://twitter.com/renevo
https://www.linkedin.com/in/renevanosnabrugge
https://www.github.com/renevanosnabrugge

But no worries, our commitment to thought leadership

and continuous improvement stays the same. We remain

passionate about exploring new ideas, challenging

ourselves and our clients, and finding innovative solutions

to the most pressing challenges facing businesses today.

So, as I hold this brand new XPRT magazine in my hands,

I can't help but feel a sense of pride and excitement.

We did it again! As I read through these articles, I'm struck

by the depth of knowledge and expertise our engineers

and thought leaders possess. And I'm reminded once

again of how fortunate we are to work in an organization

that values thought leadership, innovation, and continuous

improvement.

Twice a year, this magazine showcases the expertise and

insights of our engineers and thought leaders, providing

you, our readers, with practical advice and new ways of

thinking about complex challenges. In this edition, we again

gathered a broad range of articles, tackling everything from

digital transformations to identity access management,

from load testing to zero trust security models.

In this edition, we explore the latest tools and techniques for

enhancing your software development practices. We look

at how to add load testing to your CI/CD workflows by using

Azure Load Test and GitHub Actions, examine why digital

transformations often fail, and provide insights into how to

upgrade your app to the future by migrating from WPF or

Winforms to Blazor.

We also delve into the world of identity access

management. We explore some of the key topics related to

identity management on the Azure platform, including how

to mock OpenID Connect Providers for testing, how to use

Azure AD Access Packages to manage access permissions,

and how to implement OAuth2 device flow-proxy using

free Azure components. We also delve into the topic of

zero trust security, examining how this approach can help

organizations protect their data and systems from

increasingly sophisticated threats. Finally, we explore ways

to prevent identity crises in Azure, providing practical

guidance on how to manage identity-related risks and

ensure the integrity and security of your Azure-based

applications and services.

And it would not be a XPRT magazine if we did not cover

some cutting-edge software development topics, including

EF Extensions and mutation testing in C#. We even take a

playful look at whether ChatGPT is a better developer than

you, showcasing the latest capabilities in AI and machine

learning.

By organizing these topics under our 8 pillars of an

engineering culture, we're making it clear that there is a lot

of ground to be covered if you want to act like a software

company. Much like the song Vertigo, which is known for its

high energy and driving rhythm, XPRT magazine is desig-

ned to inspire and energize you to drive this transformation

forward.

We hope this edition of XPRT magazine inspires you to

explore new ideas, challenge yourself and your team,

and take your Engineering Culture to the next level.

</>

XPRT. Magazine N°

14/2023

005

006 Move The Business Needle

Five reasons
why digital
transformations
fail
In 2011, Marc Andreessen claimed in the Wall Street Journal that "Software is eating the
world", predicting that the rise of software would digitally transform every industry and
every sector of the world as we know it. Ten years later, there is nothing more to say but:
he was right. Software has completely transformed our lives, and with that, every
company, and every organization on the planet. It has fundamentally changed the
entertainment industry with Netflix and Spotify. It has transformed travel and hospitality
with AirBnB and Booking. It has transformed our cities with scooters, public transportation,
and parking, that you can book with your phone in seconds. Every company is becoming
a software company because the business models transform from selling products to
creating experiences.

Author Michael Kaufmann

This means, that companies must change. Not only their

business model – but also the way they work, the way they

are organized, and the way they leverage IT resources.

This transformation has many names. If we talk about the

change of the business model, we talk about digital

transformation. If we talk about the way of working, we talk

about DevOps transformations. And, if we talk about

transformation of IT, we talk about Cloud transformation.

But they are all part of the same story. You can only

succeed, when you master all three of them. The hard part

is not digital, DevOps, or Cloud – the hard part is the

transformation.

Common pitfalls – Why transformations fail
Many transformations fail – and it takes many companies

more than one attempt to get it right. But in most failed

attempts we can see the same patterns. If you want to

succeed in your digital transformation, make sure to avoid

these five common pitfalls:

1. Assuming your company or industry is special
Many customers that I meet believe that they are special,

but they are not. And I'm sorry to say, it's probable that

neither is your company or industry. At least, not when it

comes to digital transformation. Could your product kill

people if it has a defect? So could cars, airplanes, trucks,

medical devices, and so on. And the same is true for all

of the parts that are produced for these products.

XPRT. Magazine N°

14/2023

007

They are nothing special. Do you have to you comply

with certain standards? Do you create military products?

Are you publicly traded? Do you work for governments?

Whatever you think makes your company special,

chances are there are many companies that face the

same challenges that you do. The same rules apply to them

as to you when it comes to your digital transformation.

If you look at the studies for DevOps transformations, you'll

find they apply to all companies: from small start-ups to big

enterprises and from cutting-edge internet companies to

highly regulated industries, such as finance, healthcare,

and government.1

And this is actually a good thing. This means a lot of

the problems you’re probably facing during your own

transformation have already been solved by others.

You can learn from their failures and don’t have to

experience them yourself.

2. Having no sense of urgency
The biggest blocker to change is complacency. If people

in your business are complacent, they will tend to resist

change and keep on doing business as usual.

You must establish a true sense of urgency for people to

address critical things now. Urgency in this case does not

mean pressure from management that creates anxiety.

True urgency should drive people to change with a deep

determination to win – not with anxiety about losing.2

Without a sense of true urgency, people will resist change

and are more likely to keep their old behaviors. Note that

a sense of urgency might arise for completely different

reasons at distinct levels of your organization. Management

might feel pressure from the market and the lack of agility

to react with frequent releases. Engineers might feel the

pressure of technical debt and the problem of attracting

and retaining talent because of old processes and tools.

It is important to align these stories to a common root cause

using a clear vision. If you manage to align the different

senses of urgency into a single force that drives in the same

direction, you can ensure that the different forces will not

neutralize themselves.

3. Having no clear vision
It is easy to replace tools, processes, and roles, but it is hard

to change behavior, culture, and stories. Without a clear

vision, the transformation will not yield the desired results.

If I hear customers say we are not Microsoft or Google or we

are not a cutting-edge internet company, it tells me they are

missing a clear vision. If your vision clearly states you want

to become the digital leader in your industry or change from

a product company to a service company, people will not

dare to say things that contradict it.

A good vision to drive change is a clear and compelling

statement of where all your transformation leads.3

I believe it is worth noting that transformations are not

always driven by upper management. I know many compa-

nies where the transformation is driven by individual

departments or even teams. Nevertheless, the same rules

apply – you need a clear vision for the members in your

team or department and to establish a sense of urgency to

ensure the transformation is successful.

4. Let obstacles block your progress
When you start a transformation, many obstacles will

block your transformation. Good examples that I often

experience are certain regulations in certain industries.

Many regulations, such as ISO26262 or GxP, propose the

V-Model for software engineering. The V-Model is based

upon the waterfall model, so it contradicts basically

everything we have learned in many years of research.

If you insist on keeping the waterfall model, your

transformation will most likely fail, due to your internal

interpretations of the regulations. If you have a closer look

at them, you’ll realize they just insist on best practices.

If your practices are superior to the recommended ones,

you can justify that and still pass an audit.

Most obstacles you'll encounter are caused by your

organization, for example, your organizational structure,

tight job categories, processes, or trench warfare between

the working council and management. Don't permit

these obstacles to block your transformation.

5. Not getting help
Consultants have a bad reputation in many companies,

mostly because of bad experiences.

Often their appearance is associated with layoffs and other

tough decisions. But if you want to learn a new sport, you

don’t just buy the equipment and watch some videos on

YouTube. You join a club that provides a professional trainer

or find yourself a coach that will guide you. Sports are not

just about knowledge and tools – they are about building

skills. And without an experienced coach, it is hard or

impossible to succeed in certain sports.

1 Forsgren N., Humble, J., & Kim, G. (2018). Accelerate: The Science of Lean Software and DevOps: Building and Scaling
High Performing Technology Organizations (1st ed.) [E-book]. IT Revolution Press. Page 22

2 John P. Kotter (2008), A Sense of Urgency, Harvard Business Review Press
3 John P. Kotter (2012), Leading Change, Harvard Business Review Press

008 Move The Business Needle

The same is true for building new skills and capabilities in

your business. There is no shame in getting help from

someone more experienced who can guide you through the

change. The odds are high that help will be cheap based

on what you save in time and effort, never mind the costs of

failure.

How to succeed
 with your digital
transformation
Start with Why
For a transformation to succeed, you need a clear vision

and a sense of urgency. The vision should be precise,

compelling, short, and should inspire people to follow it.

To communicate the vision, you can follow the Golden

Circle4 and communicate from the inside to the outside

(see Figure 1).

Figure 1: Communicating a vision should start with Why?

Let us see the layers of the circle in more detail:

• Why?: The reason why your company will undertake the

transformation. This gives it a purpose and

establishes a sense of urgency. Why should anyone care?

• How?: How are you going to succeed in the

transformation process?

• What?: The actual thing that you want to transform. What

are you doing or making?

A purpose-driven mission
Don't underestimate the power of vision! If you are a

manufacturer of combustion engine cars, transformation

to electrical cars will not come easy. There will be resistance.

People will be afraid to lose the power of their jobs.

To succeed, you need a clear vision and to communicate the

Why? – like the Volkswagen Group in its goTOzero mission

statement in 2019, which concentrated on four main fields

of action: climate change, resources, air quality, and

environmental compliance. By 2050, the entire Volkswagen

Group wants to become balance sheet CO2-neutral.

By 2025, the company plans to reduce the carbon footprint

of its fleet by 30 percent over its entire life cycle compared to

20155. This perfectly explains the Why?, establishes urgency,

and fits into their overall updated vision to make this world

a mobile, sustainable place with access to all the citizens.

Equally, Mercedes-Benz stated in their Ambition 2039

statement from 2019 that they aim to have a carbon-neutral

car fleet and production over the next 20 years.6

And it is the same when you transform a product company

into a software or services company. Even if you only

transform from a waterfall organization to a DevOps

organization, people will be afraid of the change and there

will be resistance if you cannot paint a picture of a desirable

future and explain why you have to undertake the transfor-

mation.

Establish an engineering culture
Having a purpose-driven vision will help you to establish an

engineering culture during your transformation: an inclusive

and secure organizational culture that fosters talent and is

driven by sharing and equality. My colleagues wrote about

this in XPRT Magazine #12.7

This is a culture where people feel safe to speak up when

they feel something is wrong, a culture where people

feel safe to experiment and be creative without fear,

and a culture where everyone feels welcome and safe –

independent of heritage, gender, or religion.

The culture of an organization is a set of shared

assumptions that guides behaviors within the organization8.

That's why it is hard to change it. Creating PowerPoint slides

with values and mission statements might affect the culture

but maybe not in the way management intends to.

4 Simon Sinek (2011), Start With Why – How Great Leaders Inspire Everyone to Take Action, Penguin, p.38
5 Volkswagen (2019): Volkswagen with New Corporate Mission Statement Environment "goTOzero": https://www.volkswagenag.com/en/news/2019/07/goTOzero.html
6 Mercedes-Benz Group Media (2019): "Ambition2039": Our path to sustainable mobility: https:// group-media.mercedes-benz.com/marsMediaSite/ko/en/43348842
7 de Vries, M., & van Osnabrugge, R. (2022): Together we build an Engineering Culture. XPRT Magazine #12: https://xpirit.com/together-we-build-an-engineering-culture/
8 Ravasi, D., & Schultz, M. (2006). Responding to organizational identity threats: Exploring the role of organizational culture. Academy of Management Journal.

Why?

How?

What?

XPRT. Magazine N°

14/2023

As an engineer, you might ask yourself why the

organization's culture matters to you. Isn't that a task for

management? However, the culture is the result of the

assumptions and the behaviors of every single person

in the system – and that means every single person

can change it. As an engineer, you should be aware of your

culture and you should speak up if you see that something

is wrong. Start doing the right things and telling the right

stories.

Culture is best ingrained into corporate behavior using

little quotes and principles that have a deeper meaning.

They are easy to remember and encourage people to do the

right things. Here are some examples you will often hear in

companies with great engineering cultures:

• Ask forgiveness, not permission: Encourage people to

do the right thing, even if it is against current rules or

processes.

• You build it, you run it: Establish end-to-end

responsibility and ownership for the things built.

• Fail early, fail fast, fail often (or fail fast, roll forward):

Try to fail early and fast instead of making everything

100% bullet-proof.

• Embrace failure: Encourage people to experiment and

take risks and ensure blameless learnings from failure.

Take responsibility and don't blame others.

• Collaborate, don’t compete or work together not against:

Foster collaboration – across organizational boundaries

and also with customers and partners.

• Go fix: Encourage people to take ownership and fix things

instead of just complaining, but you have to ensure that

innovation is not suppressed. Make sure people are also

empowered to really fix the things

they complain about.

• Treat servers like cattle, not like pets: Encourage people

to automate everything.

• If it hurts, do it more often: Motivate people to practice

things that are hard to build up the skills to accomplish.

This phrase is often used in relation to releasing or testing

applications.

These are just a few examples. More stories and sayings will

arise when you transform your culture and become a digital

company.

A great engineering culture is not just the responsibility of

management. They have to let it happen and provide the

vision but the best culture is then created by the people

themselves during the transformation.

Data-driven transformation
If you want your transformation to succeed, it is critical to

measure the right metrics and to prove the transformation

really yields better results than the old system. Every metric

or Key Performance Indicator (KPI) you measure will have

an impact on the behavior. That's why it is important to

measure metrics that matter9 that allow you to optimize

the right things first and to achieve small wins that will

help you keep everyone motivated to continue with the

transformation. Measuring the right data should always

be the start for a transformation.

Optimizing something that is not a constraint is a waste

of resources and can even have a negative impact.

Objectives and Key Results (OKR)10 is a flexible framework to

define and track objectives and their outcomes. It is used

by many digital companies, among them Google, Microsoft,

Twitter, and Uber.OKR helps organizations to achieve a high

alignment on strategic goals while keeping a maximum

level of autonomy for teams and individuals. That's why it is

a good framework for supporting your digital transformation.

A data- and AI-driven transformation is not a big-bang

project that can be planned for a fixed finish date.

Change is a long process – so your digital transfor mation

is rather a way than a goal. Led by the digital vision – the

WHY – the transformation can be separated into 3 phases

(see Figure 2):

• Digital Strategy: Start by defining a Cloud, AI, and DevOps

strategy. Gather company and market benchmarks.

• People, Process & Culture: Build your first cross-functional

teams around customer needs. Enable them to deliver

value end-2-end and adjust the accompanying

processes.

• Scale and optimize: Create more teams around customer

journeys and make sure to measure if the transformation

is successful and yields the expected results.

Adoption and change management are an important pillar

that accompany the entire change process.

009

9 Michael Kaufmann (2022). Accelerate DevOps with GitHub: Enhance software delivery performance with GitHub Issues, Projects, Actions, and Advanced Security.
Packt Publishing. P. 14

10 Doerr, J. (2018). Measure What Matters: OKRs: The Simple Idea that Drives 10x Growth. Portfolio Penguin

010 Move The Business Needle

Figure 2: Phases of a data-driven digital transformation

Digital Strategy

Cloud strategy, DevOps

strategy, company and

market benchmark. People, Process and Culture

Building Pilot teams around

customer needs, defining

accompanying processes,

Governance.

Adoption, Change and Communication

Digital Vision

Fundamental reason, the Why.

Scale and optimize

Move teams over.

Optimize outcomes.

Metrics

Defining metrics.

Gather data.

Summary
Change is always hard and that is the reason why many

enterprise transformation fail – not only the digital

transormation. But there are some typical pitfalls that can

be avoided. If you think that one of these pitfalls apply to

your company – hit refresh and start with a clear vision

and a good strategy. And, there is no shame in getting help

from someone that can guide and coach you. Get yourself

a partner you trust that has experience with helping other

clients succeed in their transformation.

</>

"Change is hard because people
overestimate the value of what they
have and underestimate the value
of what they may gain by giving
that up."
— James Belasco and Ralph Stayer

Read more
 online?

Michael Kaufmann

https://www.twitter.com/@mike_kaufmann
https://www.linkedin.com/in/mikaufmann/
https://www.github.com/wulfland

XPRT. Magazine N°

14/2023

Is ChatGPT a Better
Software Engineer
than Me?
When Alan Turing proposed the idea of a machine that could simulate any human
intellect, he was met with raised eyebrows and skeptical chuckles. Fast-forward to
today, and we find ourselves surrounded by a veritable army of digital masterminds
that can do everything from ordering pizza to mastering the ancient game of Go.
The question now is, will ChatGPT be the software engineer that steals our jobs or
makes us better at them?

Authors Geert van der Cruijsen and Thijs Limmen

The March of AI Through History
The AI journey began with the notorious Turing Test, which postulated a machine that could imitate human conversation

so accurately that it would be indistinguishable from the real thing. The quest for such a machine gained momentum

during the Dartmouth research project in the 1950s, and today, we have five main types of AI: reasoning, natural language

processing, knowledge representation, planning, and perception.

Up until now, most AI solutions excelled in one area of intelligence. But now we've arrived at the age of ChatGPT, the

multifaceted wonder that combines reasoning, natural language processing, knowledge representation, planning,

and perception.

Geert van der Cruijsen

Thijs Limmen

ChatGPT: The Jack of All Trades
ChatGPT isn't just your run-of-the-mill

AI; it's a Swiss Army knife of digital

engineering. It can write application

code, craft unit tests, and create

pipelines to build and deploy it all.

In fact, it even generates the

infrastructure as code, leaving us

mere mortals to wonder, "Is ChatGPT

a better software engineer than me?"

Let's have a look at certain strengths

and weaknesses of ChatGPT.

011

https://www.twitter.com/geertvdc
https://www.linkedin.com/in/geertvandercruijsen
https://www.linkedin.com/in/thijs-limmen
https://www.github.com/geertvdc
https://www.github.com/thijslimmen

012 State of the Art Software Engineering

Strengths:
• Inspiration: ChatGPT can generate

new ideas, igniting creativity.

• Empowering: This AI boosts

productivity, equipping developers to

tackle complex tasks.

• Versatility: ChatGPT can wear many

hats, from a programmer

to a graphic designer.

Weaknesses:
• Dreaming: ChatGPT might generate

unrealistic or infeasible ideas.

• Slow results: Sometimes, it takes a bit

of time to receive useful outputs.

• Confidence and reasoning: ChatGPT

can be confidently wrong and lacks

human-like reasoning abilities.

• Biases: As with any AI, biases can

seep in, affecting the quality of

results.

• Rudeness: On occasion, ChatGPT

might be unintentionally impolite.

Despite these weaknesses, the

consensus is clear. It is a great tool to

empower you as a developer. So, for

now, the answer to the question

"Is ChatGPT a better software engineer

than me?" is that AI probably won't

replace you. However, if you don't use

AI tools, someone who does use AI will

replace you.

Midjourney - /imagine running::3

overtaking::2 exponential increase

--ar 16:9

We can position AI like pair

programming with an "Experienced

Expert Junior Developer". There is a lot

of knowledge and information being

generated for you, but you still need to

connect the dots and know when it is

right or wrong.

Ask ChatGPT, Skip Google: Streamlining Your Search for Answers
In today's fast-paced digital world, information is just a few clicks away, and

search engines like Google have long been the go-to resource for answering

questions and seeking advice. Unlike traditional search engines, ChatGPT is

designed to understand context, allowing users to ask questions and receive

relevant, nuanced, and human-like responses. By engaging with ChatGPT, users

can bypass the time-consuming process of sifting through search engine results,

while benefiting from personalized and comprehensive assistance. So, the next

time you find yourself in need of quick, reliable information, consider turning to

ChatGPT.

Next, let's explore how to become an AI powered developer.

Becoming an AI powered developer: the art of prompt building
To get the most out of ChatGPT, one must master the delicate art of prompt

building. Just as an artist carefully selects their brushes, so must developers

fine-tune their prompts to elicit the most useful and relevant responses from

ChatGPT. An example of prompt building is as follows:

I want you to act as ... (job title, artist, role)

I will ... (give you x as input) and you will ... (what AI must do)

I want you to ... (more context, limits)

https://prompts.chat contains more than 500 prompts as examples.

Next, Let's explore some AI tools that can elevate your coding prowess and ensure

you stay ahead of the curve.

A Deeper Dive into AI Tools
 for the Modern Developer
GitHub CoPilot X
GitHub CoPilot X is an innovative, AI-powered code assistant designed to

enhance the software development process. By offering context-aware code

suggestions, this sophisticated tool allows you to expedite your coding tasks while

simultaneously reducing errors. CoPilot X goes a step further by incorporating a

ChatGPT-like experience within Visual Studio Code and all IntelliJ IDEs, ensuring

developers receive relevant and context-specific answers to their questions.

https://prompts.chat

XPRT. Magazine N°

14/2023

013

Acting as a knowledgeable partner, CoPilot X provides invaluable assistance

and guidance throughout every phase of the coding journey. Its seamless

integration with popular development environments ensures that you have

access to expert advice and support whenever you need it. In essence, GitHub

CoPilot X is the ultimate coding companion, helping you navigate the complexities

of software development with ease and efficiency, serves as an informed

companion, expertly guiding you through each stage of the coding process.

Bing Browser with Chat AI
Bing has integrated AI-powered Chat into its browser, allowing you to ask

questions, get coding assistance, and even troubleshoot issues. This smart

feature can be a game-changer when you're stuck on a coding problem or

simply want to brainstorm ideas.

AI Commits
The "aicommits" command line tool is a handy utility that generates descriptive

and informative commit messages for your code repositories using AI based on

your staged changes. This tool ensures that your commit history is well-

documented and easily understandable, making collaboration and code review

a breeze.

By incorporating these AI tools into your workflow, you'll not only enhance your

productivity but also ensure you stay ahead in the ever-evolving world of software

development. Remember, AI probably won't replace you, but those who use AI

tools effectively will have a competitive edge in the industry.

AI-Powered Image Generation Tools for Design Inspiration
Midjourney: An AI-driven image generation platform, Midjourney helps designers

create stunning visuals by generating unique images based on descriptions

or keywords. It can give you inspiration for your UI designs, create logos, UI

components or even complete landing pages.

These AI-powered tools can significantly enhance your coding and design

capabilities, helping you stay competitive in the world of software engineering.

/imagine Beautiful landing for a travel website, design, ux/ui, ux, ui, behance, dribbble

--ar 3:2 --v 4 --q 2

/imagine Awesome application icon for a

cyberpunk app, design, ux/ui, ux,

ui --v 4 --q 2"

/imagine Beautiful application icon for a

dating app, design, ux/ui, ux, ui

--v 4 --q 2"

/imagine Beautiful application icon for a

trading app, design, ux/ui, ux, ui

--v 4 --q 2

Dall-E: Another image generation

tool is developed by OpenAI. Dall-E

generates images based on textual

descriptions, providing ideas for icons,

artwork, or other design components.

014 State of the Art Software Engineering

CoPilot for Office 365 products: A New Era of
Productivity
Embracing AI's potential extends beyond software

engineering. With CoPilot for Office 365 products like Word,

Excel, and PowerPoint, users can now experience an

unprecedented level of productivity. This intelligent

assistant offers real-time suggestions for text formatting,

data analysis, and presentation design. In Word, CoPilot can

help draft content, generate outlines, or even proofread your

document. In Excel, it can suggest formulas, create charts,

or analyze data trends. And in PowerPoint, CoPilot can

recommend slide layouts, color schemes, and even

provide ideas for impactful visuals. With CoPilot's seamless

integration into Office 365, you can now harness the power

of AI to elevate your work across these essential productivity

tools.

Conclusion
AI probably won't replace you. However, if you don't use AI

tools, someone who does use AI will replace you. To stay

competitive, adopt a mindset shift to asking ChatGPT for

help, master prompt building, and equip yourself with

AI-powered tools to become a more powerful productive

developer.

Not convinced yet? This article was written by ChatGPT-4

with some extra help from Thijs & Geert. Want to know how?

We've used the following prompt to generate 90% of this

article:

Write a creative and humorous yet formal magazine

article about Microsoft Technology, with title

"Is ChatGPT a better software engineer than me?"

Discuss:

AI history:

• Turing Test

• Dartmouth research project

• 5 types of AI (reasoning, natural language

processing, knowledge representation, planning,

perception)

ChatGPT: a combination of all 5 AI types

ChatGPT can write application code, unit tests, but

also pipelines to build and deploy it. And even it

creates corresponding infrastructure as code.

Strengths of ChatGPT like Inspiration, Empowering,

Be any profession

Weaknesses of ChatGPT: Dreaming, Slow results,

Biases, Rude, Is sometimes confident wrong and it

doesn’t have reasoning likes humans do.

Conclusion is that AI probably won’t replace

developer, but developers will be replaced that

don’t use AI tooling. Highlight this exact quote:

"AI probably won't replace you. However, if you

don't use AI tools, some one who does use AI, will

replace you."

Becoming a better developer using AI and the

mindset switch from Google to ChatGPT

Importance of prompt building for ChatGPT

AI tools to help with coding.

• Bing browser with Chat AI

• Github CoPilot X

• "aicommits" command line tool

• CoPilot for Office 365 products

Image generation tools for creating inspiration

for UI, Icon, artwork:

• Midjourney

• Dall-E

AI applications: blogging,
documentation, tutorials

Key takeaways

</>

Read more
 online?

XPRT. Magazine N°

14/2023

015

The problem

Let's face it, software development is hard. It's a highly creative task that fully takes
place in "non-physical worlds" like our mind and inside IT devices. As physical human
beings, we live in the real world, we experience the real world, we breathe and speak
the real world. The direct consequence is that we learn from all the tiny things that
might happen. We know to be cautious with a fresh cup of coffee, based on past
experiences, as it might be quite hot.

Author Michael Contento

Mutation
Testing
in C#

016 State of the Art Software Engineering

With software this is a bit different. Sure, we also gain

experience over time. We learn to anticipate situations and

re-use knowledge from the past, but we cannot easily

transfer previous "real world knowledge" to our profession.

This is a major difference to other jobs like carpentry or

painting, where our human real-world judgement can be

applied a bit easier. I mean, you don’t have to be an

experienced carpenter to verify if a chair does its job of

carrying a human being.

Testing or verifying software on the other hand adds yet

another complexity level to our construct in the non-

physical world. If your primary code is already quite

complex, how do we keep our unit tests simple? Refactoring

our primary code becomes easy with a good set of unit

tests, granted. But how can we refactor our unit tests?

Are we sure that, after a refactoring, our tests yield the same

level of confidence / security? Can we be sure that our tests

always evolve with the primary code? Maybe, just by

accident, a few small bugfixes in the past were made

without a companion unit test. Who knows?

Measuring quality
So how do we evaluate the quality of our unit tests? Sure,

simple gut feeling would be easy but also highly subjective

and nothing we could add to our CI pipeline. Gathering

some code coverage metrics while running our unit tests is,

on the other hand, something we could easily add to our CI

pipeline and would give us some objective numbers.

But how do we interpret those numbers?

Coverage metrics only tell you what percentage of your

code has been executed. Not what percentage of the

business logic behind those lines of code have been

evaluated!

And in combination with coverage metrics, you quickly

hear or read some guidance like "70% coverage is enough,

as 100% is not worth the effort". Why shouldn't we strive for

100%? Why do we have to be careful when interpreting those

numbers?

Aren't there better metrics available? Maybe something with

a high developer experience that focuses on actionable

things instead of theoretical values? We developers like to

improve things and not argue about numbers!

Mutation testing to the rescue
Usually, we use unit tests to evaluate our primary code,

but with Mutation Testing we turn things upside down!

We mutate our primary code to actively break or invert the

existing behavior and test if our unit tests are able detect

this breaking change. If the unit tests pass, then we know

that the original behavior was not properly covered by a

test, and we need to rework / sharpen our tests in this

regard.

This has the significant benefit of being very hands-on.

Because the output of a Mutation Testing run is always

"when I break this part of your primary code, no unit tests

complain!". No abstract number to interpret. No softening

"70% is good enough". Mutation Testing can either find places

where you have gaps in your unit tests or not. It's as simple

as that.

How do we utilize
 this in C
Stryker.NET is here
 to help
To make things more concrete let's start with a short piece

of code:

public class Calculator

{

 public int Multiply(int a, int b)

 {

 return a * b;

 }

}

Yes, this is a very simple class and truly made up for this

article. This piece of code is here just to convey the idea and

usage of Stryker.NET1 and Mutation Testing in general. Even in

this scenario, we try to be good developers who care about

quality. Therefor we also have a corresponding unit test that

looks like this:

[TestCase(1, 1, 1)]

public void Multiply_test(int a, int b, int c)

{

 var calc = new Calculator();

 var actual = calc.Multiply(a, b);

 Assert.AreEqual(c, actual);

}

Here we have a simple piece of code and a unit test that

executes it. Our unit test is green, so everything is fine, right?

If we would apply our code coverage metric from before, we

would be at 100%! Great.

1 https://stryker-mutator.io/

XPRT. Magazine N°

14/2023

017

Let's see what Stryker.NET thinks about our project. For that

we quickly need to install the dotnet-stryker command

line tool via:

$ dotnet tool install -g dotnet-stryker

As you can see, Stryker.NET is a simple NuGet package that

can be installed globally on your machine (like we just did)

or project locally. Which way you prefer is, in the end, a

matter of test and/or project convention. Once installed

we can execute Stryker.NET against our code and see the

results:

$ cd path/to/your/solution/folder

$ dotnet stryker

You didn't expect it to be that simple, did you?

Stryker.NET tries its best to maintain a high-quality

developer experience and will handle as much as

possible. There are multiple command-line options

available to change the default behavior, such as filtering

mutations to a subset of your files, changing the output

level, selecting the type of reports to generate, and much

more. But for now, we can leave it at the defaults and open

the HTML-based report, which is generated by default:

Here we can see that Stryker.NET mutated our original code

by replacing the multiplication with a division and our unit

tests were still green! Or in Stryker.NET words: the generated

mutant was able to survive (no failing unit tests that caught

him).

This is true, as our unit test only tested with a limited

parameter set! We can do the mutation ourselves, totally

invert the business logic and our test does not guard us.

Improving our unit test is as simple as adding another

parameter variant:

[TestCase(1, 1, 1)]

[TestCase(4, 2, 8)]

public void Multiply_test(int a, int b, int c)

{

 var calc = new Calculator();

 var actual = calc.Multiply(a, b);

 Assert.AreEqual(c, actual);

}

In the next round of dotnet stryker this mutant would

no longer survive, and we actively improved the quality

of our test!

Things that Styker.NET mutates
We saw that Stryker.NET was able to mutate our

multiplication with a division and the question is now:

What else can Stryker.NET mutate? Because in the end,

the amount and diversity of those mutations define the

spectrum and quality of the generated mutants.

The good news here: The number of available mutations

in Stryker.NET is staggering and spans multiply categories:

Category Original Mutated
Arithmetic operators + -

Equality operators != ==

Logical operators and or

Boolean literals true false

Assignment statements += -=

Initializers new int[] new int[]

 { 1, 2 } {}

Unary operators -var +var

Update operators var++ var--

LINQ methods First() Last()

String operators "foo" ""

Bitwise operators << >>

Math operators Floor() Ceiling()

Null-coalescing operators a ?? b b

Regex operators abc{5,} abc{4,}

Removal mutators break (simply removed)

As you can see, the list is huge! And I picked only one

example out of every category. For a full list of all supported

mutations, you should look at the documentation, which is

very detailed. If you have any questions, the documentation

always has you covered - not only for a list of all mutations.

010101
01001
11010
0111

018 State of the Art Software Engineering

Mutation score as KPI (Key Performance Indicator)
Stryker.NET will create mutants and count how many of

them managed to escape or were caught by our tests.

This information can be condensed down to a single score:

The mutation score.

The calculation is simple, as we just divide the number of

caught mutants by the total amount we created. Given we

have created 120 mutants and only 5 of them survived, we

get a mutation score of 92% (the higher the better).

This simple score is also visible in the various reporting

formats that Stryker.NET can generate. In the default HTML

report that we used earlier, we can use this as an

uncomplicated guide to find classes that have more

escaping mutants and thus less effective unit tests.

Conclusion
Mutation testing turns the world upside down and uses

the primary code to evaluate the quality / completeness /

robustness of our unit tests. It does so by spawning an

army of mutants (logically inverted variants of our primary

code), which must be caught by our existing unit tests.

Every mutant that escapes (does not trigger a failing unit

test) highlights a piece of logic within our primary code

that does not have a verifying unit test.

In the end, this methodology is, as a software developer,

very hands-on and creates actionable insights. If at some

point Stryker.NET is no longer able to create mutants that

survive our unit tests, chances are high that future-me can

also not accidentally create mutants in the next refactoring.

And this is what I really care about: Trustworthy unit tests.

</>

Read more
 online?

Michael Contento

https://www.linkedin.com/in/michaelcontento
https://www.github.com/michaelcontento

019

XPRT. Magazine N°

14/2023

Mock your
OpenID
Connect
Provider
An article that teaches you how to test your endpoints
using OpenID Connect. All without changing or mocking
the authentication and authorization configurations
in dotnet 6.

Author Kristof Riebbels

When creating new applications or updating existing applications, we have to

take security into account. The protocol we will use in this article is OpenID

Connect flow.

The OpenID Connect flow is a protocol used for authentication and authorization

between different parties, such as a client application and a server providing

identity services.

Having a realistic testing environment early on allows for more accurate testing

of the application's behaviour. This can help identify issues related to the

authentication and authorization process that may not be apparent in a test

environment with different settings.

It will ensure that the application is secure and compliant with industry standards

on a CI-pipeline.

A tale on how it can help you…
A customer required support for two identity providers to

access our resource server, and our developer implemented

the corresponding authentication schemes. Later, the

requirement changed to support only one identity provider,

and the relevant code was removed. Everything seemed to

be functioning well until another team attempted to access

the resource server, unaware that the second identity

provider was no longer supported. In this situation, a HTTP

status code 401 (Unauthorized) would be expected. However,

due to incomplete code removal, a HTTP 500 (Internal Server

Error) was encountered instead. By incorporating the testing

methods outlined in this article, we gained insight into what

happened and have fixed the situation.

Testing isolation
There are various categories of tests, each serving distinct

purposes: Unit Testing, Integration Testing, System Testing,

Acceptance Testing, Performance Testing, Load Testing,

Stress Testing, Security Testing, Usability Testing, Regression

Testing, Smoke Testing, Compatibility Testing.

Incorporating integration tests with mocked external

dependencies in a Continuous Integration (CI) pipeline

is essential. Those tests are also focused on the interactions

between your application and the external systems.

A stable and predictable environment is created on your

own machine and pipeline, as they remove the risk of

external service outages or changes affecting the test

results. You can debug and recreate problems more easily.

The key objective of testing is to ensure the delivery of

quality on all different kind of aspects. However, by

employing Test-Driven Development (TDD) and utilizing

representative, non-trivial data, developers gain a clearer

understanding of the business and the code's functionality.

To WireMock or not to WireMock, that is the question
To mock out an OpenID Connect provider, we need to

simulate the behavior of the provider's endpoints that are

involved: JSON Web Key Set (JWKS) endpoint /jwks and

the OpenID Connect discovery endpoint /.well-known/

openid-configuration. The description of these endpoints is

found in another paragraph below.

For validating /weatherforecast endpoint, there should be

an algorithm to generate valid and invalid JWT's.

Those generated tokens will be used in the request.

Finally, the resource server validates the request.

There are multiple strategies to mock endpoints:

• Using a library like WireMock.NET allows us to create stubs

for HTTP requests and responses easily. By creating JSON

documents that mimic the responses of a real OpenID

Connect provider, we can define the mock endpoints'

expected behavior. XPRT Magazine issue 13 discussed

WireMock.NET and its setup. However, WireMock.Net does

not help in providing valid and invalid JWTs; it specializes

in mocking HTTP dependencies.

• Another solution involves manipulating the

Configuration Manager of the OpenID Connect

settings and using a custom HttpClientHandler.

In both cases, these solutions intercept the HTTP requests to

these endpoints and return pre-defined JSON documents as

responses.

For this article, the ConfigurationManager is manipulated

by providing a concise, straightforward solution. To maintain

focus on creating tests, setting up the web application with

policies, and preparing the necessary boilerplate without

third-party libraries, we avoid adding complexity and extra

dimensions.

Source code
This article includes code snippets and diagrams to

provide readers with a clear overview. I encourage you to

experiment with the code. You can find the source code

at the following location: https://github.com/kriebb/

MockOpenIdConnectIdpAspnetcore.

JWT tokens
The OpenID Connect protocols leans on the OAuth2 protocol.

The authentication and authorization mechanism they

provide makes use of JWT. So what is a JWT (JSON Web

Token)?

A JWT Token is a compact and self-contained way of

transmitting information between two parties in a secure

manner.

A JWT token consists of three parts, separated by dots: a

header, a payload, and a signature. The header contains

information about the type of token and the algorithm

used to sign it. The payload contains the information that

needs to be transmitted, such as user ID or permissions.

The signature is used to verify that the token has not been

tampered with during transmission.

020 State of the Art Software Engineering

XPRT. Magazine N°

14/2023

021

Here is an example, decoded by https://jwt.io

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.

eyJzdWIiOiIxMjM0NTY3ODkwIiwibmFtZSI6IkpvaG4g

RG9lIiwiaWF0IjoxNTE2MjM5MDIyfQ.SflKxwRJSMeKKF

2QT4fwpMeJf36POk6yJV_adQssw5c

header:

{

 "alg": "HS256",

 "typ": "JWT"

}

body:

{

 "sub": "1234567890",

 "name": "John Doe",

 "iat": 1516239022

}

The algorithm used to sign the JWT token is specified in the

header. There are several algorithms that can be used, such

as HS256, RS256 and others... RS256 stands for RSA-SHA256,

which is an asymmetric encryption algorithm that uses a

public key for encryption and a private key for decryption.

The public keys to validate JWT's are provided by the OpenID

Connect Provider. The resource server should be able to

access the public keys so the JWT's can be validated.

Why is a Private Key of a certificate called private?
In this article, we will generate a self-signed certificate

to help us generate valid and invalid JWT. It is crucial to

remember that in production and testing environments,

OpenID Connect IdP Providers' certificates should be kept

confidential and not exposed. Additionally, there should be a

mechanism in place to refresh the certificates periodically.

Attackers can impersonate the IdP (Identity Provider) by

using the leaked certificate to sign tokens or establish

secure connections. That can lead to manipulation of

the communication between the parties involved and

unauthorized access to sensitive resources or user data:

user credentials, personal information.

With access to the private key, attackers can create forged

tokens that appear valid to the client applications and

resource servers. This can grant them unauthorized access

to protected resources or enable them to perform actions

on behalf of legitimate users.

About the OpenID Connect Flows
Let us discuss two standard flows: the Authorization Code

Flow and the Client Credential flow.

The Authorization Code Flow will require user input to obtain

the access token. To get an access token between two

services without user input you can use the Credential flow.

Those steps do not involve the resource server you build.

The resource server can ask the OpenID Connect for

additional information for validating the Authorization

header. The OpenID Connect Idp has created the JWT with

its private key. To validate that JWT, the Idp provides access

to the corresponding public key.

OpenID Configuration Discovery
OpenID Connect supports discovery of the needed

endpoints used for all the needed steps. We are interested

in two endpoints. One is for listing all the endpoint

configurations and one is for validating the signature of

the access token:

• The /.well-known/openid-configuration endpoint,

which returns a JSON document containing metadata

about the provider's configuration, such as the

authorization and token endpoints, supported grant types,

and public keys for validating tokens. One of the endpoints

listed in this configuration is the location of

the /jwks endpoint.

• The /jwks endpoint, which returns a JSON document

containing the provider's public keys in JSON Web Key

(JWK) format, which can be used to validate the

signature of the access tokens.

By mocking out these endpoints, we can simulate the

behavior of a real OpenID Connect provider without having

to set up and configure one.

User or Application Resource Server OpenID Connect IdP

Request to endpoint

You shall not pass!

Request to endpoint with JWT
in Authorization header

Request public keys for validating
Authorization header

Provide public keys for
JWT validation

Authorized or Not

Provide an Acces Token

Validate JWT (Signature, Audiance,
Issuer, Time, ...)

Obtain access token through AuthorizationCode Flow / Credential Flow

Create JWT with private key

User or Application Resource Server OpenID Connect IdP

[Authentication Fails]

HTTP 401 Unauthorized

[Authentication Fails]

HTTP 403 Forbidden

022 State of the Art Software Engineering

Authentication and Authorization
When an HTTP request arrives with an authorization header,

the authentication process checks the validity of the header,

typically by verifying a JSON Web Token (JWT) if present.

Once the authentication succeeds, the authorization

process begins to evaluate whether the request is allowed to

access a specific endpoint. If the authentication check fails,

the response has HTTP status code 401 (Unauthorized). If the

authorization check fails, the server responds with an HTTP

status code 403 (Forbidden).

How are the tests setup?
Before some code is shown, let us introduce the classes, the

responsibilities of those classes and the interaction between

them. This should help to understand the code shown in the

section below called Boilerplate.

First, we define a couple of tests which are the requirements

to help us ensure OpenID Connect Configuration and

middleware are functioning together. They need to be

simple, show intent and be explicit about it. All those tests

follow the Arrange-Act-Assert (AAA)-syntax. To ensure the

tests have access to a customizable JWT, a self-signed

certificate will be created. That certificate will give those

tests the possibility to:

• sign the JWT using the certificate private key.

• provide resource server access to the certificate public

key using the /jwkset endpoint.

The tests-class implement IClassfixture<Weather-

ForecastServerSetupFixture>. The classfixture represents

the test server that will be created by XUnit. That will host

what is defined in the WeatherApp application, i.e., what is

defined in Program.cs

The application that is under test is a sample application

called WeatherApp. That application has one endpoint

defined called /weatherforecast. The authentication

middleware validates there is a JWT. The JWT should contain

a valid audience, issuer, and signature. After the token is

validated, the authorization middleware kicks in. The JWT

is checked to see if it contains data that authorized the

request to access the endpoint. The endpoint is protected

by two policies. To have a successful HTTP GET Operation,

there needs to be a claim with the name country and

value Belgium and a scope that should contain "Weather-

Forecast:Get".

HTTP Request

HTTP Request

Authentication Middleware

Authentication Middleware

Autherization Middleware

Autherization Middleware

HTTP Response

HTTP Response

Authorization Header

Access Granted

alt

alt

Verify JWT (if present)

Authentication Success

Evaluate endpoint access

Tests

Tests

Certificate

Certificate

WeatherForecastServerSetupFicture

WeatherForecastServerSetupFicture

Create self-signed certificate

PostConfigure JWTBearerOptions.ConfigurationManager

XUnit: Create TestServer (ClassFixture)

hosting WeatherApp

1

2

Inject fixture for test run
3

EndPoint

EndPoint

AuthenticationMiddleware

AuthenticationMiddleware

AuthorizationMiddleware

AuthorizationMiddleware

scope and country valid?

Is JWT valid

Valid signature?

Valid Audience, Issuer... ?

Endpoint protected by policies and scope

1

2

XPRT. Magazine N°

14/2023

023

In the class fixture we will set the JwtBearerOptions. ConfigurationManager. That happens by using the ServiceCollection.

PostConfigure<JwtBearerOptions> method. By post-configuring the options, the instantiation of the ConfigurationManager is

influenced. A HttpClient that relies on a custom class MockingOpenIdProviderMessageHandler is injected.

Tests

Tests

Certificate

Certificate

WeatherForecastServerSetupFicture

WeatherForecastServerSetupFicture

MockingOpenIdProviderMessageHandler

MockingOpenIdProviderMessageHandler

Create self-signed certificate for /jwks and JWT signing

Create for usage in ConfigurationManager

PostConfigure JwtBearerOptions.ConfigurationManager

XUnit: Create TestServer (ClassFixture)

hosting WeatherApp

2

Inject fixture for test run

3

4

1

EndPoint

EndPoint

Certificate

Certificate

MockingOpenIdProviderMessageHandler

MockingOpenIdProviderMessageHandler

Convert Certificate to item in JwkSet

JWT is authorized. You can proceed.

Convert JwkSet to Json

JwkSet in form of Json

make the data JWT authorized for endpoint?

Is JWT valid?

/.well-known/openidconfiguration

openidconfiguration (json) location /jwkset

/jwkset (public keys for signatuer)

AuthenticationMiddleware

AuthenticationMiddleware

AuthorizationMiddleware

AuthorizationMiddleware

Endpoint protected by policies and scope

1

2

4

5

9

6

7

8

3

Valid Audience, Issuer... ?

It is the responsibility of the class MockingOpenIdProvider MessageHandler to intercept the retrieval of the OpenID Connect

configuration. By using a custom OpenID Connect Configuration object, the location of the /jwks endpoint is manipulated.

The call made to the /jwks endpoint is intercepted. When the location of the public keys' endpoint is called, the message-

handler replies with our own JwkSet, based on our self-signed certificate. That certificate is also used for the signing of the

JWT. Because it is using the private key of the certificate that has signed the JWT, the certificate public key will generate a

valid signature.

024 State of the Art Software Engineering

Setting up tests
Next, we will describe a series of tests to validate the

behavior of an application's /WeatherForecast endpoint

when handling different authentication scenarios.

The tests cover cases with no authorization header, a valid

JSON Web Token (JWT), an invalid issuer and an invalid claim

for the country. Each test has a diagram that illustrates the

flow of interactions between the components involved in

each test, providing a clear understanding of the expected

outcomes.

A test without an authorization header should return
with a http status code Unauthorized
The first test is the easiest one. A default http client is

created. A request is made to the /WeatherForecast

endpoint. The endpoint should respond with unauthorized.

var httpClient = _fixture.CreateDefaultClient();

var response = await httpClient.GetAsync

("WeatherForecast");

response.StatusCode.ShouldBe(HttpStatusCode.

Unauthorized);

The following image is the complete sequence diagram of the above text.

Test

Test

Certificate

Certificate

MockingOpenIdProviderMessageHandler

MockingOpenIdProviderMessageHandler

Create self-signed certificate

HttpRequest with JWT

Inject fixture for test run

Sign JWT using private key

PostConfigure JwtBearerOptions.ConfigurationManager

AuthenticationMiddleware

AuthenticationMiddleware

AuthorizationMiddleware

AuthorizationMiddleware

XUnit: Create TestServer (ClassFixture)

2

3

6

Valid signature?

Valid Audience, Issuer... ?

WeatherForecastServerSetupFicture

WeatherForecastServerSetupFicture

EndPoint

EndPoint

hosting WeatherApp

1

Arrange

Act

Assert

Adjust Valid/Invalid AccessTokenParameters

4

5

Convert Certificate to item in JwkSet

Return Operation result

Convert JwkSet to Json

Default

Should result be OK, Unauthenticated, Forbidden?

/.well-known/openidconfiguration

openidconfiguration (json) location /jwkset

JwkSet in form of Json

make the data in JWT authorized for endpoint?

/jwkset (public keys for signatuer)

JWT is authorized

8

10

15

11

17

12

9

13

14

Is JWT valid>
7

Endpoint protected by policies and scope

16

18

Tests

Tests

HttpClient

HttpClient

AccessTokenParams

AccessTokenParams

HttpClientMessageHandler

HttpClientMessageHandler

/WeatherForecast Endpoint

/WeatherForecast Endpoint

CreateHttpClient

GET /WeatherForecast

HttpStatusCode.Unauthorized

Test 1: Without Authorization Header

1

2

3

XPRT. Magazine N°

14/2023

025

A test with a valid JWT in the authorization header should return with a http status code OK
The code below has the same structure as the previous test, but with a difference: a default instance of the Access Token-

Parameters. The default instance of Access Token Parameters contains all the valid information needed to generate a valid

JWT. That instance is passed to the JwtBearerCustomAccessTokenHandler. JwtBearer CustomAccessTokenHandler will

generate the access token and add the Authorization header with the access token to the request.

var accessTokenParameters = new AccessToken Parameters();

var httpClient = _fixture.CreateDefaultClient(new JwtBearerCustomAccessTokenHandler(access TokenParameters));

var response = await httpClient.GetAsync($"/WeatherForecast/");

response.StatusCode.ShouldBe(HttpStatusCode.OK);

In the diagram below, you will notice the term HttpClientMessageHandler. That is a generalized name. This is the class

JwtBearerCustomAccessTokenHandler. I used that term to stress that it is the HttpClient that uses a delegate that

manipulates the HttpRequest before sending it.

Tests

Tests

Tests

Tests

HttpClient

HttpClient

HttpClient

HttpClient

AccessTokenParams

AccessTokenParams

AccessTokenParams

AccessTokenParams

HttpClientMessageHandler

HttpClientMessageHandler

HttpClientMessageHandler

HttpClientMessageHandler

/WeatherForecast Endpoint

/WeatherForecast Endpoint

/WeatherForecast Endpoint

/WeatherForecast Endpoint

Create Default AccessTokenParams with valid values

Create Default AccessTokenParams with InvalidIssuer

Forwarding GET /WeatherForecast

Forwarding GET /WeatherForecast

HttpStatusCode. OK

HttpStatusCode. Unauthorized

Generate Access Token

Generate Access Token

GET /WeatherForecast

GET /WeatherForecast

Test 2: With Valid JWT

Test 3: With Invalid Issuer

1

1

6

6

7

7

2

2

3

3

Generate JWT

Generate JWT

Add Authorization Header

Add Authorization Header

4

4

5

5

A test with an invalid issuer should return with a http status code Unauthorized
The code below has the same structure as the valid test. A default instance of the AccessTokenParameters with an
invalid issuer is passed to the JwtBearerCustom AccessTokenHandler.

026 State of the Art Software Engineering

var accessTokenParameters = new AccessToken Parameters()
 { Issuer = "InvalidIssuer" };
var httpClient = _fixture.CreateDefaultClient(new JwtBearerCustomAccessTokenHandler(access TokenParameters));
var response = await httpClient.GetAsync($"/WeatherForecast/");
response.StatusCode.ShouldBe(HttpStatusCode.Unauthorized);

A test with an invalid claim country should return with a http status code Forbidden
The same structure applies to this test as well. The difference now is that a method is used to replace the valid value of the

claim "country” with an invalid value.

var accessTokenParameters = new AccessToken Parameters();

accessTokenParameters.AddOrReplaceClaim("country", "invalidCountry");

var httpClient = _fixture.CreateDefaultClient(new JwtBearerCustomAccessTokenHandler

(access TokenParameters, _testOutputHelper));

var response = await httpClient.GetAsync($"/WeatherForecast/");

response.StatusCode.ShouldBe(HttpStatusCode.Forbidden);

Tests

Tests

HttpClient

HttpClient

AccessTokenParams

AccessTokenParams

HttpClientMessageHandler

HttpClientMessageHandler

/WeatherForecast Endpoint

/WeatherForecast Endpoint

Create Default AccessTokenParams with values

Forwarding GET /WeatherForecast

HttpStatusCode. Forbidden

Generate Access Token

GET /WeatherForecast

Test 4: With Invalid Claim Country

1

7

8

3

4

Generate JWT

Add/Replace Invalid Country Claim

Add Authorization Header

5

2

6

Setting up the Web Application
To secure WeatherForecastController, the authorize

attribute is added at the class-level. That will tell the

authentication middleware to protect all the endpoints

inside that controller. Additionally, the authentication

middleware needs to validate the JWT bearer when it

detects an Authorization header according to the specified

settings. There is a policy defined in the authorize attribute.

The specified policies need to be added when you configure

the authorization middleware.

WeatherForecastController
To protect the endpoints of the WeatherForecast-

Controller, define two policies:

• all the controllers' endpoints can only be accessed

from Belgium.

• the access token needs to define specific access to

the GET /weatherforecast operation.

[Authorize(Policy = "OnlyBelgiumPolicy")]

public class WeatherForecastController :

ControllerBase {

[HttpGet()]

[Authorize(Policy = "WeatherForecast:Get")]

public WeatherForecast Get() {

Program
This section covers the creation of the web application,

the configuration of the authentication and authorization

middleware, and the ordering of their execution.

1. Create the builder for the WebApplication var builder =

WebApplication.CreateBuilder (args);

XPRT. Magazine N°

14/2023

027

2. Add the authentication middleware and configure with

the help of the JwtBearerDefaults class. On the

authentication middleware, configure the middleware

so that it supports validation for JWT bearer tokens.

In the section ".AddJwtBearer" there are a lot of options.

For this article’s purposes, we limit the options to what the

middleware should do with claims and what of the JWT

should be validated.

builder.Services.AddAuthentication(options =>

{

 options.DefaultAuthenticateScheme =

JwtBearerDefaults.AuthenticationScheme;

 options.DefaultChallengeScheme =

JwtBearerDefaults.AuthenticationScheme;

 options.DefaultScheme = JwtBearerDefaults.

AuthenticationScheme;

}).AddJwtBearer(o =>

{

 o.MapInboundClaims = false;

 o.TokenValidationParameters = new Token-

ValidationParameters

 {

 ValidIssuer = builder.Configuration

["Jwt:Issuer"],

 ValidAudience = builder.Configuration

["Jwt:Audience"],

 ValidateIssuer = true,

 ValidateAudience = true,

 ValidateLifetime = true,

 ValidateIssuerSigningKey = true,

 NameClaimType = "sub",

 }; });

3. The authorize attributes in the controller class refers to

certain policies. Those policies need to be configured

on the authorization middleware. The policies Only-

BelgiumPolicy and WeatherForecast:Get are defined by

searching the JWT for the respective claims country and

scope. They should have the value Belgium and weather-

forecast:read.

builder.Services.AddAuthorization(authorizationOp-

tions => {

 authorizationOptions.AddPolicy("OnlyBelgium-

Policy", policy => policy.RequireClaim

("country", "Belgium"));

 authorizationOptions.AddPolicy("WeatherForecast:-

Get", policy => policy.RequireClaim

("scope", "weatherforecast:read")); });

4. After the middleware is defined, it is time to build the

WebApplication. From there you tell the web application

to use the configured middleware. The order is important:

the sequence of the Use***-methods is the sequence that

the middleware will be triggered. Having the authorization

middleware before the authentication middleware make

no sense.

var app = builder.Build();

…

app.UseRouting()

 .UseAuthentication()

 .UseAuthorization()

 .UseEndpoints(endpoints =>

{ endpoints.MapControllers();});

Boilerplate
Below you will find a summary of the boilerplate code

that is needed.

• Creating a self-signed certificate

 • The conversion of the public key to a JWKSet

• Setting up the classfixture

 • Configure the ConfigurationManager

 • Mock endpoints by using a mocked HttpMessage-

Handler in a preconfigured HttpClient.

Self-signed certificate
The identity provider has been configured to sign the JWT

using RS256. Below you will find a method to mimic that.

The class SelfSignedAccessTokenPemCertificateFactory

provides the functionality to create an object of the type

PemCertificate. The instance will contain the certificate,

public key and private key.

The certificate will have the following properties:

• a 2048 bit Key size,

• valid for 10 years,

• Ensure the certificate can be used for code signing

(OID 1.3.6.1.5.5.7.3.3)

• a start date defines as the day before today

• bound to the domain i.do.not.exist.

using (RSA rsa = RSA.Create()){

rsa.KeySize = 2048;

var request = new CertificateRequest("cn=i.do.not.

exist", rsa, HashAlgorithmName.SHA256,RSASignature-

Padding.Pkcs1);

request.CertificateExtensions.Add(

 new X509BasicConstraintsExtension(true, false, 0,

true));

028 State of the Art Software Engineering

request.CertificateExtensions.Add(

 new X509EnhancedKeyUsageExtension

(new OidCollection

 {

 new Oid("1.3.6.1.5.5.7.3.1")

 }, false));

var yesterday = new DateTimeOffset(DateTime.UtcNow.

AddDays(-1));

var tenyearslater = new DateTimeOffset

(DateTime.UtcNow.AddDays(3650));

X509Certificate2 cert = request.CreateSelf Signed

(yesterday,tenyearslater));

var certificatePem = PemEncoding.Write

("CERTIFICATE", cert.RawData);

AsymmetricAlgorithm? key = cert.GetRSAPrivateKey();

byte[] pubKeyBytes = key.ExportSubjectPublic-

KeyInfo();

byte[] privKeyBytes = key.ExportPkcs8PrivateKey();

char[] pubKeyPem = PemEncoding.Write("PUBLIC KEY",

pubKeyBytes);

char[] privKeyPem = PemEncoding.Write("PRIVATE KEY",

privKeyBytes);

var pemCertificate = new PemCertificate(

 Certificate: new string(certificatePem),

 PublicKey: new string(pubKeyPem),

 PrivateKey: new string(privKeyPem)

);

return pemCertificate;

There are a lot of possibilities to play around with the

settings of the self-signed certificate and thus validate

your security setup.

Create an object of the type JsonWebKeySet
When there is a certificate in a PEM format, a JWKSet can be

created from it. The /jwks endpoint expects it in that format.

There is a method on the class PemCertificate called

ToJwksCertificate. The property PublicKey of the

certificate offers a possibility to export the para meters

needed to create a JsonWebKey. That instance is added to

the Keys property of the class JsonWebKeySet.

var certificate = X509Certificate2.Create-

FromPem(CertInPEMString);

var keyParameters = certificate.PublicKey.

GetRSAPublicKey()?.ExportParameters(false);

var e = Base64UrlEncoder.Encode(keyParameters.Value.

Exponent);

var n = Base64UrlEncoder.Encode(keyParameters.Value.

Modulus);

var dict = new Dictionary<string, string>()

 {

 { "e", e },

 { "kty", "RSA" },

 { "n", n }

 };

var hash = SHA256.Create();

var asciiBytes = ASCII.GetBytes(JsonConvert.

SerializeObject(dict))

var hashBytes = hash.ComputeHash(asciiBytes);

JsonWebKey jsonWebKey = new JsonWebKey()

 {

 Kid = Base64UrlEncoder.Encode(hashBytes),

 Kty = "RSA",

 E = e,

 N = n

 };

JsonWebKeySet jsonWebKeySet = new JsonWebKeySet();

jsonWebKeySet.Keys.Add(jsonWebKey);

return jsonWebKeySet;

Setting the classfixture
To create system tests, we need to setup the server that

gives us our endpoint /WeatherForecast. That happens in a

class fixture named WeatherForecastServerSetupFixture.

public class WeatherForecastServerSetupFixture:

WebApplicationFactory<Program>

The WebApplicationFactory will use the class Program to

build and delay the start of the test server, but only after

adding, applying and/or overriding settings and services

that have been set in the Program. The TestServer will start

when it is needed, in this case when the HttpClient will

send a message.

The WebApplicationFactory class offers several methods

that you can override. Override the method Configure-

WebHost in the class fixture WeatherForecastServerSetup-

Fixture. The ConfigurationManager is a property on the

OpenID Connect settings.

XPRT. Magazine N°

14/2023

029

HttpClient.SendAsync

In the method ConfigureWebHost, we post-configure JwtBearerOptions with a predefined Configuration Manager made

by ConfigForMockedOpenIdConnect Server.

builder.ConfigureTestServices(services => {

 services.PostConfigure<JwtBearerOptions>(

 JwtBearerDefaults.AuthenticationScheme,

 options => {

 options.ConfigurationManager = Config ForMockedOpenIdConnectServer.Create();

The ConfigurationManager is built with a preconfigured HttpClient in the class ConfigForMockedOpenId ConnectServer.

The interception of the request will happen in the class MockingOpenIdProviderMessageHandler.

Tests

Tests

WeatherForecastServerSetupFixture

WeatherForecastServerSetupFixture

Program

Program

ConfigurationManager

ConfigurationManager

ConfigForMockedOpenIdConnectServer

ConfigForMockedOpenIdConnectServer

Build and delay the execution of starting testserver

Create custom OICD ConfigurationManager

(WebApplicationFactory<Program>)

Override ConfigureWebHost method

1

4

2

servicecollection.PostConfigure<JwtBearerOptions>

Start the delayed testserver

3

5

MockingOpenIdProviderMessageHandler
The constructor of the class MockingOpenIdProvider MessageHandler has two parameters. Two constants are used:

• Consts.ValidSigningCertificate: contains the certificate to generate the public key when a request is sent to the

/jwks endpoint.

• Consts.ValidOpenIdConnectDiscoveryDocument Configuration: contains OpenID Connect Settings with predefined

values.

The requests the authentication middleware makes will be handled by MockingOpenIdProviderMessage Handler.

By overriding the SendAsync method, the OpenID Connect settings and public keys are returned when requested.

if

(request.RequestUri.AbsoluteUri.Contains(Consts.WellKnownOpenIdConfiguration))return await

GetOpenIdConfigurationHttpResponseMessage();

if

(request.RequestUri.AbsoluteUri.Equals(_openId -ConnectDiscoveryDocumentConfiguration.JwksUri))return await

GetJwksHttpResonseMessage();

The response of the OpenID Connect Discovery request will contain settings copied from the real Idp provider you use, with

some minor changes, e.g., the location of the /jwks endpoint. The /jwks endpoint contains generated public keys from our

self-signed certificate. Later that same self-signed certificate will be used to generate signatures of the JWT.

IConfigurationManager<OpenIdConnectConfiguration>
All the building blocks are now in place to create the

ConfigurationManager<OpenIdConnectConfiguration>.

The following parameters are required to create the

instance:

• Consts.WellKnownOpenIdConfiguration: a valid URL of

the fake Idp Provider

• OpenIdConnectConfigurationRetriever: retrieves the

OpenID Connect config

• HttpDocumentRetriever: the instance that the OpenId-

ConnectConfigurationRetriever uses to fetch the config.

It uses an instance of a HttpClient configured with the

MockingOpenIdProviderMessageHandler.

The above translate to the code below.

var handler = new MockingOpenIdProviderMessage-

Handler(Consts.ValidOpenIdConnectDiscovery-

DocumentConfiguration, Consts.ValidSigning-

Certificate);

var openIdHttpClient = new HttpClient(handler);

var httpDocumentRetriever = new HttpDocument-

Retriever(openIdHttpClient);

var openIdConnectConfigRetriever = new OpenId -

ConnectConfigurationRetriever();

return new ConfigurationManager<OpenIdConnect-

Configuration>(

Consts.WellKnownOpenIdConfiguration,

openIdConnectConfigRetriever,

httpDocumentRetriever);

Generating an access token
The code below shows how to generate a JWT using a

X509Certificate2.

In this code snippet, we demonstrate how to create an

encoded access token using a valid signing certificate.

First, we convert the certificate to an X509Certificate2 object.

Next, we create signing credentials using the certificate

and the RSA-SHA256 algorithm. We then define a Claims-

Identity object and set up a SecurityTokenDescriptor

with the necessary information such as the audience, issuer,

expiration time, and signing credentials. Finally, we use the

JwtSecurityToken Handler to create and write the token,

resulting in an encoded access token.

var cert = Consts.ValidSigningCertificate.

ToX509Certificate2()

var signingCredentials = new SigningCredentials

(new X509SecurityKey(cert), SecurityAlgorithms.

RsaSha256);

var identity = new ClaimsIdentity(Consts.Claims);

var securityTokenDescriptor = new SecurityToken-

Descriptor {

 Audience = Consts.Audience,

 Issuer = Consts.Issuer,

 NotBefore = DateTime.UtcNow,

 Expires = DateTime.UtcNow.AddHours(1),

 SigningCredentials = signingCredentials,

 Subject = identity };

var handler = new JwtSecurityTokenHandler();

var securityToken = handler.CreateToken

(securityTokenDescriptor);

var encodedAccessToken = handler.WriteToken

(securityToken);

When generating the /jwks endpoint, the Consts.Valid-

SigningCertificate was used. The authentication

middleware requires a valid signature. The Pem Certificate

object that contains the Certificate, PrivateKey and

PublicKey properties is converted into a X509Certificate2.

X509Certificate2.CreateFromPem(Certificate,

PrivateKey);

Setting invalid audience, issuer and subject or having a

wrong certificate should be used in tests to ensure an

unauthenticated or unauthorized error is the expected result.

Adding the access token to the request
There are multiple ways to add an access token to a request.

The WebApplicationFactory class offers a CreateDefault-

Client method, which creates a HTTP Client for you. What

that method does is create a HTTP client. It sets the URL of

the test server. When using that method, there is an optional

parameter where you can pass a DelegatingHandler.

JwtBearerCustomAccess TokenHandler is a custom class

that extends from that DelagatingHandler and overrides

the Send method it offers.

var encodedAccessToken = JwtBearerAccessToken-

Factory.Create(_accessTokenParameters);

request.Headers.Authorization = new Authentication-

HeaderValue("Bearer", encodedAccessToken);

return base.Send(request, cancellationToken);

030 State of the Art Software Engineering

XPRT. Magazine N°

14/2023

031

0101010
1101001

0011001

When the HttpClient sends the request, JwtBearer-

CustomAccessTokenHandler will execute the Send method

and thus add the access token to the AuthorizationHeader.

The JwtBearerAccessTokenFactory.Create will create the

access token.

Summary
This article touches on various concepts and techniques,

such as creating self-signed certificates, generating JWK

sets on the fly and managing access tokens. I encourage

you try out these snippets or visit GitHub for the entire

codebase. It can be a step towards gaining a deeper

understanding of OpenID Connect and its integration into

applications. That alone will help improve application

security and performance.

By having another tool in your toolbox, you can create a

robust testing environment. That allows you to test different

scenarios in an automated manner. Those tests will include

testing of valid and invalid access tokens. It ensures that

applications handle authentication and authorization

correctly. All with realistic configuration and without mocked

classes.

With packages as a big black box, it is not always easy

to understand what is happening behind the scenes. You

should now have a better understanding on setting up a

test server, which can be useful in other projects or testing

scenarios.

</>

Sources
• Create a Controller-based API: WeatherForecast

sample: https://learn.microsoft.com/en-us/aspnet/core/

web-api/?view=aspnetcore-6.0

• Insight in OpenID Connect endpoints:

https://openid.net/specs/openid-connect-discovery-

1_0.html

• More information about access tokens:

https://oauth.net/specs/

• JWK / JWT / Certificate relationship:

https://dirkbolte.medium.com/the-token-connection-

61e22ff54fe0

• JWK: https://openid.net/specs/draft-jones-json-web-

key-03.html

• JWT:

 a. Inspecting JWT:

 i. https://www.jwt.io

 b. how to create them:

 i. https://dotnetcoretutorials.com/2020/01/15/crea-

ting-and-validating-jwt-tokens-in-asp-net-core/
 ii. https://www.iversis.com.au/post/generate-

json-web-token-from-a-pkcs-12-x509certificate

• Information about self-signed certificates:

 a. https://dotnetcoretutorials.com/2020/11/18/generating-

self-signed-certificates-for-unit-testing-in-c/

 b. https://oidref.com/1.3.6.1.5.5.7.3.3

 c. Generating a self-signed certificate using Dotnet 6

standard libraries: https://chat.openai.com/chat

• How to setup your integrationtests:

 a. https://learn.microsoft.com/en-us/aspnet/core/test/

integration-tests?view=aspnetcore-6.0

Kristof Riebbels

Read more
 online?

https://learn.microsoft.com/en-us/aspnet/core/web-api/?view=aspnetcore-6.0
https://learn.microsoft.com/en-us/aspnet/core/web-api/?view=aspnetcore-6.0
https://openid.net/specs/openid-connect-discovery-1_0.html
https://openid.net/specs/openid-connect-discovery-1_0.html
https://oauth.net/specs/
https://dirkbolte.medium.com/the-token-connection-61e22ff54fe0
https://dirkbolte.medium.com/the-token-connection-61e22ff54fe0
https://openid.net/specs/draft-jones-json-web-key-03.html
https://openid.net/specs/draft-jones-json-web-key-03.html
https://www.jwt.io
https://dotnetcoretutorials.com/2020/01/15/creating-and-validating-jwt-tokens-in-asp-net-core/
https://dotnetcoretutorials.com/2020/01/15/creating-and-validating-jwt-tokens-in-asp-net-core/
https://www.iversis.com.au/post/generate-json-web-token-from-a-pkcs-12-x509certificate
https://www.iversis.com.au/post/generate-json-web-token-from-a-pkcs-12-x509certificate
https://dotnetcoretutorials.com/2020/11/18/generating-self-signed-certificates-for-unit-testing-in-c/
https://dotnetcoretutorials.com/2020/11/18/generating-self-signed-certificates-for-unit-testing-in-c/
https://oidref.com/1.3.6.1.5.5.7.3.3
https://chat.openai.com/chat
https://learn.microsoft.com/en-us/aspnet/core/test/integration-tests?view=aspnetcore-6.0
https://learn.microsoft.com/en-us/aspnet/core/test/integration-tests?view=aspnetcore-6.0
https://www.twitter.com/kriebb
https://www.linkedin.com/in/kristofriebbels
https://www.github.com/kriebb

032 State of the Art Software Engineering

Extending
Entity
Framework
Core
Entity Framework Core offers a broad framework to help create your
database schema, and then store and access your data in said database.
But what if you want to do more than what Entity Framework Core offers
out of the box? What if you have an edge case that needs support?
Extending Entity Framework Core might be a solution.

Author Victor de Baare

XPRT. Magazine N°

14/2023

033

What is Entity Framework Core?
Entity Framework Core (EF core) is a Microsoft supported

open-source object-relational mapping (ORM) framework.

As the name implies it helps developers with persisting and

accessing data which resides in a database without being

encumbered with converting it from the database Data-

Set's to .NET objects. Additionally, it also helps with creating

a database schema based on the .NET objects, or the other

way around, creating .NET objects based on your database

schema. In summary, it eliminates most of the data-access

and data-persisting code and frees up the developer's time

to focus on more important areas of the code.

We will now focus on the persistence of data in your

database, particularly a SQL database. When you decide to

save data to your database, EF core will do this by using an

insert, update or delete SQL statement. Often this is a "good

enough" approach, but in some situations you might want

to use a merge statement instead. For example, on every

insert, update or delete statement a round-trip to the

database is performed. With a few records this won't impose

any issue. When the amount of records increases the

numerous round-trips will slow down the application.

To avoid the performance degration a merge statement

could be used. A merge statemant would create a single

round-trip to the database for every type of object which

needs to be inserted, updated or deleted regardless of the

amount of records.

To avoid going back to writing the code yourself for every

object, you can write an extension on EF core. This way you

would only need to write the code once and afterwards you'll

let EF core do the heavy lifting. This article will dive deeper

into how you can extend EF core. In the next article we will

dive deeper into using merge statements. To do this you'll

first need to know how a migration in EF core works.

Migrations
EF core uses migrations to update the database Schema

based on the data model changes that the developer

made. EF core compares the data model changes that the

developer made with a snapshot of the old model that is

known to EF core. Based on the snapshot, a migration file is

generated to describe the operations which are needed to

move from the old model towards the new model.

The individual migration files are saved to a history table in

the database. This way EF core can track which migrations

have been applied and which have not, which is important

if you want to update your database and have multiple

migrations to apply.

The migration takes place in two steps: the creation of a

migration file based on your changes and updating your

database schema. To create a migration file you can use

the .NET EF core console commands. This will result in calling

the CSharp part of the migration, the CSharpMigration-

Generator. We will discuss CSharpMigration Generator later

in the article. The CSharpMigration Generator will generate

migration operations based on the changes that have been

made. The changes will be persisted in a migration.cs file

in which you can add extra operations or extra custom SQL.

Updating the database is often performed during startup of

your application. We will first discuss how we can extend the

SQL script generation of EF core.

Extending the MigrationBuilder API.
The MigrationBuilder builds the migration and contains

many different operations. But it cannot contain everything

a developer might want to do. To accommodate the option

of creating your own operations, the MigrationBuilder can

be extended! You can use the '''sql()''' method to write your

own little piece of code into a migration. The '''sql()''' method

can be useful if a developer wants to update some records

before or after a migration is performed. Another possibility

is writing your own custom migration operations to extend

the migrations.

If you decide to create your own custom migrations

operations, the first step is declaring your own Custom-

MigrationSqlGenerator and making it inherit from the

SqlServerMigrationSqlGenerator.

public class CustomMigrationSqlGenerator:

SqlServerMigrationsSqlGenerator

{

 public CustomMigrationSqlGenerator(

 MigrationsSqlGeneratorDependencies dependencies,

 ICommandBatchPreparer commandBatchPreparer)

 : base(dependencies, commandBatchPreparer)

 {

 }

 protected override void Generate(

 MigrationOperation operation,

 IModel model,

 MigrationCommandListBuilder builder)

 {

 case CreateMergeOperation createoperation:

 builder.AppendLine("---Write your SQL code here");

 builder.EndCommand();

 break;

 case DropMergeOperation dropoperation:

 builder.AppendLine("---Write your SQL code here");

 builder.EndCommand();

 break;

 default:

 base.Generate(operation, model, builder);

 break;

 }

}

The next step is registering your custom implementation of

the SQL generator in your EF core DbContext. After registe-

ring your custom implementation and running a migration,

your custom generator will be used instead of the default

generator for generating your migration code.

protected override void OnConfiguring(DbContext-

OptionsBuilder options)

 => options

 .UseSqlServer(_connectionString)

 .ReplaceService<IMigrationsSqlGenerator,

MyMigrationsSqlGenerator>();

Now, all the necessary steps are done to implement your

own custom operations. For example, if a merge operation

needs to be created in the database you can create a

CreateMergeOperation and add this to the Custom-

MigrationSqlGenerator.Generate method. Then you can add

the code to an existing migration so the operation is added

to the SQL script when the migration is executed.

///Generated Migration.cs

protected override void Up(MigrationBuilder

migration Builder)

{

migrationBuilder.CreateMerge('TableName',

(columns Builder) => new {...});

}

034 State of the Art Software Engineering

Dotnet EF and
Migration Initial

Migration.cs Sql script
Design Time Generation Run Time Generation

XPRT. Magazine N°

14/2023

035

///CustomMigrationBuilderExtensions.cs

public static OperationBuilder<CreateMergeOperation>

CreateMerge(

 this MigrationBuilder migrationBuilder,

 string tableName,

 Func<ColumnsBuilder, TColumns> columns)

{

 var operation = new CreateMergeOperation

(tableName, columns);

 migrationBuilder.Operations.Add(operation);

 return new OperationBuilder<CreateMergeOperation>

(operation);

}

The implementation still requires the developer to add

custom code after performing the first part of the migration.

Otherwise the migration wouldn't know another operation

should be executed. A better implementation would be to

add annotations to the entities you want to get custom

operations on. During the generation of the operations

you can check if an entity has a specific annotation. If the

annotation is present you can execute the custom code.

With the SQL generator approach it still only works in the

second part of the migrations: the SQL script generation.

The preference would be to automatically add custom

operations based on annotations to the first part of the

migration. That way you would have nothing to do besides

adding an annotation in the configuration of the model.

Afterwards you would be able to see the new operations in

the migration class that is generated in the first step.

To achieve this you would need to extend more services that

are used for the migration. The MigrationsModel Differ.cs

and the CSharpMigrationOperationGenerator.cs are the two

services that you would need to extend. We will discuss how

to extend these services in the following paragraphs.

MigrationsModelDiffer
As the name implies this part of the migration will check

for any differences between the new model and the old

model. The beautiful part is you can actually include the

check on potential custom annotations for the differences,

if you want to include custom code when an annotation is

present. You can also use this diff method to remove the

custom code when the annotation is no longer present.

For implementation you would have to create a class

inheriting from the MigrationsModelDiffer.cs class and

then override the following method:

/// CustomMigrationsModelDiffer.cs

public override IReadOnlyList<MigrationOperation>

GetDifferences(IRelationalModel? source,

IRelational Model? target)

The method is called by the migration to get the differences

between the target and source entities. By overriding this

we can check the target and source for the annotation

and if changes are present we can instruct it to create an

operation to update the database schema with the changes

that we would like to see. The operations that are created

here will be passed towards the next step in the migration;

the CSharp MigrationOperationGenerator.

An example of the implementation for the custom

operations is as follows:

public override IReadOnlyList<MigrationOperation>

GetDifferences(IRelationalModel? source,

IRelational Model? target)

 {

 var sourceTypes = GetEntityTypesContaining -

Merge Annotation(source);

 var targetTypes = GetEntityTypesContaining-

Merge Annotation(target);

 var diffContext = new DiffContext();

 var customOperations = DiffCollection

(source, target, diffContext, Diff, Add,

Remove, (x, y, diff) => x.Name.Equals(y.Name,

StringComparison.CurrentCulture IgnoreCase));

 return base.GetDifferences(source, target)

.Concat(customOperations).ToList();

 }

The DiffCollections is an internal API method that helps make

sure an operation is only created once for the target and

source combination. The add and remove parameters in the

DiffCollection are the functions which contain the knowledge

on how to create the custom operations.

036 State of the Art Software Engineering

Victor de Baare

The last step that we need to do is to register the ModelDiffer

in the service collection. This service must be registered with

the DbContext as well. From here we can extend the previous

code to include the model differ service.

protected override void OnConfiguring

(DbContext OptionsBuilder options)

 => options

 .UseSqlServer(_connectionString)

 .ReplaceService<IMigrationsModelDiffer,

Custom MigrationsModelDiffer>()

 .ReplaceService<IMigrationsSqlGenerator,

MyMigrations SqlGenerator>();

CSharp Migration Operation Generator
The CSharpMigrationOperationGenerator will provide the

.NET code which is parsed in the migration class. With the

new operations included, the Csharp generator can now

be extended to know what to do when such an operation is

encountered. An important part here to remember is that

the migrations are done in two parts which both are run at

different times. For example the migration of the Csharp

code is run during design time. The SQL migration is often

performed during run time.

https://www.linkedin.com/in/victor-de-baare-69473354
https://www.github.com/victordebaare

XPRT. Magazine N°

14/2023

037

For the SQL migration this means we can use the DbContext

OnConfiguration method to register the needed overrides

to create the correct SQL script. The CsharpMigration-

Operation Generator, which runs during design time, is

implemented differently. To make sure that your customer

CsharpMigrationOperation Generator can be called, adjust

the imported Microsoft.EntityFrameworkCore.Design NuGet

package.

When you import this package it automatically ensures

that certain design time services are not exposed for your

code. The CSharpMigrationOperationGenerator is part of the

services which are filtered away. To actually be able to use

all the services you should adjust the code in your .csproj file

a bit.

For example when you import the package you get the

following:

<PackageReference Include="Microsoft.EntityFramework-

Core.Design" Version="7.0.2">

 <PrivateAssets>all</PrivateAssets>

 <IncludeAssets>runtime; build; native; contentfiles;

analyzers; buildtransitive

 </IncludeAssets>

</PackageReference>

Now you will need to adjust this to the following:

<PackageReference Include="Microsoft.EntityFramework-

Core.Design" Version="7.0.2">

 <PrivateAssets>all</PrivateAssets>

</PackageReference>

Once done you can extend the CSharpMigration Operation-

Generator with your own code. Before we start extending the

generator, we must make sure the generator can be found

during a migration. For the SQL generator we could use the

OnConfiguration method of the DbContext. Due to the fact

that the CSharp generator is a design time implementation,

the SQL generator solution won't work. An alternative for this

is using the DesignTimeServices.

For DesignTimeServices, Entity Framework has a separate

interface that needs to be included. The interface exposes

the ConfigureDesignTimeServices(IServiceCollection)

method. EF core scans the start-up project for this interface

to register potential design time services. If you want to ship

potential extensions in a NuGet package the scanning for

an interface might be a problem. The solution to this issue

is using an assembly attribute in your startup project which

contains the name of the class which implements the

interface and the full namespace.

[DesignTimeServicesReference("TypeName", "ForProvider")]

The typename parameter is the assembly-qualified name

to be added to the servicecollection. The 'ForProvider'

parameter is the name of the provider for which the

DesignTimeServices should be used. This parameter is

nullable, when left empty the service is added for all the

present providers.

With the interface in place we can start implementing the

CSharp generator. The implementation is very similar to that

of the SQL generator. We will be overriding the protected

virtual void Generate(MigrationOperation operation,

IndentedStringBuilder builder) method.

The Migrations ModelDiffer will be doing the work to provide

the custom operations so the CSharp generator should

work in providing the CSharp code of the implementation.

In this case when we get an operation of the CreateMerge-

Operation type we want to perform the following additional

code:

private static void Generate(CreateMergeOperation

operation, IndentedStringBuilder builder)

{

 builder.AppendLine($".CreateMerge(");

using(builder.Indent()) {

 builder.AppendLine($".....");

 }

}

If you generate a new migration, you will see the migration

will contain the CreateMerge statement now.

With this the whole chain is completed. We can now just add

an annotation to the entities in the modelbuilder method on

the DbContext. This will result in the merge statements being

generated on the next migration. An example of the source

code for generating customer operations can be found

here: https://github.com/VictordeBaare/EntityFramework-

Extensions.

</>

Read more
 online?

https://github.com/VictordeBaare/EntityFrameworkExtensions
https://github.com/VictordeBaare/EntityFrameworkExtensions

038 State of the Art Software Engineering

Upgrade Your
App to the Future:
Migrating from
WPF/WinForms
to Blazor
This article is based on a WPF to Blazor migration project and Microsoft documentation.
Desktop applications built with WPF or WinForms have been widely used for many
years, allowing developers to create feature-rich desktop applications with complex
user interfaces. However, with the increasing demand for cross-platform applications
and modern user interfaces, it has become an appealing option to migrate legacy
WPF/WinForms applications to modern web technologies, even as Microsoft continues
to maintain WPF and WinForms.

Author Niels Nijveldt

Blazor is a relatively new web framework developed by

Microsoft that enables developers to build web applications

using .NET. With Blazor, you can leverage your existing .NET

libraries, frameworks, and skills to create web applications

that run in the browser (Blazor WebAssembly) or on a server

(Blazor Server) without the need for plugins or JavaScript.

More detailed information about Blazor can be found in the

article "Introduction to Blazor" by Mark Foppen in magazine

#13.

In this article, you will learn about the potential process

of upgrading your legacy WPF/WinForms application to a

modern Blazor web application. We will also cover the steps

you need to take, the decisions you'll need to make, and the

potential pitfalls to avoid.

Why Blazor?
When deciding to upgrade your existing application, you'll

need to determine the best approach. You probably will

investigate what solution fits best for you. Do you want to

start greenfield and start collecting the right specifications

from scratch? Time and budget might be limited, then it's

hard to make a decision with these options.

In that case, you might want to explore Blazor. Since you

already have a lot of business logic in your existing .NET

application, you can save time by reusing this logic.

Also, having .NET knowledge within your team or

organization provides a significant advantage. The learning

curve is more gradual than learning an entirely new

framework.

XPRT. Magazine N°

14/2023

Compared to WinForms or WPF, Blazor offers several

advantages:

• Blazor is supported by all major browsers1

(Safari, Chrome, Edge, FireFox), including mobile

• Deployment/Delivery is easier to manage

• Plenty of widely supported UI frameworks

• Multiple different hosting methods

While both WPF and WinForms still have roadmaps2 3,

Microsoft's product teams are mainly focused on

performance and bug fixes, and the capacity of these

teams is limited. Blazor, on the other hand, is gaining

popularity. We can expect many improvements with

almost every ASP.NET Core upgrade, benefiting both

application performance and developer productivity.

The preparation
Hopefully, your application's architecture separates view

logic from business logic, possibly using MVC or MVVM or

a similar architecture. If not, migrating this (business) logic

from the old view to the new modern web view will require

extra work.

Also, best practices widely used today may not have been

common when your WPF/WinForms application was built.

For example, dependency injection, NuGet packages,

pipelines for deploying the application, and more will

require additional time. Take this into account when

planning and implementing the solution.

1 https://learn.microsoft.com/en-us/aspnet/core/blazor/supported-platforms?view=aspnetcore-7.0
2 https://github.com/dotnet/wpf/blob/main/roadmap.md
3 https://github.com/dotnet/winforms/blob/main/docs/roadmap.md

Niels Nijveldt

039

https://learn.microsoft.com/en-us/aspnet/core/blazor/supported-platforms?view=aspnetcore-7.0
https://github.com/dotnet/wpf/blob/main/roadmap.md
https://github.com/dotnet/winforms/blob/main/docs/roadmap.md
https://github.com/NielsNijveldt
https://www.linkedin.com/in/niels-nijveldt-2812a788

Moreover, ensure that your project's .NET versions, NuGet

packages, and other dependencies are up-to-date, using at

least the .NET Standard or the latest supported .NET version.

Outdated libraries may cause problems, especially when

using Blazor WebAssembly.

Lastly, consider your generic components. You might

have created reusable WPF/WinForms components or

used a library with components. For Blazor, you'll want

to do something similar.

Numerous open-source or free-to-use component libraries

are available within the community. Check if these

libraries offer the features you need and explore them early

to avoid switching between libraries and wasting time.

MudBlazor4 and Radzen5 are well-known libraries with a

wide variety of user interface components. Both MudBlazor

and Radzen are free to use and contain a large list of

components that are easy to use in your application. Keep

in mind not all (component) libraries are just free to use.

Make sure to understand their license model.

Moving from a desktop to the browser
Transitioning from WPF or WinForms to Blazor means moving

from a desktop (probably Windows) environment to a

browser. This shift may limit some functionality, such as

interactions with the host. For example, if your application

opens Microsoft Word and controls its usage, you'll lose that

control when moving to a browser-based application. You

can still enable users to open documents in Word, but you

won't be able to control their actions within Word.

If your application relies heavily on the operating systen,

consider looking into Blazor Hybrid6 or .NET MAUI7 as

alternatives.

Making your application accessible in a browser also

requires a different deployment approach. Depending on

the chosen hosting method, your application should be

made available on the internet or an (internal) network.

This means you'll need to prepare or adjust your network

infrastructure, set up SSL certificates to secure connections,

and configure DNS to expose your application on a familiar

and safe web address.

Blazor Server vs Blazor WebAssembly
When setting up your new solution, you'll need to choose

between Blazor Server and Blazor WebAssembly. While it

may not seem crucial, this decision significantly impacts

your infrastructure and application reliability. It's a good

idea to consider this choice early in your project. You can still

switch between the two, but it will require time and effort.

If you're unsure which option is best, you can initially support

both and test their reliability.

Understanding the difference between the two hosting

models is essential. Blazor WebAssembly runs entirely in the

user's browser, while Blazor Server renders HTML server-side,

and client interactions are processed through SignalR.

Microsoft provides an overview8 to help you choose the right

hosting model for your needs.

For Blazor WebAssembly to work in your environment,

you'll need a service (preferably an API) to interact with your

internal systems (e.g. databases). In contrast, Blazor Server

can act as the single entry point for your environment,

interacting with all internal systems.

However, Blazor Server has some drawbacks, such as

maintaining the state of interacting users on the server.

This can complicate matters, as scaling or rebooting your

application could cause users to lose their session.

Additionally, you'll need to ensure no shared state between

users to avoid undesirable or harmful situations.

Compared to your WPF/WinForms application, Blazor

WebAssembly may be a more suitable choice, as both

WPF/WinForms and Blazor WebAssembly run client-side.

However, keep in mind that not all .NET libraries are

supported in Blazor WebAssembly. It also has a longer

initial load time, as all relevant DLLs need to be downloaded

first. Moreover, since the application runs client-side you

will need a public API to communicate to databases or

internal services. Or you need to expose these databases

040 State of the Art Software Engineering

4 https://blazor.radzen.com
5 https://mudblazor.com
6 https://learn.microsoft.com/en-us/aspnet/core/blazor/hybrid/?view=aspnetcore-7.0
7 https://learn.microsoft.com/en-us/dotnet/maui
8 https://learn.microsoft.com/en-us/aspnet/core/blazor/hosting-models?view=aspnetcore-7.0

† Blazor WebAssembly and Blazor Hybrid apps can use server-based

APIs to access server/network resources and access private and

secure app code.

‡ Blazor WebAssembly only reaches near-native performance with

ahead-of-time (AOT) compilation.

https://blazor.radzen.com
https://mudblazor.com
https://learn.microsoft.com/en-us/aspnet/core/blazor/hybrid/?view=aspnetcore-7.0
https://learn.microsoft.com/en-us/dotnet/maui
https://learn.microsoft.com/en-us/aspnet/core/blazor/hosting-models?view=aspnetcore-7.0

XPRT. Magazine N°

14/2023

041

and internal services so your application can access it from

the client, but you probably don’t want this due to security

measures.

As a result, your application will behave like a Single Page

Application (SPA) with excellent performance. You can host

your application as a static app, eliminating concerns about

frontend scaling.

With .NET 8 Blazor will get an enhancement called "Blazor

United". This will be a combination of Blazor Server and

Blazor WebAssembly. This means when the DLL's are

downloaded the application will use these and have a

quick response time. When the DLL's are not available yet,

it will use the Blazor Server capability to make sure you don't

have to wait on downloading these DLL's. By using this the

application users will get a better/smoother experience.

If "Blazor United" is available for you then you should look

into this as this offers best of both worlds.

User experience
One important aspect to consider is the change in user

experience (UX) for your end-users. With your current

application, users are accustomed to a desktop experience,

often featuring a Microsoft Windows look and feel.

Transitioning to a browser-based application will introduce

a different experience. Elements such as URLs, opening

tabs, and cookies might be new to some users. As a result,

it's essential to provide clear instructions on how to use the

application within a browser environment.

Authentication will also be different. With WPF/WinForms you

might have username password authentication or maybe

Windows Authentication. With Blazor you could use Azure

Active Directory B2C to provide a safe solution.

Additionally, this transition presents an opportunity to

make significant UX improvements to your application.

If applicable, consider utilizing monitoring tools to analyze

usage patterns and make data-driven enhancements.

By focusing on user experience and addressing potential

challenges, you can ensure a smoother transition and a

more satisfying experience for your application's users.

Conclusion
In conclusion, migrating your legacy WPF/WinForms

application to a modern Blazor web application can be

a strategic and beneficial decision. Blazor enables you to

leverage your existing .NET knowledge and resources while

providing a more future-proof, browser-based solution that

supports a wide range of devices and platforms.

The migration process requires careful planning,

architectural considerations, and an understanding of the

differences between Blazor Server and Blazor WebAssembly

hosting models. By taking the time to analyze your current

application's architecture, dependencies, and components,

you can ensure a smoother transition to Blazor.

Moreover, embracing best practices and modern

development techniques will help you create a more

maintainable and scalable application in the long run.

Keep in mind the trade-offs between Blazor Server and

Blazor WebAssembly when choosing a hosting model

that best suits your application's requirements and

infrastructure.

As you embark on this journey, it's essential to consider

the impact of the migration on user experience and

address potential challenges. Transitioning from a desktop

application to a browser-based solution presents an

opportunity to make significant UX improvements.

Utilize monitoring tools to analyze usage patterns and

make data-driven enhancements to optimize the

experience for your application's users.

By focusing on these aspects and providing clear

instructions to help users adapt to the new application,

you can ensure a smoother transition and a more satisfying

experience for your users. Remember, while there may be

challenges along the way, the end result will be a more

versatile, powerful and maintainable application that

embraces modern web technologies.

Will you upgrade your app to the future?

</>

Read more
 online?

042 Power Through Platforms

Identity Access
Management in
Microsoft 365
Where two worlds meet:
Identity Access Management
in Microsoft 365 and Azure.
A deep dive!
With the increasing importance of cloud services, the way of accessing IT assets has
changed. Assets are stored in the cloud and digital identities (IDs) are becoming more
used outside the corporate network to access these assets. In corporate networks,
one or more firewall systems are used as a perimeter to protect access to IT assets.
But what if you are outside the corporate network? In the home office, the firewall in
the DSL router provides a basic protection against cyberattacks. For users it is not clear
what protection measures are taken in public networks, such as a public WLAN at an
airport or in a hotel. You have to assume that public networks don't offer protection
for a digital ID. This is one of the main Identity Access Management (IAM) principles of
the Zero Trust Model. For more information about Zero Trust I want to refer to the article
"Zero Trust - "Never trust, always verify"" in this magazine.

Author Patrick Fell

XPRT. Magazine N°

14/2023

043

To be clear: the usage of IDs is no longer sufficiently

protected outside the corporate network and access to

IT assets is inevitably at risk. These attacks are not only a

problem of private individuals, but also of companies.

The ID (and the devices used by the identity) must be de

clared the new perimeter and protected when used.

This is a very important task of an IAM system, that deals

with two management aspects:

1. the management of digital identities (IDs)

2. the management of these identities' access to IT assets

(resources such as files, emails, web pages,

databases, etc.).

Microsoft IAM
To manage digital IDs and accessing IT assets, the IAM

ecosystem in Microsoft 365 (M365) offers the following

features:

• a platform with a lot of functionality for managing IDs

(objects)

• a database for storing digital IDs (objects and their

attributes)

• ID authentication and authorization capabilities

The directory service Azure Active Directory (AAD) is the

basis for all these features and can manage both the

Authorization (AuthZ) and the Authentication (AuthN) of

users:

Figure 1: AuthN and AuthZ

Beyond these technical features, governing digital IDs

(ID Governance) and accessing IT assets (Data Governance)

is another added value that M365 delivers.

The Directory Service (DS) component provides the basis for

storing the digital ID in a database. Since some companies

use several directory services, special DS functions ensure

that a federation is established between the different

directory services, e. g. to be able to synchronize the objects

afterwards. This is also the case when using an on-premises

Microsoft Active Directory (AD), which is connected with AAD

in the cloud to form a hybrid cloud infrastructure.

Single Sign On (SSO) in AuthN is used so that the user does

not have to re-authenticate each time when accessing IT

assets. Multi-factor authentication (MFA) is used as an

additional security layer, in which an additional secret is

required from the user to which only he or she has access.

A token-based procedure is used to authenticate the

session, i. e. the connection to an IT asset. One of the newer

features of AuthZ is to handle authentication without

passwords (Passwordless Authentication). This functionality

should please users, as they often have to remember

dozens of passwords to gain access to IT assets.

AuthZ is used to control resource access. In addition to

role-based access, attributes of the user object or certain

Verifies you are who you say you are!
• Login credentials

• Forms-based login

 • HTTP authentication

 • HTTP digest

• X.509 certificates

• Custom authentication methods i. e. MFA

Who are you?
Validate a system is accessed by the right person.

AuthN

User Name: Patrick_Fell

Password: *********

Login

Decides if you have permissions to
access IT assets!
• Access controls for files or URLs

• Access Control List (ACL)

• Discretionary Access Control List (DACL)

• Secure objects and methods

Are you allowed to do that?
Validate users permission to access IT assets.

AuthZ

Read - Write

Delete

Send Mail

conditions are often evaluated. These methods are called

Role Based Access Control (RBAC), Attribute Based Access

Control (ABAC), and Conditional Access (CA). For managing

privileged access there is a special form, the so-called

Privileged Access Management (PAM), often incorrectly

referred to as Privileged Identity Management (PIM). PIM is

about managing identities for administrators or superusers

that control highly privileged access to IT assets. PAM deals

with the management of accessing valuable IT assets

such as access to privileged accounts from administrators.

Exploring PIM and PAM in M365 will be covered in a future

magazine.

Whether PIM, PAM or IAM, the principle of Least Privileged

Access always applies, which is also a principle of the Zero

Trust Model: at the time of access, the digital ID receives a

minimum of the rights and permissions required to access

the IT asset. In addition, these rights and permissions are

only granted during the needed time of access itself and

are automatically removed afterwards. This is also called

Just-In-Time (JIT) and Just-Enough-Access (JEA).

Please refer also to the article "Ten tips and tricks to secure

your Azure subscription" in this magazine. You'll find good

tips to harden your IAM infrastructure in M365 and

Microsoft Azure.

In the age of automation, user management services

are an important component of an IAM system. This is not

just about the automated creation – provisioning – of digital

IDs, but about the entire identity lifecycle. This starts with

hiring a new employee and goes over to the change of

access due to a change within the company, then to a

time-out, e. g. a sabatical and ends with leaving the

company. Some of these processes should be offered as

self-service so the user can request new access to IT assets

themselves. This also includes changing a password, which

unfortunately still occupies the IT support departments of

companies far too much.

DS - AAD
Microsoft Active Directory (AD) is probably the best-known

and for many years the most widespread identity store

worldwide. However, AD could not really be described as a

mature IAM system, because too many activities on domain

controllers (On-premise Windows Servers that hold the AD

database) had to be carried out manually. Only complex

automation through code development and attaching of

intelligent solutions from third-party providers could add

a certain variety of functions to the AD . This has changed

dramatically with Azure Actice Directory (AAD) as a "virtual"

counterpart of AD.

With AAD as an identity store, Microsoft has for the first

 time in recent years provided a complete solution for

IAM, PAM and PIM as a cloud service in M365 and Microsoft

Azure. With proper AAD licensing, features such as MFA,

SSO, Passwordless Authentication, Password hash

synchronization, Pass-through Authentication (PtA) and

Conditional Access (CA) can be enabled with just a few

clicks.

044 Power Through Platforms

• Identity Store

 • DS Database

• Federation

• Synchronization

• Virtual Directory

• Provisioning

• De-Provisioning

• User Self-Service

• Delegation of Control

• Single Sign On

• Multi Factor AuthN

• Passwordless AuthN

• Session & Token Management

• Rules & Policies

• Roles

• Objects & Attributes

• PIM & PAM

DS Services

User Management Sercices

AuthN Services

AuthZ Services

Business Processes

P
O

L
ICIES AND RULES

TECHNOLO
G

IE
S

IAM Governance
Framework

Reporting, Monitoring
& Analytics

Figure 2: Components of an IAM Solution

XPRT. Magazine N°

14/2023

045

Microsoft has declared war on identity theft with these

features. Let’s take a closer look at what exactly is behind all

the functions and which services can be used within the IAM

ecosystem in the Microsoft Cloud. The main focus will be on

the components AuthN Services and AuthZ Services.

AuthN Services & Components
Hybrid Identities

When companies operate in a hybrid world – on-premises

and in the cloud – they often prefer to use on-premises AD

as the source of truth for AuthN requests. This works best if

the on-premises AD is coupled with the AAD with Microsoft's

own synchronization service Azure AD Connect. In most

cases, AD FS (Active Directory Federation Services) is used as

a coupling system. This allows the Microsoft Cloud to send

its AuthN requests from the customer's tenant to the domain

controller in the corporate network. AD FS can be published

to the Internet via a Web Application Proxy (WAP Server).

The weak point is the availability of the systems for

establishing the federation (AD FS) and the WAP systems.

Without resiliency, authentication is at risk and will stop

working if the systems fail to function. A remediation could

be:

• Password hash synchronization or

• Pass-through-Authentication (PtA)

With PtH, the cloud takes over the authentication of digital

IDs. Password hash synchronsation and PtA works without

the use of AD FS and WAP. Those are simpler variants than

the usage of AD FS and WAP. Anyway, both variants and the

use of AD FS and WAP are still recommended. Since AD FS

and WAP require very complex and failsafe infrastructures,

Microsoft will probably say goodbye to it in the long run.

Hopefully customers will follow suit. When it comes to

hashes, many people still think of the Mimikatz attack,

a password stealing method by which the hash of a

password can be successfully reused if the right protective

measures have not been taken. For peace of mind: the

password hash is double-hashed before it is synchronized

via AAD Connect to the cloud. The following figures are

 intended to illustrate the differences between password

hash synchronisation and PtA:

Identity synchronization

using Azure AD Connect

User Sign In with
same password

Pth Sync.
Azure AD Apps SaaS Applications

On-Premises AD

Password

Kerberos Auth. Modern Auth.

Azure AD Connect

Password

Figure 4: Pass-through Authentication

Figure 3: Password hash synchronization

Identity synchronization

using Azure AD Connect

Password validation requests
are sent to Windows Server

Active Drectory via Pass-through au-
thentication

User Sign In

Azure AD Apps SaaS Applications

Pass-trough
Authentication

Pass-trough
Authentication

Agent

Windows Server Active Directory

Password

User

User

Cloud Native Identities

The best and most secure option is achieved with cloud

native authentication capabilities, which can be

supplemented with additional security measures from

an Identity Provider (IdP) such as AAD. Cloud native

authentication only needs access to the cloud.

Connections to or from domain controllers in the

corporate network are no longer required, nor is there

any synchronization of user objects. The user objects are

therefore provisioned directly in the cloud and only stored

once. This differs to a hybrid identity, which exists in both

the on-premises AD and the AAD.

Multi Factor Authentication (MFA) in M365

MFA is offered in M365 as well as in AAD in various forms:

• Legacy MFA

• Azure AD MFA.

Both variants are included in most subscriptions based on

the free tier of AAD. Legacy MFA is enabled directly on the

user object. However, we recommend the variant that

activates MFA for all user objects by activating the security

standards in AAD or Azure Portal (see the article "Ten tips

and tricks to secure your Azure subscription" in this

magazine). Unfortunately, exceptions cannot be made here,

and this option is not available with the Conditional Access

(CA) baseline. These must then be deactivated beforehand.

Enhanced CA security policies, in turn, require disabling

security standards and additional licenses (Azure AD P1 or

Azure AD P2) to enable conditional access policies and get

the full functionality for IAM.

Conditional Access in M365

Conditional access relies on signals to make decisions for

general access and enforce finegrained access to IT assets.

The whole thing works in real time and is one of the greatest

achievements in IAM. Policies can be assigned to individual

users, user groups or the entire company and are super

flexible. With policies in monitoring mode, the effects can

be checked in a simulation before the actual assignment.

It would not be the first time that administrators lock

themselves 😊 out of the tenant because of a policy that is

too restrictive. Therefore, exactly two phases are supported:

1. Collect session details i. e. about the user, the device or

the location

2. Enforce a CA policy in realtime

The downside: Microsoft get's paid for the complexity of the

policy with the different requirements for licensing.

Future of Identity In M365

Microsoft Entra is a family of products and a very young

representative of services within the Microsoft IAM eco-

system. Entra offers a platform with which digital IDs can be

subject to governance and permissions. Furthermore the

access can be monitored and managed. So far, nothing new

for an IAM system. With the Verify ID service, however, there

is a new service offering, cross-cloud for multi-cloud

environments, for a managed verifiable credential service.

It is based on open standards. Not only will employees

benefit, but also customers and partners who previously

had to come up with their own verifying process for IDs.

How does it work? Verified ID automates identity verification

based on open standards and supports privacy-compliant

interactions between businesses and users.

AuthZ Services & Components
The complete ecosystem in Microsoft Azure and M365 for

assigning rights and permissions is based on the RBAC prin-

ciple. Pre-builtin roles (I guess if you take all services

into account, you get several hundreds in number) with fix

assigned rights & permissions allow administrators to

assign users the appropriate access permissions.

046 Power Through Platforms

User & Location &

Device

Identify Risks

Service &

Applications

Signals Verify every access attempt Services, Apps and Data

CA Policies

Allow Access

Require MFA

Block Access

Figure 5: Conditional Access

XPRT. Magazine N°

14/2023

047

Issuer
Assests to claims and grants a digitally
signed credential to the user.

An issuer could be an ID verification provider
a govrnment agency, a previous employer
or any other organization that
can proof Patick's credentials.

Individual
Receives and approves credential request
from issuer, stores and manages credential
in a wallet and presents it to verifier.

Write Read & Trust

Verifier
Requests proof and, upon receipt,
verifies the claims in credentials satisfy
requirements. A verifier could be a
employer, a hotel or a border control or
any organization that requesting proof
of Patrick's credentials.

Figure 6: Verifiable Credentials

Patrick

Verifiable data registry

This is done by a user becoming a member of a role group.

The role group in turn is assigned the roles that have rights

and permissions. The rights and permissions are inherited to

the user. Roles are dispearsed over M365 services and AAD.

Some are used in AAD and the service, some are unique in

AAD only and not visible to the service and some are used

by more the one services. This can be very confusing.

Figure 7: Role-based authorization assignment in M365

You can very quickly get lost in the depths of rights and

authorization administration in the Microsoft 365 Admin

Center (see figure Figure 8: Role Assignments in M365).

It is advised to get along with the roles and role groups

proposed by Microsoft. This is especially true at the

beginning of the M365 cloud journey. The existing roles

are sufficient for the delegation of special rights and

authorizations and can be assigned via policies.

Figure 8: Role Assignments in M365

However, a role-based access concept is needed that

makes the control and coordination of access to IT assets

transparent and reflects the current status. If your company

is subjected to a security audit, e.g. according to ISO 27001 or

BSI Grundschutz, the auditor can ask you about this concept.

So remember that you are writing one. The HR-based

lifecycle plays an important role: administrators do not

want to implement role changes on demand. These should

be requested by the user based on self-service or

automatically adapted based on a job or department

change. Then the trigger has to come from the HR

department. The principle of SoD – Segregation of Duties

must always be observed: Administrators may not add or

remove themselves from certain role groups. This requires

at least one other administrator to monitor and implement

the process.

Teams
Teams Admin,
Teams Devices

Microsoft 365
Defender
Security
Admin

Microsoft
Purviewr
Security
Reader

Exchange
Online

Exchange
Admin

Azure AD
Global Admin / User Admin / Auth Admin /

Password Admin / Billing Admin / ...

Service-specific

Roles

Roles only

in AAD

Cross-service

specific Roles

Roles in AAD

Intune
Intune Admin

048 Power Through Platforms

User Management
To be honest, there are not many great features in the area

of automated provisioning and deprovisioning of user

objects. However, this is increasingly due to the fact that the

creation of new user objects, e. g. as part of a new hire, is

not an independent discipline of IT. This is based on the

HR-based lifecycle. Typically, it is the HR department who

has to be the first to take action when it comes to the

maintenance of master data for people. Only when a master

date is successfully created, e. g. in SAP, a trigger can be

fired. This automatically creates a user object with all the

required attribute values in the DS database and provisions

the user object. Two processes exists, the HR-Based Lifecycle

and the Identity Lifecycle, which absolutely should not be

decoupled from each other.

In IT, we use IAM to focus on the identity lifecycle rather than

the HR-based one. However, we must ensure that interfaces

for provisioning and deprovisioning from master data

maintenance systems are correctly addressed. The initial

filling of the identity store with digital IDs is therefore not the

sole responsibility of IT. It always requires a fireing trigger

from the master data maintenance systems, especially

since licensing in Microsoft 365 is user-based. License

management, like IAM, is therefore dependent on the correct

maintenance of user master data.

Self-service Password Reset (SSPR) by the user is old hat.

Especially with this self-service offer, IT support departments

can be significantly relieved. According to Gartner, these

requests accounted for 20% of all requests from employees

if a self-service password reset cannot be used. There are

several reasons that require a password reset, including:

• User objects are locked

• Users have been forgotten their passwords

• Passwords have expired and were not renewed in time

• Password changes by the user failed

The following self-service portal is available to the user in

Microsoft 365 and Microsoft Azure. These portal can be

reached via myaccount.microsoft.com by the user.

 Patrick Fell

https://github.com/Patrick-Fell
https://www.linkedin.com/in/patrick-fell

XPRT. Magazine N°

14/2023

049

Security info and paswords can be managed here:

Figure 9: User Self-Service Dashboard

Figure 10: Manageing security information

However, SSPR must first be enabled in the Entra Admin

Center:

Figure 11: Enabling SSPR

Starting in January 2024, legacy policies for multi-factor

authentication and self-service password reset will

be discontinued. From then on, all methods will be

managed via authentication method policies, including

passwordless authentication:

Figure 12: Configuring Authentication Methods

Summary
In summary, there are five steps for securing the identity

infrastructure via an IAM system that are very helpful.

Before you begin your journey to protect identities and

use enhanced IAM solutions, you should protect not only

privileged accounts but also all user accounts via MFA.

Step 1 - Strengthen your credentials, especially password

length

Step 2 - Reduce your attack surface area, especially

using modern authentication protocols and controlling

entrypoints for authentication

Step 3 - Automate threat response, especially by using

conditional access policies

Step 4 - Utilize cloud intelligence and automate IAM

processes, especially by monitoring Azure AD

Step 5 - Enable end-user self-service, especially for

self-service password reset (SSPR) and configuring

security information

This could avoid approximately 90% of all successful

cyberattacks on digital identities.

</>

Read more
 online?

050 Power Through Platforms

Unpacking
Access
Packages
Introduction To Azure AD Access
Packages and How We Used
Them In A Real-World Customer
Scenario.
How great would it be if users could enroll to a set of Azure AD Groups, Applications
or SharePoint sites themselves, instead of jumping through all kinds of bureaucratic
hoops before access has been granted and the user can do their actual job?

Author Rik Groenewoud

Not only would this be great for the end user, but also from

the administrator’s point of view this would be the ideal

scenario. Instead of maintaining a custom enrollment

process with lot of manual steps this process shifts the

action to the end users themselves. This makes it possible

for the administrator to focus on maintaining a secure and

compliant system, instead of doing repetitive simple tasks.

As I will show you in this article, access packages are here to

do just that! I will dive deeper into what these packages are

all about. Firstly, I will explain what these packages are, what

choices you have when setting them up and how a basic

use flow will look like.

After the basics are clear, I will give a real-world customer

use case of how we at Xpirit Managed Service leveraged

Access Packages to create a highly automated enrollment

process for a complex Identity and Access Management

scenario.

XPRT. Magazine N°

14/2023

051

What are Access Packages?
In essence, access packages are a way to manage access

to Azure resources in a streamlined and efficient manner.

With these packages, you can group together a set of Azure

resources that are typically used by the same team or group

of users and assign specific access permissions to that

package.

In addition to streamlining access management, they also

provide self-service capabilities for end-users. This means

that users can request access to specific packages

themselves, rather than having to go through an IT

administrator or department. When a user requests

access to package, an approver can review the request.

This provides an additional layer of control and ensures

that access to resources is always aligned with the

organization's security and compliance requirements.

To be able to leverage access packages you need an Azure

AD P2 or Enterprise Mobility + Security (EMS) E5 license.

Configuration of an Access Package
The packages live in Catalogues which are containers for

one or more packages. After you have given the package

a name and description you proceed by adding the

resources you want the users to enroll on. These can

be Azure AD Groups, Enterprise Applications and/or

SharePoint sites.

The next step is to decide who can enroll to the package.

There are 3 main options.

1. Users in your directory
This option makes it possible to further specify whether

all members, or specific users, may request access to this

package. Furthermore, you can decide if manual approval

is needed. If yes, you can determine if users need to write a

justification, if the user’s manager or a specific other user

(or users) will be the approver and in what timespan the

decision must be made. It is even possible to create a

second line of approvers for when the first approver did not

decide in the given time span.

In short, with this option it becomes possible to really

create a granular least privilege structure for your access

packages. By doing so it becomes easy to align to the

company’s policies and governance regarding User

Access Management.

2. Users not in your directory
With this option it becomes possible to specify particular

external organizations, open up enrollment to all connected

organizations or to select all users meaning all connected

users plus any new external users. With this option you can

add or skip the approval flow.

3. None (administrator direct assignment only)
This last option means that only administrators can add

people to the access package. This is the best option if there

is no approval flow in place and users should not be able to

enroll themselves in the packages.

If needed, you can ask users for additional information when

applying for access by using custom parameter fields.

You can determine a lifecycle for the access package

assignment. And finally you can determine whether an

access review is needed. The idea behind these access

reviews is to check if all package enrollments are legitimate

and up-to-date.

Self-Service Onboarding
After you have setup the catalogue and created one or

more access packages, a typical happy flow self-service

scenario would look something like this:

myaccess.microft.com Access Package 2

Access Package 2

Feedback to user

Access Package 1

User Approver

The end-user goes to https://myaccess.microsoft.com and

after login with his/her Azure AD Credentials, the landing

page with all available packages will be shown. The user

can request access for the desired packages after which

an approver receives an e-mail with the pending approval.

After approval, the user receives feedback via e-mail and

gets the resource roles that are given to the access

package.

Customer Use Case: Automated User Onboarding
in a Web Application with Complex roles and rights
structure
So far, we have looked at the fairly straightforward self-

service scenario in which access packages can play a

very useful role. But there are more use cases for access

packages. At Xpirit Managed Services (XMS) we used them

in a slightly different manner. We received a request from

our customer to build an automated onboarding process

for their Azure AD users. The user should be able to login to

the web application using SSO and should be automatically

assigned to the correct roles and projects.

What makes this challenging is the fact that this application

has a complex roles and rights structure. It is made up of

20+ separate projects, all with three or more separate roles

per project. A quick calculation shows that we are talking

about 60+ project/role combinations. Several hundred

users should be able to be enrolled in multiple projects and

have potentially multiple roles within these projects.

Then there are special key users who should be able to have

elevated rights in multiple projects and users who only need

to have reading rights in all projects. To make it even more

complex, the users are all from different companies working

together in this project.

In the next part I will explain what we came up with to solve

this challenge.

SSO and Roles Mapping
To make SSO possible an App Registration + Enterprise

Application already was in place. The first step was to map

all the roles from the application, to App Roles in the App

Registration. In the JSON Manifest this looks like this:

"appRoles": [

 {

 "allowedMemberTypes": [

 "User"

],

 "description": "ProjectX_RoleY",

 "displayName": "Project X Role Y",

 "id": "8e9bd73b-e64f-46e5-b4b6-481234",

 "isEnabled": true,

 "lang": null,

 "origin": "Application",

 "value": " ProjectX_RoleY "

 }

]

The next step is to map Azure AD (AAD) Groups onto these

App Roles. There is a 1-on-1 mapping between the App Roles

and the AAD Groups. The mapping has to be done in the

Enterprise Application:

To make this more rigid and maintainable, we placed the

App Registration JSON manifest in a Git repository and

created an Azure CLI script to update this manifest using

 the az ad app update cmdlet.

Finally, to make the mapping between the App Roles and

AAD Groups, a PowerShell script loops over all AD Groups like:

foreach ($group in $aadGroups) {

 $role = $roles | Where-Object -Property value -eq

$group.Displayname

 $params = @{

 PrincipalId = "$($group.Id)"

 ResourceId = "[Resource-Id]"

 AppRoleId = "$($role.Id)"

 }

 New-MgGroupAppRoleAssignment -GroupId $group.Id

-BodyParameter $params

}

With this mechanism the first part of the puzzle is solved.

Now the users need to be enrolled in the AAD Groups. It is

time for the access packages to make their entrance.

Access Packages
For every project, 3 separate packages were created

corresponding the roles (and the AAD Groups) in the

application: the Approver, Contributor and Manager.

In these packages the corresponding AAD Groups are

selected and also a Default Users AD Group is added,

which is mapped to the global reader role in the application.

052 Power Through Platforms

https://myaccess.microsoft.com

XPRT. Magazine N°

14/2023

053

Furthermore, for the Key Users and Reader Only users,

separate packages were created with all the appropriate

AD Groups. For this use case this functionality really shines

because with a single enrollment the user is added to all

these AD Groups at once.

Because the end users in this scenario don't know to which

access packages they belong (at least for now), the self-

enrollment options were disabled and instead "administrator

assignment only" was the way to go. Also, because the

administration and approval of user assignment is done

beforehand, the approval flow could be disabled as well.

No end-date on the enrollment was needed because users

that are no longer eligible to be in an Access Package are

automatically removed (I will explain more on this later).

The access packages are not created in an automated way

because this was a one-time job and can be done pretty

easily from the Azure Portal.

With the access packages in place, we came to our final

step: the enrollment of users into the packages.

User enrollment
For the user enrollment the goal was to create a solution

which fits the XMS way-of-working. At XMS we always seek

to work together with our customers and thereby enable

a customer to work in a DevOps way. By doing so. It is

 important that we don’t create boundaries between

different stakeholders or between the business and IT, but

work together and build smart processes in which repeated

tasks are automated as much as possible.

In this case, where a traditional service provider would setup

a ticketing system in which the customer can ask to enroll

new users, we wanted to make this a collaborative and

smooth process. This process now consists of 3 steps:

1. For every access package a simple .CSV file was created

in which the customer can add or delete users as desired:

Displayname;Email;AccessPackageUser

Z;userz@example.com;Project X | Role Y

2. These .CSV files are part of a repository and the customer

can create a PR with the new changes. These PRs are

validated by the XMS team.

3. After the PR is merged, an Azure DevOps pipeline is

triggered that runs a script to enroll the users from the

CSVs. It also creates a new AD Guest User if the user does

not exists in our tenant. Finally, a check is done on

removed users from the CSV file. These get removed from

the packages as well.

Some code snippets from this script:

Invite user if not yet exists

New-MgInvitation -InvitedUserEmailAddress "$($user.

Email.Trim())" -InviteRedirectUrl "https://example.com/

invite -SendInvitationMessage:$true

We check if the user already is member of the pack-

age and if not, the user is added.

$check = Compare-Object -DifferenceObject

$assignments.Target.ObjectId -ReferenceObject

$AADuser.Id -ExcludeDifferent

if ($null -eq $check) {

$policy = $accessPackage.AccessPackage-

AssignmentPolicies[0]

New-MgEntitlementManagementAccessPackage-

AssignmentRequest -AccessPackageId $accessPackage.

Id -AssignmentPolicyId $policy.Id -TargetId $AADuser.Id

Write-Host "User $($user.Displayname) is added to

Access Package"

}

We check if there are differences between the CSV

and the assignments and if yes, we remove the users.

$check = Compare-Object -DifferenceObject

$assignments2.TargetId -ReferenceObject $userid

Write-Host "Differences in IDs: $($check2.InputObject)"

if ($null -ne $check2) {

 foreach ($assignment in $check2.InputObject) {

 #Get AssignmentId for user that has to be removed

 $assignmentId = ($assignments2 | Where-Object

{ $_.TargetId -eq $assignment }).Id

 New-MgEntitlementManagementAccessPackage-

AssignmentRequest -AccessPackageAssignmentId

$assignmentId -RequestType "AdminRemove"

 Write-Host "Removed $assignment"

 }

}

else {

 Write-Host 'No users removed'

}

The diagram below summarizes the process flow of this

solution

Future improvements
This process has been running for a few months and we are

quite happy with it. Also, it is important to state that we take

on these kind of challenges iteratively. What started with the

customer sending us Excel sheets and us enrolling the users

manually to the access packages (and thereby already

adding value for our customer because the users could

access the application with the correct roles), evolved

towards the process it is now.

This does not mean it is a perfect solution and there is still

room for further improvement. The next step would be to

move towards self-service. We must make sure the access

packages correspond to what the end users understand.

We can appoint approvers at every separate company.

With this in place we should be able to remove the CSV-files

(and more importantly the maintenance of these CSVs)

entirely. This will result in a simpler, leaner process.

To conclude
This article has shown what access packages are,

what is their potential and how they can be useful in

self-service scenarios.

In our customer use case, I showed that these packages

can be a valuable piece of the puzzle when it comes to

creating a maintainable solution for a complex Identity

and Access Management scenario.

If you have any questions about this subject or how

you could use access packages in your environment,

don't hesitate to reach out!

</>

CSV file per project and role
with user details

After CSV files have been edited, the customer
creates a Pull Request

After PR is reviewed and merged a Pipeline runs a PS script
enrolling the users in the access packages

Via the package the user is added to AD Groups, which
are mapped to App Roles in the App registration

User logs in via SSO, the App Roles are mapped on the
projects and roles in the the web application

054 Power Through Platforms

 Rik Groenewoud

Read more
 online?

https://www.twitter.com/RikGroenewoud
https://www.linkedin.com/in/rikgroenewoud
https://www.github.com/RikGr

XPRT. Magazine N°

14/2023

055

Getting these tokens on your device in a proper way could

be a pain - hardcoding credentials in your code is ugly,

and hosting an embedded web server to let a user sign in

 is also something you likely hope to avoid.

Fortunately, there is the Device Authorization Grant1 flow,

also known as Device Flow. It is one of the standardized

OAuth2 authentication flows and its usecase is to enable

applications, having limited interaction capabilities

themselves, to get authenticated.

Think of embedded devices or console applications for

example - they cannot present the user easily with a

login page without hosting an embedded webserver.

 These devices or applications will be called device in this

article to emphasize the role they play.

Unfortunately, not all services offer the Device Flow.

To mitigate this, it is possible to build a proxy that enables

using this flow, while the proxy uses one of the more

common other flows (like the Authorization Code flow)

under the hood.

For this example, we will focus on creating such a proxy for

Spotify's REST API. As a challenge, we will try building this

proxy using free services in Azure.

While Spotify in practice does have a device code flow for

some partners, and for its own Apple TV and Android TV

apps, it does not support it for third-party applications.

Some background is described in Reverse engineering

Spotify's own Device Authorization Grant implementation.

1 https://www.rfc-editor.org/rfc/rfc8628

access
granted

OAuth2 Device
Authorization
Grant proxy
Have you ever needed to call REST APIs from an embedded device or a
console app? If so, you likely needed some OAuth2 credentials to prove
who you are and what you are allowed to do.

Author Hans Bakker

https://www.rfc-editor.org/rfc/rfc8628

How does the Device Flow work?
Before we go into the details of adding a proxy, let's discuss

the original Device Flow which is shown in Figure 1. Instead

of directly presenting the user with a login page, the device

requests a pair of two codes (step 1): one for the device, and

one for the user. The device presents the user with the

user_code (step 2), which can be shown on a display as

numbers or a QR code, or it can be read aloud in the case of

a voice assistant. The user can then enter this user_code

in a browser (step 3) on a different device that does have

better interaction capabilities – a desktop or smartphone

for example. After that, the user is asked to authorize the

request (step 4) via the normal authorization flow of the

service. The device can poll for OAuth2 tokens in parallel

(step 6) using the device_code, which become available

upon completion of the authorization by the user.

The device can use those tokens to make API requests

(step 7) as with any other OAuth2 mechanism.

Device flow with proxy
As Spotify does not officially support this flow for custom

applications, it is also possible to implement your own

device authorization grant flow by hosting an extra

component (called proxy below) between your device

and Spotify. The modified flow can be seen in Figure 2.

056 Power Through Platforms

Get user_code and device_codes

Poll for token using device_code

Use target API

Present user_code to user e.g. via display

Enter user_code on pairing page

3

1

6

7

2

 OAuth2 endpoints

API endpoints

Redirect user to original service's (authorize) page

4

Callback with login result

5

Service that supports Device
Authorization Grant

Figure 1: Device Flow (normal setup – no proxy)

Figure 2: Device Flow with proxy

Get user_code and device_codes

Get token

Use target API

Poll for token using device_code

Present user_code to user e.g. via display

Enter user_code on pairing page

3

1

6

8

7

2

 OAuth2 endpoints

API endpoints

Device Auth Proxy

Redirect user to original service's (authorize) page

Callback with login result

5

Service that does not support
Device Authorization Grant

4

XPRT. Magazine N°

14/2023

057

1. The device calls the authorize endpoint. Now, the proxy

should generate a record containing the device_code and

user_code, save them in the database for later and send

them back in the response.

2. The user code needs to be presented to the user, via a

display or a speaker for example.

3. The user enters the user_code in the user-facing page.

The proxy checks the user_code in its database. If the

user_code is not found, an error is shown.

4. If the user_code is found, the proxy redirects the user to

Spotify to login and approve the request.

5. After login, the user is redirected to the proxy's callback

page. The redirect contains the result of the user's action

and an authorization code.

6. The proxy can fetch an access_token and refresh_token

from Spotify's token endpoint using the authorization code

it received in the callback. The proxy should store the

credentials it received in the earlier-stored record, next to

the user_code and the device_code.

7. The device can poll the proxy’s token endpoint using the

device_code for the availability of the tokens. When the

device has successfully fetched the token, the record

should be deleted from the database to prevent abuse.

8. The device can call the target API using the obtained

tokens as usual.

Device flow proxy architecture
Requirements
The proxy should

• host an authorize API endpoint and a token API endpoint

for the device to interact with

• generate the device_code and user_code and store it in

a database

• host a user-facing page containing a small form where

the user can enter the user_code

• retrieve and validate the user_code

• host a callback endpoint for Spotify to, after the user

logged in, redirect the user to. This endpoint should

process the data sent by Spotify, and should show a

success or error page to the user.

For this, the proxy should have a very simple frontend with a

few backend API endpoints, as can be seen in Figure 3.

Component choice
For our challenge, we will choose from the free services2 that

Azure offers.

⚠ Note: Often the free services come with reduced

specifications and / or a reduced SLA. Do not blindly use

them for production purposes. However, they can still fit

the purpose of a small application for personal use.

Figure 3: Detail architecture of proxy and API endpoints

Service that does not support
Device Authorization Grant

Get user-facing form where
user enters user_code

User is redirected to login page
via Authorization Code flow

Get token data based on
authorization code

from external service

GET /

GET /success

GET /authorize

POST /api/token

POST /api/start_pairing

GET /api/authorize_callback

POST /api/token

User is redirected here by
callback upon success

User is redirected here by
callback upon failure

Get device_code and user_code

Post user_code via form by user to
initiate redirect to external service

Recieve authorization result via user
redirect from upstream service including

authorization code to fetch token

Poll for credentials or result of user action

User-facing pages Static Web App

Managed Functions
(part of Static Web App)

Store and retrieve records

Cosmos DB

API endpoints

GET /failure

POST /api/authorize_device

There are two variants of free services:

1. services that are free during the first year of your Azure

Account

2. services that remain free for the total lifespan of your

Azure Account

For our Device Flow proxy, we need 3 main capabilities:

• a place to serve the frontend (form where user enters

the user_code) and some result pages

• some API endpoints with compute and integration

functionalities

• some database / storage to store the authentication re-

cords that are active

For this challenge we will use these components which

fit in the second category (free forever).

This limits our choice to Static Web Apps, App Service and

Azure Container Apps for the frontend / backend capability,

and Cosmos DB for the database capability.

Frontend / backend
Azure Static Web Apps (SWA) can serve a static frontend and

its free tier has a slimmed down version of Azure Functions

called Managed Functions which can serve as a backend.

For a simple web application it covers the needs, and it

has no limits on the time it is running. For us, this is a good

choice.

SWA has a free monthly amount of 100 GB bandwidth per

subscription, 2 custom domains and .5 GB storage per app,

which is more than enough for our proxy app.

The Managed Functions are a 'supported' API in the free

tier of SWA. There are a few other products that are also

available as supported APIs in SWA, but not as part of the

free tier – they are Bring your own Functions, API

Management, App Service and Container Apps.

The idea of using a supported API product in SWAs:

• the API and static website are served from the same

domain via the SWA’s built-in reverse proxy. This removes

the need to add Cross-Origin Resource Sharing (CORS)

headers on the API responses, so it makes the developer

experience less complex.

• Routing is done automatically.

• The authenticated user context from the SWA is available

to the API logic.

Managed Functions will cover our needs, but it is good to

know that it does not support all features3 you might have

come to expect from other Azure Functions offerings.

Notable differences are:

• No Function triggers other than HTTP triggers

• Some security best practices are not possible to be

followed

 • Currently no Managed Identity support4

 • no support for Key Vault references

Alternatives considered to SWA were:

• Azure Container Apps has a lifetime free monthly amount

of 180,000 vCPU seconds, 360,000 GiB

seconds, and 2 million requests, but that has a

dependency on a container registry. Azure Container

Registry is only available for free for 12 months.

• App Service has a lifetime free monthly amount of

10 web, mobile, or API apps with 1 GB storage 1 hour per day

– not chosen because preference for serverless

model. 1h/day is probably enough but feels difficult to esti-

mate how it works out.

• Azure Functions Consumption plan might look free

(1 million invocations and 400000 GB-s), but it has a

requirement of providing a storage account which is

not free.

Database / storage capability
Cosmos DB is the only database or storage product that

is offered as a free forever service. It fits our needs as it

can store our authentication session records as JSON

documents and is easy to work with.

The free tier of Cosmos DB offers a free monthly amount

of 1000 request units per-second provisioned throughput

with 25 GB storage which is more than enough for our proxy

application.

Solution for time-based logic
We want to cleanup data for security reasons (discussed in

the section below) after a certain period or when the data

is obsolete. The Managed Functions offering in SWA only

supports HTTP-triggered functions, so timer-triggered

functions are not supported.

Technically a separate Logic App might be an option, but

using the Cosmos DB-native Time to Live (TTL) feature is a

much simpler and more elegant option5.

Since we only need time-based cleanup and no other

timer-triggered runs, we will go for the native cleanup in

Cosmos DB by setting a TTL on the records.

058 Power Through Platforms

2 https://azure.microsoft.com/en-us/pricing/free-services/
3 https://learn.microsoft.com/en-us/azure/static-web-apps/apis-functions
4 https://github.com/Azure/static-web-apps/issues/88
5 https://learn.microsoft.com/en-us/azure/cosmos-db/nosql/time-to-live

https://azure.microsoft.com/en-us/pricing/free-services/
https://learn.microsoft.com/en-us/azure/static-web-apps/apis-functions
https://github.com/Azure/static-web-apps/issues/88
https://learn.microsoft.com/en-us/azure/cosmos-db/nosql/time-to-live

059

XPRT. Magazine N°

14/2023

6 https://pragmaticwebsecurity.com/articles/oauthoidc/device-flow.html
7 https://www.rfc-editor.org/rfc/rfc8628
8 https://developer.spotify.com/documentation/general/guides/authorization/

Security considerations
Since we are essentially building a custom part of the

authentication chain here, it is very important to pay

attention to security.

Basics, like not committing secrets to git, not hardcoding

secrets, using HTTPS, and so on will not be covered in this

article. However, the RFC gives some specific guidance

related to the Device Authorization Grant logic which is

good to pay extra attention to. This extra guidance basically

boils down to preventing brute-forcing and phishing of the

secrets.

• use of a long enough user code and device code.

This increases the amount of tries that it will require to

guess codes.

• rate limiting on proxy endpoints to prevent brute-forcing.

This reduces the amount of tries that a bad actor can

perform.

• expiry and cleanup of authentication session record from

the database after period X or when the flow is completed

by the device (the OAuth2 tokens are received by the

device). This ensures that the data is stored not longer

than necessary.

Reverse engineering Spotify's own Device
Authorization Grant implementation
While reading up on the Device Authorization Grant, I found

an article showing that Spotify offers this flow for its own

apps and for partners6. The Android TV app is one of them,

and one benefit of Android apps (for us 😉) is that they

are relatively easy to reverse engineer. It is possible to

download its application package (.apk file) and process

it in a decompiler. There are several online decompiler

services where you can upload the apk file and down-

load the decompiled java source files and accompanying

resources as a zip file. After opening the unzipped files, they

are easily searchable using Visual Studio Code. Now we

need to use a bit of educated guessing and puzzling.

The developers often try to obfuscate their code to make

our search difficult by mangling variable names, function

names etc. An idea to circumvent this is to search for

identifiers or (parts of) URLs, that are related to the logic

we are researching and that we expect the app to use.

The reason for this is that the identifiers or URLs themselves

are usually not mangled because they need to be used in

HTTP request / response bodies or the URLs that need to

be called. Candidates for search terms could come from

reading the Device Flow's RFC7, from Spotify's own

authorization documentation8 (expecting that this flow will

have some common or similar endpoints) and by iterating

further on what we find.

Hans Bakker

https://developer.spotify.com/documentation/general/guides/authorization/
https://developer.spotify.com/documentation/general/guides/authorization/
https://developer.spotify.com/documentation/general/guides/authorization/
https://www.linkedin.com/in/hansmbakker
https://www.github.com/hansmbakker

Examples of concrete search terms that are leads for us are:

• client_id

• accounts.spotify.com

• device_code

This way, we could find

• the client_id of the app registration of Spotify's Android

TV app

• that part of the app's functionality is built around a

website hosted at https://api-partner.spotify.com/

tvapp?platform=androidtv

• the special scopes that the app uses

• the URLs and calls that the app makes to obtain tokens.

I presented the findings in a topic on the Spotify

Developer forum9.

Conclusion
In this article we discussed the OAuth2 Device Flow, and

looked at how we can build a proxy for services that do

not offer this authentication flow. We discussed the

requirements for such a proxy, and looked at what free

components Azure offers to fulfil those requirements.

We discussed the security considerations and how to deal

with them. Finally, we had a look into how one could reverse

engineer the Device Flow that Spotify has but does not

currently offer to non-partner developers.

</>

Reference
Other relevant articles:

• Everybody wins with the Device Flow

https://pragmaticwebsecurity.com/articles/oauthoidc/

device-flow.html

• Using the OAuth 2.0 device flow to authenticate users in

desktop apps

https://thomaslevesque.com/2020/03/28/using-the-

oauth-2-0-device-flow-to-authenticate-users-in-

desktop-apps/

• Authentication In Smart TV App - Device Code Flow

https://www.c-sharpcorner.com/article/authentication-in-

smart-tv-app-device-code-flow/

• Illustrated Device Flow (RFC 8628)

https://darutk.medium.com/illustrated-device-flow-rfc-

8628-d23d6d311acc

Other implementations:

• Spotify player for vintage Macs

https://68kmla.org/bb/index.php?threads/building-a-

spotify-player-for-my-mac-se-30.32182/

• MacAuth (ASP.Net Core based)

https://github.com/antscode/MacAuth

• Add the OAuth 2.0 Device Flow to any OAuth Server

(PHP based)

https://developer.okta.com/blog/2019/02/19/

add-oauth-device-flow-to-any-server

060 Power Through Platforms

9 https://community.spotify.com/t5/Spotify-for-Developers/Device-Authorization-Grant-authentication-flow-for-custom/m-p/5485468

Read more
 online?

https://api-partner.spotify.com/tvapp?platform=androidtv
https://api-partner.spotify.com/tvapp?platform=androidtv
https://pragmaticwebsecurity.com/articles/oauthoidc/device-flow.html
https://pragmaticwebsecurity.com/articles/oauthoidc/device-flow.html
https://thomaslevesque.com/2020/03/28/using-the-oauth-2-0-device-flow-to-authenticate-users-in-desktop-apps/
https://thomaslevesque.com/2020/03/28/using-the-oauth-2-0-device-flow-to-authenticate-users-in-desktop-apps/
https://thomaslevesque.com/2020/03/28/using-the-oauth-2-0-device-flow-to-authenticate-users-in-desktop-apps/
https://www.c-sharpcorner.com/article/authentication-in-smart-tv-app-device-code-flow/
https://www.c-sharpcorner.com/article/authentication-in-smart-tv-app-device-code-flow/
https://darutk.medium.com/illustrated-device-flow-rfc-8628-d23d6d311acc
https://darutk.medium.com/illustrated-device-flow-rfc-8628-d23d6d311acc
https://68kmla.org/bb/index.php?threads/building-a-spotify-player-for-my-mac-se-30.32182/
https://68kmla.org/bb/index.php?threads/building-a-spotify-player-for-my-mac-se-30.32182/
https://github.com/antscode/MacAuth
https://developer.okta.com/blog/2019/02/19/add-oauth-device-flow-to-any-server
https://developer.okta.com/blog/2019/02/19/add-oauth-device-flow-to-any-server
https://community.spotify.com/t5/Spotify-for-Developers/Device-Authorization-Grant-authentication-flow-for-custom/m-p/5485468

XPRT. Magazine N°

14/2023

061

Zero Trust -
"Never trust,
always verify"
In May 2021, President Joe Biden signed an executive order to adopt the Zero Trust
security model for federated agencies. This has become a top priority for the
US government. Federated agencies have until September 2024 to implement the
Zero Trust model. The United States has experienced firsthand how cyber threats
are becoming more sophisticated. In May 2021, the Colonial Pipeline, an American oil
pipeline, fell victim to a ransomware attack that resulted in a six-day shutdown.
The attack caused fuel shortages, flight rescheduling, filling stations running out
of fuel, and skyrocketing fuel prices.

Author Patrick van Kleef

062 Power Through Platforms

Why do we need Zero Trust
Times have changed, and we have adopted a more

dynamic way of working. In particular, after Covid, people

have shifted from working in offices to working from home.

This means that people access workloads from unsecured

public networks and use different devices such as mobiles

or tablets. Consequently, applications should be available

from more than just the corporate network. Previously, we

had only one entry point for applications within the network.

Nowadays, this is no longer feasible, and we have shifted

away from a closed perimeter. As a result, our infrastructure

has become more vulnerable to attacks from different

angles.

Cybercriminals always strive to be one step ahead and

are becoming increasingly intelligent and creative in their

efforts to infiltrate our networks and systems. They seek out

weak spots in our security perimeter, and sometimes those

weak spots are the people themselves. Social engineering

has become so sophisticated that psychological

manipulation is used to gain access to high-privilege

accounts. We used to think weak spots were only present in

our software and hardware. However, once a cybercriminal

has access to an employee account, they can gain access

to internal systems and valuable data. Zero Trust is a

response to this threat.

Principles of the Zero Trust Model
Verify explicitly
The traditional security model relied on implicit trust,

assuming everything on the network was safe and anyone

inside the network had unrestricted access. However, this

assumption is outdated, and we can no longer rely on the

idea that everything is safe behind the firewall. With Zero

Trust, we verify every identity, regardless of whether the

request comes from inside or outside the network. We aim

to authenticate and authorize all data points, as Zero Trust

assumes that bad actors can be found everywhere,

including inside your organization.

Use least privilege access
Instead of granting sweeping access to identities, Zero Trust

principles dictate that we should provide the least privileged

access. Use Identity Access Management (IAM) to assign an

identity only the minimal access rights required to complete

an operation. In many cases, it is not necessary to give an

identity permanent access, especially when dealing with

highly privileged access. Instead, use Just-In-Time (JIT) and

Just-Enough-Access (JEA) mechanisms.

Assume breach
Assume that there are malicious actors on the network and

take steps to protect resources accordingly. When dealing

with a hack, minimizing the blast radius is important.

One way to achieve this is to isolate workloads as much

as possible through network segmentation. However, be

careful to keep your architecture simple, as complexity can

introduce additional security risks.

Implement Zero Trust
The five steps to approach Zero Trust.

1. Define the protect surface. Break down your environment

into smaller pieces that you need to protect.

2. Map the transaction flows. Investigate dependencies,

inbound and outbound connections and how data flows

through the network.

3. Architect a Zero Trust environment. Use the Zero Trust

principles to design an architecture to protect your protect

surface.

4. Create Zero Trust security policies. Use the Kipling method

(who, what, when, where, why, how) to develop security

policies.

5. Monitor and maintain. Monitor signals to detect any risks,

remediate risks and improve the Zero Trust Architecture

and security policies.

An organization's attack surface refers to the areas in which

bad actors can gain unauthorized access to the network.

The attack surface is typically quite large because the

entire internet can be considered part of it. We refer to the

applications or systems that we want to secure with Zero

Trust as protect surfaces. An organization may have multiple

protect surfaces, each containing a DAAS (Data, Applications,

Assets, Services) element. These resources are defined

within each protect surface.

To illustrate how to apply the principles of Zero Trust in

practice, I will use the SmartMoney application from the

fictional company OneFinance as an example. Please note

that this article does not provide an exhaustive list of all

Azure services and features that can be used to protect

applications. Instead, the focus is on the SmartMoney

application.

Use the principles of Zero Trust to secure
SmartMoney
SmartMoney is an application developed by the fictional

company OneFinance, which manages financial data for

thousands of customers. SmartMoney helps customers gain

insight into their personal finances and provides advice on

becoming financially independent. The customer service

department is responsible for managing all of the customer

XPRT. Magazine N°

14/2023

063

data. Based on this data, the expert department provides

advice to customers on how to save costs and create

monthly budgets. Two years ago, OneFinance migrated all of

its workloads to Microsoft Azure. Employees use their Azure

AD account to authenticate. The SmartMoney solution is split

into a frontend application and backend application that

contains a set of APIs. Data is stored in Azure SQL and Azure

storage account. See the current architecture in the image

below.

During the COVID-19 pandemic, OneFinance, like many

other companies, allowed employees to work from home to

prevent business interruption. Before the pandemic, the

application was only accessible from the office IP address.

The list of allowed IPs was extended to ensure employees

could work from home with the application.

OneFinance has many applications, some of which are

used internally by employees, while others are publicly

available to customers. SmartMoney is identified as a

protected surface that we want to protect by following the

Zero Trust principles. Other protected surfaces could include

the HR system, the intranet, or the public website.

Current architecture

The Zero Trust security model consists of six defense areas:

identity, endpoint, applications, data, network, and

infrastructure. Each of these areas provides a layer of

protection. In this article, I will focus on four defense areas

to secure SmartMoney. I will begin with the network defense

area.

Create a micro-perimeter and use network
segmentation
Traditionally, we would have centralized network-based

perimeters to secure workloads in the network. A firewall is

placed in front of the network to keep malicious users

outside. Each workload running inside the network has the

same attack surface. In this approach, inside the network,

all requests are trusted. With Zero Trust, we create micro-

perimeters for each protect surface.

We should assume that a breach will occur at some point

and that a malicious user get access to the network.

An attacker could gain access through one of our

applications if there is a backdoor or vulnerability in any of

the third-party packages. We should isolate workloads by

using network segmentation to minimize the blast radius.

Each workload can be placed in its own network or subnet,

and network security groups can be used to allow traffic

only for specific purposes. All traffic should be denied by

default.

On the next page (64), you’ll find the new architecture for the

SmartMoney application.. In the rest of the article, I'll guide

you through the implementation and how each service

provides protection based on the Zero Trust principles.

The SmartMoney application is publicly available.

However, its access is limited to IP addresses from the

OneFinance office and employees' homes. This approach

leads to a large attack surface because anyone on the

internet can potentially threaten the application.

Even though enabling VPN is not necessarily a Zero Trust

improvement, we want to reduce the attack surface as

much as possible. By enabling VPN, we ensure that the

application is only privately available. However, we should

assume that at some point, a malicious user gains VPN

access and is inside the network. For this reason, the

workload should be created in an isolated VNET and

preferably divided into multiple subnets. The architecture

shows that the frontend application is in a separate subnet

from the backend application. A network security group

ensures that only traffic from the frontend subnet is allowed

to the backend subnet. Other workloads from OneFinance,

such as the ERP, run in their own VNET. No traffic is allowed

between the ERP and the SmartMoney VNET.

In the new architecture, I follow the hub-spoke model, a

commonly used architectural pattern. The hub is a central

point for connectivity, and all inbound and outbound traffic

flows through it. The firewall in the hub monitors and restricts

traffic. Spokes can reuse services placed in the hub.

SmartMoney subscription

Frontend app service

smartmoney.onefinance.com

SQL

Azure AD

Backend app service

api.smartmoney.onefinance.com

Storage account

064 Power Through Platforms

Zero trust principles
• Verify explicitly Using network security groups, we can

filter all traffic in the network. Security rules allow us to

allow or block inbound and outbound traffic for specific

IP addresses and ports.

• Least privilege Network security group - service tags help

ensure that only AppServices in the frontend subnet can

communicate with an AppService in the backend subnet.

• Assume breach Each workload runs in an isolated network

or subnet.

Security is a shared
 responsibility
between cloud
 providers and
their customers
By default, PaaS services in Azure are publicly available.

The SmartMoney application utilizes a storage account and

SQL database for storing data. Although Azure provides

secure services, it is important not to assume that just by

using Azure, your workloads are secured. Microsoft explicitly

states that security is a shared responsibility between Azure

and the customer.

Azure offers many options to secure your storage account.

However, your storage account may remain unsecured if

you fail to make your containers private or use Shared Keys

over Azure AD to authenticate. If your PaaS service is only

used by resources in your VNET, it is recommended that

you use Private Link. Private Link ensures traffic flows over

the Microsoft backbone instead of the internet. A private

endpoint and private DNS zone are created when enabling

Private Link. When the backend application connects to the

storage account, Azure detects that Private Link is enabled.

The private endpoint is now used to communicate with the

storage account.

In the architecture of SmartMoney, a new subnet is created

for private endpoints of the storage account and SQL server.

Network security groups are in place to only allow traffic

from the backend subnet to the private endpoint subnet.

As a result, resources inside the frontend subnet cannot

reach those services directly.

Frontend subnet

Backend subnet

Private endpoint subnet

SQL
private endpoint

SQL

Azure Active Directory Azure AD PIM Azure AD Identity Protection Azure AD Conditional Access Policies Defender for Cloud

Storage account

GatewaySubnet

AzureFirewallSubnet

Private DNS resolver inboud subnet

OneSmart
VNET

Hub VNET

Firewall

Employee
VPN gateway

Blobs
private endpoint

Frontend app service

Backend app service

smartmoney.onefinance.com
api.smartmoney.onefinance.com

api.smartmoney.onefinance.com
Private DNS Server

Private Link connection Private DNS resolver outbound subnet

SmartMoney spoke subscription OneFinance hub subscription

New architecture

XPRT. Magazine N°

14/2023

065

Zero trust principles
• Verify explicitly By enabling private link, we ensure that

only traffic from within the network can access the PaaS

services.

• Assume breach If a vulnerability in the front-end

application is exploited, the malicious user will not have

access to the storage account or SQL server.

We have implemented a micro-perimeter for the Smart-

Money application by placing it inside an isolated network.

This will minimize the blast radius in case of a breach.

The different components of the application are divided

into subnets, and traffic is explicitly verified using network

security groups. This was the first step in protecting our

application. The next step is to secure the data.

Know your Data and secure it
Data is the foundation of everything we do. Some of the

largest companies rely on data to generate revenue.

However, data theft or a ransomware attack can cause

significant damage to these companies and their end users.

The first step in securing data is to discover and identify

the data you have. Once this is done, classify the data with

a sensitivity label so that you know which data requires a

higher security level than others.

If you don t know
 your data, you can t
properly secure it

Below is an example of data classification for the

SmartMoney application.

• Highly confidential Customer's personal and financial

data.

• Confidential Advice for customers based on their data.

• General SmartMoney manuals for new employees.

• Public Marketing text for the SmartMoney application.

Based on the sensitivity label, we can identify the impact of

a data breach and data losses. Data discovery doesn't have

to be a manual task. Azure SQL includes Data Discovery &

Classifications, a feature that automatically scans your

database to identify columns containing sensitive data.

It also monitors and audits query results, labeling them with

a sensitivity label. Based on the recommendations, you

should take action to secure this data.

By default, all data stored by Azure is encrypted at rest.

Platform keys are used to encrypt the data, but it's also

possible to use customer keys (BYOK). You might think good,

that means I’m protected against data breaches? Well no,

encryption at rest means that your data is protected if an

intruder gets access to a data center and steals the drive

that holds your data. The data on the disk is encrypted, so

useless for the intruder. Whenever you access data on the

disk, for example, when using a storage account, the data

is decrypted so you can use it. From this point, it's your

responsibility to protect the data. One of the first things we

can do is encrypt data in transit. In the SmartMoney

application, we want to ensure that both the frontend and

backend applications run on HTTPS. This protects us from the

man-in-the-middle attack. TLS is enabled for Azure storage

accounts by default; it’s impossible to turn this off.

Encrypting data at rest and transit is the bare minimum we

should always do. In some cases, especially with financial

data, adding additional restrictions to sensitive information

is essential. Assuming a breach means considering

worst-case scenarios, such as what a malicious user could

do with leaked credit card information.

The SmartMoney application allows employees to import

bank transactions from customers. However, some data,

such as the account number, should never be visible to

customer service representatives. One way to achieve this is

by using dynamic masking in Azure SQL. This feature

automatically masks data when it is retrieved through a

query. For example, a credit card number would appear as

XXXX-XXXX-XXXX-1234 when masked.

If attackers gain access to database credentials, they can

compromise the entire database. This would allow the

attacker to create a backup or use SQL Management Studio

to access sensitive data. To address this issue, Azure SQL

offers the Always Encrypted feature. With this feature, data

is encrypted at the client using a database driver and then

stored in the database. The data can only be viewed in plain

text by the client application. The data remains encrypted

even if an admin accesses the database using SQL

Management Studio.

Data is encrypted using a Content Encryption Key (CEK),

which is stored in the database after being encrypted with a

Customer Master Key (CMK). Typically, the CMK is stored in

Azure Key Vault. By using this approach, sensitive data is

protected in the event of SQL credentials being compromised.

066 Power Through Platforms

Zero trust principles
• Assume breach By using Always Encrypted, a malicious

user doesn't have access to sensitive data. Only the client

application can decrypt the data.

Ransomware attacks can cause significant damage to an

organization. An attacker gains access to the network or

PaaS service and encrypts all data, making it inaccessible to

the organization. The only way for an organization to regain

access to the data is to pay the ransomware to the hackers.

Often, hackers announce a successful attack to the public to

put more pressure on the organization to pay the ransom.

Unfortunately, many organizations start worrying about

ransomware threats when it's too late.

When following the Zero Trust approach, we should

assume a breach from the start of a project. This means ac-

knowledging the potential for a ransomware attack at any

point. Therefore, we must protect our data against such an

event. As mentioned earlier, many companies rely on their

data, so protecting data should be their top priority. One

way to secure data is by taking backups. SmartMoney

manages many documents for customers in a storage

account. Through Azure Backup Vault, we can take backups

from the blob storage. There are two approaches to taking

backups: operational and vaulted. Operational backups

are a local solution, meaning data is stored locally on the

storage account. This protects data from accidental

deletion and corruption. With vaulted backups, the data

is moved and protected in the vault. Usually, with a

ransomware attack, the hacker will try to find backups and

make them unusable. Vaulted backups are stored elsewhere

and therefore protect you from ransomware attacks.

Zero trust principles
• Verify explicitly Only user accounts with high privileges

can access the vaulted backups.

• Assume breach Using Vaulted backups protects us from

ransomware attacks.

Securing data is essential for organizations like OneFinance.

One of the main principles of Zero Trust is to assume a

breach and keep it in mind from the start of the project.

In Azure SQL, we protected our sensitive data using data

masks and Always Encrypted. In addition, we used the

Backup Vault to protect data in the Azure storage account

from ransomware attacks. Up next is identity.

Verify and secure identities
One of the goals of Zero Trust is to eliminate trust. In the past,

we would place a firewall in front of our network and

implicitly trust all users within. However, with Zero Trust, we

should trust nobody, whether they are inside or outside the

network. All operations performed by an identity should be

verified to ensure that access is appropriate for that identity.

In Microsoft Azure, all identities are centrally stored in Azure

Active Directory. OneFinance has several applications, such

as SmartMoney, HR system, ERP, and the intranet. To access

each application, users need to authenticate. We should use

Single Sign-On (SSO) whenever possible to allow users to

use their same identity across applications. This approach

makes identities easier to maintain, reduces the security

risks of lost passwords, and provides a better user experience.

Azure Active Directory supports OpenID Connect, OAuth,

and SAML for implementing SSO. Users can view and access

applications they have been granted through the URL

https://myapps.microsoft.com.

Benefits of using SSO
• One identity for all applications

• Withdraw access from one central place and apply

for all applications

• Enforce strong authentication across all applications

The Zero Trust model requires verification of all external and

internal requests to ensure security. Insider threats or social

engineering attacks can lead to the exposure of employee

credentials. We should implement strong authentication

by enabling Multi-Factor Authentication (MFA) to prevent a

malicious user from using compromised credentials.

Client application SQL client driver

Data in plain text Data encrypted

https://myapps.microsoft.com

XPRT. Magazine N°

14/2023

067

Accounts are more than 99.9% less likely to be compromised

if you use MFA.

Multi-Factor Authentication (MFA) can be enforced for

identities in Active Directory. This requires users to provide

an additional form of identification. Verification methods

include Microsoft Authenticated App, FIDO2 security key,

SMS, and Voice call. MFA can be enabled through Security

Defaults when using Azure AD free or standalone Microsoft

365 license or with Conditional Access when you have an

Azure AD Premium or Microsoft 365 Business. It can be

enabled for specific users or groups. It's important to

exclude your break-glass account. This special high-

privilege account can be used in an emergency, and you

want to prevent it from being locked out.

After the COVID pandemic, many OneFinance employees

continue to work from home. SmartMoney stores a lot of

sensitive data, and the company must avoid this data falling

into the wrong hands. Therefore, we want to enforce MFA

when employees try to log in to the application from outside

the office. Conditional access policies enable us to select

which users, devices, cloud applications, and locations

require Multi-Factor Authentication.

Zero trust principles
• Verify explicitly Enabling MFA provides greater certainty

that users are who they claim to be.

• Assume breach If user credentials are compromised the

malicious user can’t use them because MFA is enabled.

Patrick van Kleef

https://www.linkedin.com/in/patkleef
https://www.github.com/patkleef

068 Power Through Platforms

Using the least privileged access is one of the main

principles of Zero Trust. With Privileged Identity

Management, you can provide time-based and approval-

based access. Users only get access to complete a

specific task using least privilege access, eliminating

sweeping access. For instance, if a user needs access to

a storage account to read files in a particular container,

we only give them (or their group) read access to the

container, not the entire storage account.

When implementing the Zero Trust security model, you must

assume a breach. Let's imagine that a user account was

compromised, and the intruder used that account to access

the storage account. If the least privileged access principle

wasn't followed, the intruder would have access to the entire

storage account, with all its consequences. However, by only

assigning access rights to complete specific tasks, the blast

radius of the breach would be minimal.

The customer service team manages financial

information from customers in the SmartMoney application.

They create new records, update data, and remove

irrelevant information. The financial expert team can utilize

the reporting feature to analyze this data and provide

personalized advice to each client. The customer team

should only have permission to create, modify, and delete

records, while financial experts should only have permission

to access the reporting feature.

Occasionally, customer data may need to be removed in

SmartMoney, but it's important to limit who can do so.

PIM allows for the implementation of Just-in-Time (JIT)

access. Instead of granting permanent access to an identity,

an identity can be made eligible for a role. If a user needs

access, they must activate the assignment and provide

justification for why they need access. They also choose

how long they need this role. A manager must approve

the assignment. Once the time period has expired, the

assignment is automatically removed. To use PIM, an

Active Directory P2 license is required.

Implementing Just-in-Time (JIT) and Just-Enough-Access

(JEA) provides greater control over who has access to

what and when. Typically, this is configured only once.

However, employees may receive promotions or switch

departments, so scheduling access reviews regularly in

Privileged Identity Management (PIM) is essential. We can

check if access rights are appropriate for each user through

these reviews.

Zero trust principles
• Least privilege Enabling JIT (Just-in-Time) and JEA

(Just-Enough-Access) with PIM ensures that users only

have access to complete a specific task for a short period

of time.

From January 2021 through December 2021, we’ve blocked

more than 25.6 billion Azure AD brute force authentication

attacks - Microsoft

The number of login events can be massive, with users

logging in to access applications every day and sometimes

multiple times per day. This can result in millions of login

events. Azure Identity Protection allows us to monitor user

sign-in patterns and detect risks such as anonymous IP

addresses, atypical travel, new countries, malware-linked IP

addresses, unfamiliar sign-in properties, leaked credentials,

or password spray.

With Identity Protection, you can enable a user risk policy

to detect compromised accounts or a sign-in risk policy to

detect unusual behavior. However, the number of signals

can be overwhelming, and removing false positives can be

difficult. It's possible to automate the response to risk

detections, such as enforcing multi-factor authentication

(MFA) when a sign-in risk is detected. For example, if a user

signs in from a different country, we can ask that user for an

additional authentication step by enforcing MFA. This allows

users to self-remediate detected risks and stay productive

without overwhelming administrators with sign-in issues.

In case of emergencies, a break glass account can be used,

but this can also lead to detected risks. Fortunately,

excluding users like the break glass account from the risks

policy is possible. Administrators can view sign-in, and user

risk reports in the Azure portal. To remove false positives, it's

possible to remove IP address ranges or countries from the

detected signals. To use Identity Protection, you need an

Azure AD P2 license.

Securing identities is one of the most critical defense areas

of Zero Trust. Identities have access to applications and

sensitive data. We have enabled single sign-on (SSO) and

enforced Multi-Factor Authentication (MFA) by using

conditional access. Privileged identity management (PIM)

ensures that we follow the least privilege access principle of

Zero Trust.

XPRT. Magazine N°

14/2023

069

Misconfigurations are the leading cause of data breaches.

In the next section, I will discuss how to prevent and detect

security risks in our infrastructure.

Use signals to protect your infrastructure
When implementing the Zero Trust model, we aim to monitor

all traffic going to and from a protect surface and remediate

risks. We should not view security as a one-time project but

rather an iterative process. All traffic is logged, and based

on these logs, we can enhance security to become more

robust. Introducing new workloads can create new security

risks, so consistently monitoring the entire infrastructure for

risks is essential.

When developing solutions in the cloud, the number of

signals that are collected can be overwhelming. It is

impossible to monitor all of these signals and remediate

risks manually. Azure provides Defender for Cloud, which

identifies and remediates risks across subscriptions.

Defender has capabilities for cloud security posture

management (CSPM) and cloud workload protection

platform (CWPP). It constantly scans subscriptions and

resources for security issues. A security score is provided

based on identified security risks and recommendations.

The higher the score, the better your cloud environment

is secured. CWPP protects workloads from threats.

Defender provides plans for servers, containers, databases,

and storage. Configured workloads are scanned, and risks

are reported based on their security level.

Defender for Storage analyzes the telemetry generated

by blob storage. Based on this data, alerts are triggered.

Telemetry includes operations on blobs such as create,

update, and delete. This doesn't impact the performance of

the storage account. Detected risks include unusual access

to an account, malicious content uploads, data encryption,

unusual data extraction, etc. Azure uses a technique called

reputation analysis to detect malware. It means that files

are hashed, and based on that, the likelihood is calculated if

that hash is malware. When risks occur, alerts are triggered.

It is essential to investigate alerts and check for any false

positives. For instance, an alert could be triggered if a lot

of data is downloaded at once. However, this might be an

employee with a valid reason.

Through 2022, at
 least 95 percent of
cloud security
 failures will be the
customer s fault.

Azure uses the blob.core.windows.net endpoint to create

blob storage accounts. Publicly available storage accounts

are easy to discover; simply search for "site:*.blob.core.

windows.net" on Google and you will get over 3 million

results. A sophisticated hacker can easily write a script to

find publicly available storage accounts, query for the

containers and blobs, and find valuable data. From there,

the hacker can discover the company and target them to

gain access to the access keys. Once they obtain access,

they have an entry point into the organization and can

infiltrate further by uploading malware. Defender for Storage

detects publicly available storage accounts and fires an

alert. This is great because we can remediate that risk

immediately.

This provides us with great information about our workloads

in real time. However, prevention is better than detection.

We should detect any misconfigurations before deploying

them to production.

Define the desired state of your infrastructure using code

and scan for misconfigurations.

Using Infrastructure as Code (IaC) has many advantages,

such as reducing the risk of human error, ensuring

consistency, enabling automation, and saving costs.

By implementing a good DevOps pipeline that includes

pull requests and reviews, faults can be detected early.

Terraform is an open-source IaC tool that works with many

cloud services. The desired state of the infrastructure is

written in code and can be easily deployed. Because

Terraform is open-source, many extensions are available

for use. Security tools like tfsec and Checkov can scan

Terraform code for misconfigurations and security issues,

allowing us to provide engineers with feedback early in the

DevOps pipeline.

070 Power Through Platforms

When we design a Zero Trust architecture, we want to do this

on an organizational level. The standards that are defined

apply to all workloads. With Azure Policies, we can govern

our Azure resources from one central place. For instance,

using access keys is a potential risk because anyone can

use those access keys to access the storage account.

To ensure that storage accounts don’t use access keys, we

can activate the policy: "Storage accounts should prevent

shared key access". We can deny or audit the resource

depending on how the policy is configured. When creating

a new policy, you first want to use the audit option to test

which resources are affected. If you start using deny, you

potentially could block teams.

For the SmartMoney application, we have already enabled

Private Link for the storage account to ensure that the

storage account is only reachable in the VNET. OneFinance

has many workloads, and some are using storage accounts.

To ensure that all storage accounts created in subscriptions

use Private Link, we can use the built-in policy 'Configure

Storage account to use a private link connection'. This policy

will automatically configure Private Link if it's not deployed

for a storage account. Policies can be created at the

management group, subscription, and resource group level.

OneFinance wants to enable it for storage accounts in all

subscriptions, so the best place to create this policy is at the

management group level.

Misconfigurations are the leading cause of data breaches.

To prevent this, it is recommended to use a defense-in-

depth approach by creating multiple layers of security.

It's a best practice to implement both a prevention and

detection mechanism.

1. Prevention - Declaratively define infrastructure using

Terraform.

2. Prevention - Use tools such as tfsec and Checkov to

detect risks and security improvements early in the

DevOps pipeline.

3. Prevention - Use pull requests and reviews.

4. Prevention/ Detection - Azure policies help align

infrastructure with your organization's policies.

5. Detection - Defender for Cloud to analyze signals,

detect, and remediate risks.

Closing words
The world has changed, and we must accept that bad

actors are everywhere. Dynamic work environments, smart

devices, and increasingly sophisticated cybercriminals

increase the attack surface. To protect ourselves, we need a

new security approach: Zero Trust. This approach eliminates

trust and assumes breach.

With Zero Trust, we don't trust anyone, not even our

employees. In this article, I explained the main principles

of Zero Trust, why we need it, and how to implement it.

Using an example application, I demonstrated how to follow

Zero Trust principles using services in Azure. Note that this

was not a comprehensive list of all Azure services and

features you can use, but it should give you an idea of why

we should use them.

</>

Read more
 online?

071

XPRT. Magazine N°

14/2023

Preventing
Identity Crisis
in Azure

As organizations move more and more operations to the cloud, ensuring these
operations run securely is crucial. We use hardware tokens, complex passwords,
One-Time-Passwords, and authenticator apps to authenticate human accounts.
The question remains: how do we securely do this with system accounts?
In this article, I'll walk you through the options and give examples of how to use
each option best.

Author Loek Duys

072 Power Through Platforms

The Principle of Least-Privilege
Before diving into more details, knowing about the least-

privilege principle is essential. The principle of least

privilege is an essential aspect of security in the cloud.

It involves granting the minimum level of access necessary

to perform a specific task. Minimizing permissions helps

reduce the risk of security breaches and unauthorized

access to sensitive information.

System accounts in Azure
Regarding system accounts in Azure, applying the principle

of least privilege requires careful consideration of the

level of access each account requires. For example, you

may have a system account that only needs access to a

specific subset of resources, such as read-only access to

a database. In this case, granting full administrative access

to the account would be unnecessary and increase the risk

of security breaches.

Three types of Identity in Azure
To authenticate services to other services running inside

Azure, you can choose from various options, such as Service

Principals, Managed Identities, and Federated Identities.

Each has benefits and drawbacks.

Service Principals
Using a Service Principal was the earliest method to

authenticate systems to Azure Active Directory (AAD).

A Service Principal is an identity created for use with

applications, services, and automation tools to access

specific Azure resources. You use them to authenticate and

authorize applications to access specific Azure resources.

Service Principals are similar to user accounts, but you use

them for non-interactive scenarios. To authenticate using

a Service Principal, you must provide the Client’s Identifier

and a Client Secret or Client Certificate. Both passwords and

certificates have an expiration date, so your authenticating

system needs to be able to deal with secret rollovers.

The authenticating system does not need to run inside

Azure; it can run anywhere as long as internet access is

available. You can see the way this works in Figure 1.

Figure 1: Using a Service Principal

When to use
Use this approach when you have complete control over the

system requesting access. For example, Service Principals

work very well when creating resources in Azure using

a GitHub Actions pipeline. GitHub Actions has built-in

functionality to pass the Client Secret of your Service

Principal to the tasks that create the resources. You have

complete control over both systems, making this a viable

option. Make sure to assign the proper rights to the Service

Principal, for example, by assigning it the Azure Role Based

Access Control (RBAC) role 'Contributor' at the scope of a

resource group or (at most) subscription. Having the

Contributor role will allow the Principal to create resources

but not access the data stored inside the resources, nor

does it allow the assignment of roles.

Managed Identities
A Managed Identity is a Service Principal managed by Azure.

You can use it to authenticate specific Azure resources to

access other Azure resources. The main difference with

regular Service Principals is that you don’t need to store

credentials to use them; Azure manages this and secret

rollover for you. The downside of Managed Identity is the

authenticating system must run inside Azure to get a

Managed Identity assigned.

When to use
Managed Identities can only be assigned to Azure resources,

limiting their use to Cloud services running within Azure.

In my opinion, you should rely on Managed Identities as

much as possible for authentication between Azure

services. For example, you can configure a Managed Identity

with an Azure Web App and allow it access to an Azure SQL

Database, as displayed in Figure 2.

Figure 2: Example of Managed Identity

Similarly, you can use Managed Identity to allow your Web

App to access services like Storage Accounts, Key Vaults,

Service Bus, etc. Most popular Azure services support

Managed Identity nowadays.

The Managed Identity connected to the Web App must be

allowed to access the Azure SQL Database. As with Service

Principals, you can do this using Azure RBAC. In this case,

the Principal needs to be allowed to access data but not to

Workload

Workload

Azure AAD

Azure AAD

AAD Protected Resource

AAD Protected Resource

Client Id + Secret/Certificate

Access protested resource using token

Provide ADD access token

Azure Web App

Azure Web App

Azure AAD

Azure AAD

Azure SQL Db

Azure SQL Db

Get token using Managed Identity

Access database using ADD access token

Preconfigured with
Managed Identity

XPRT. Magazine N°

14/2023

073

modify the resource itself. You can do this by creating a SQL user inside the

database to log in using the Managed Identity. Next, you need to assign

database-specific roles to it. This way, the Managed Identity can only be used

for a single purpose, with minimal privileges.

Federated Identities
A Federated identity in Azure is authenticated to AAD using and trusting an

external identity provider (IDP). You first authenticate a system with the external

IDP and gain access to Azure resources through Identity Federation. When two

IDPs are federated, one IDP trusts tokens issued by the other.

A Federated identity allows you to access Azure resources running outside Azure

without needing Service Principal credentials. Because you are using an external

IDP, you can also control the way it issues access & identity tokens, which opens

up interesting scenarios. For example, you could let a locally running containerized

IDP issue a token for a Service Account in Kubernetes. You can configure Azure AD

to trust the containerized IDP and use its token to authenticate a Service Principal.

It turns out this scenario already exists under the name' Workload Identity'.

You can see how it works in Figure 3.

Figure 3: Example of federated Identity

When to use
Using federated Identity works well when running workloads in Azure Kubernetes

Service. But the mechanism also works outside of Azure. It doesn’t matter where

your code runs as long as you have correctly configured Azure Active Directory,

and AAD can reach your local IDP’s metadata endpoint over the public internet.

Federated Identity can also work when allowing systems you do not own to

access your AAD-controlled resources. Unfortunately, Microsoft does not allow

the remote IDP to be Azure Active Directory. Other than that, you can configure

trusts to any remote OAuth-compliant IDP. Imagine you have a business partner

who wants to access your Web API, protected by AAD, from one of their systems.

They protect their systems using Duende's Identity Server platform. Instead of

providing them with (expiring) credentials of a Service Principal, you could set up

Federated Identity as described in Figure 4.

Kubernetes

Identity Server

Identity Server

Kubernetes

Pod

Workload

Workload

Pod

Azure AAD

Azure AAD

Azure AAD

Azure AAD

Azure Resource

Web API

Web API

Azure Resource

Provide service account based token to Pod

Provide process based token

Validate token using Kubernetes metadata endpoint

Validate token using metadata endpoint

Send local token to request ADD token

Send local token to request AAD token

Return AAD access token

Return AAD access token

Access Azure Resource using ADD access token

Access Azure Resource using ADD access token

Conclusion
The move to the cloud brings a new set

of security challenges. However, by

 understanding the various options

available in Microsoft Azure and Azure

Active Directory, you can secure your

workloads and prevent an identity

crisis. Whether you are using Service

Principals, Managed Identities, or

Federated & Workload Identity,

applying the least-privilege principle

to reduce the risk of security breaches

and unauthorized access to sensitive

information is essential.

</>

Figure 4: Business federation example

Loek Duys

Read more
 online?

https://www.twitter.com/lduys
https://www.linkedin.com/in/loekd
https://www.github.com/loekd

074 Power Through Platforms

Ten tips and tricks
to secure your
Azure subscription
Creating a new Azure subscription can be done in a few clicks but adopting the cloud
in your organization takes more time and effort. At Xpirit, we help our customers on
their cloud journey and one of the important factors is to make sure that your Azure
environment is secure when migrating your workloads. In this article, we list ten tips
and tricks that are a good starting point to make sure you can benefit from the
possibilities of the cloud in a secure way.

Author Laurenz Ovaere

https://www.github.com/lovaere
https://www.linkedin.com/in/lovaere

XPRT. Magazine N°

14/2023

075

1. Protect your Azure Active Directory account
with MFA
Azure Active Directory (Azure AD or AAD for short) is the

identity provider for Azure and takes care of the

authentication and authorization scenarios. Every time you

access the Azure platform you will need to pass the AAD

authentication in order to prove that you are really the

person you pretend to be. A common way to do this is by

providing your username and password. However, research

shows that it is a lot safer to combine this with multi-

factor authentication (MFA). With MFA you must confirm your

authentication in a mobile app before access is granted to

your account.

MFA based on a notification in the Microsoft Authenticator

app is a free option available to any Azure AD user including

the free tier. Higher AD tiers can also choose to receive a

phone call, a text message or use a hardware token as extra

verification.

Enabling MFA is no longer enough to protect your environment.

The Microsoft Authenticator app evolves over time in order

to avoid new types of attacks such as MFA bombing. In this

type of attack, users are overloaded by approval requests

from an attacker in the hope they click approve. The number

matching feature is one example that avoids incorrect

approvals by requesting a matching number shown on the

logon screen of the user and will be enforced later this year.

Showing additional context information to the user like the

origin of the request is a second example that can further

improve the security. This option needs to be enabled as an

Authentication method policy in Azure AD.

2. Enable conditional access or make sure you
enable the security defaults on your free Azure
AD tenant
The Azure AD security defaults are a set of rules that can

be used to get started with a preconfigured set of security

settings in Azure AD. These are available to all Azure AD

tiers including the free tier. In fact, you need to enable the

security defaults to enforce MFA setup on the Azure AD free

tier. This will also block legacy authentication protocols that

are allowed to bypass multifactor authentication. With the

security defaults enabled, you have no control when the MFA

is prompted to the user. The MFA setup is enforced but Azure

AD will decide automatically based on signals like location,

device, role and task if a prompt is appropriate.

In case you want more granular control over when MFA is

prompted to the user, you need to use conditional access,

which is available in the premium Azure AD tiers. This will

also give you the ability to block access from certain

non-authorized locations, block risky sign-in behavior or

block access from non-compliant devices. These are all

examples of conditions you can define for certain users or

groups before they get access. Enabling conditional access

can improve your setup in two ways. First, you can be stricter

before you grant access, which limits the attack surface

of your environment. If you have no access to your Azure

environment from a non-compliant device neither will an

attacker. Second, you can make a distinction between types

of access and tighten the authentication requirements

for administrators compared to standard users. This will

increase your security without too much impact on all your

users.

3. Use just-in-time access for tasks that require
higher privileges
After successful authentication, Azure role-based access

control (RBAC) is the authorization system that provides

fine-grained access control to Azure resources. The roles

assigned to your user profile define which actions you can

take with a certain resource. Administrators typically have

extra roles assigned to their profile to take privileged actions

to Azure resources. The problem is these role assignments

are permanent and so could be used by attackers that

have access to your account or open doors for accidents

by yourself.

Privileged Identity Management (PIM) is an Azure AD

premium feature available in the P2-tier that fixes these

problems. Azure AD roles with higher privileges are no longer

assigned permanently with PIM but just-in-time after a

request by the user and for a limited duration. This method

comes with a lot of benefits. For example, you can require

extra approvals by other members before the access is

granted, you can enforce an extra MFA prompt or ask the

user to enter a reason why they need this access for the

time duration requested. The last one results in a clear audit

history for your environment.

4. Use managed identities where possible
Beside users, we also have services that need access to our

Azure resources. For example, an Azure Web App that writes

data to an Azure SQL database, an Azure Function App that

reads messages from Azure Service Bus, etc. Both use cases

can be solved by sharing secrets with our services.

However, when relying on secrets we also need to manage

them and store them securely. This is where managed

identities for Azure comes in.

076 Power Through Platforms

With Managed identities for Azure, our services have an

identity assigned in Azure AD. We can assign specific roles to

that identity just like we do for users with Azure role-based

access control (RBAC). The service itself will use its identity

in the background to obtain an Azure AD token that can be

used to access the requested service. The advantages are

that there are no secrets to manage, it is more secure and

free to use.

5. Store secrets, keys and certificates in Azure
Key Vault
After implementing Managed identities for Azure you won't

have a lot of secrets anymore to manage. However, there

are two scenarios that still require key management.

First, services that do not integrate with Azure AD still use

secrets, keys or certificates that you need to store in a safe

place. Azure Key Vault is a well-known Azure service desig-

ned to store these in a safe way.

Second, when you choose to manage the encryption keys

for Azure Disk Encryption yourself with Customer Managed

Keys (CMK), you will also need to store these keys in Key

Vault. In contrast, Platform Managed Keys (PMK) are

managed by Azure in the background but provide less

flexibility.

Combining both managed identities and Azure Key Vault

makes the solution even better. An Azure AD integrated

service can use managed identity to access Azure Key Vault

and request a secret, key or certificate. That way our Key

Vault is the single dedicated place for secret information

and we can use Azure role-based access control (RBAC) to

manage the access rights.

6. Organize your Azure resources effectively to
improve your access and policy management
When the number of resources grows, it becomes very hard

to control your role-based access control lists or Azure

policies at the resource level. However, to manage access

on a higher level while still applying the principle of least

privilege, you need to combine resources with the same

access rights. Azure resources can be organized on four

different levels: management groups, subscriptions,

resource groups and the resources itself. An effective

organization makes it easier to manage, track costs and

secure your resources.

There is no generic way of organizing resources that works

for everyone but here are some rules of thumb to get you

started. For application development, production and non-

production resources are typically managed in different

subscriptions to make a clear boundary between both and

ease the access and policy management. Resources owned

by separate teams can be stored in different subscriptions.

And lastly, management groups can be used to group

subscriptions that belong to the same department and

share some common access rights or policies.

XPRT. Magazine N°

14/2023

077

7. Make private networking the default for your
Azure resources
When creating resources in Azure, most of the time they

are exposed to the public internet. For example, an Azure

Web App, a storage account or a virtual machine are all

accessible over the internet without further modifications.

There are situations where you want this public exposure.

Think about your company’s public website. But in general,

it is better to start with private networking and explicitly

expose certain endpoints. By marking these endpoints

as public explicitly, you can also improve the protection if

required. Adding Azure Application Gateway or Azure Front

Door for example can give you Web Application Firewall

(WAF) capabilities to further improve the security of these

endpoints.

Marking endpoints as public or private is not as easy as it

sounds. It all starts with a good network design. The hub

and spoke topology discussed as part of the Azure landing

zones in our previous magazine is a good starting point.

The hub in the virtual network can be connected to an on-

premise network using a VPN or ExpressRoute connection.

Ensuring a safe and private connection. Furthermore, the

use of network security groups, private endpoints, private

DNS and VNET integration will make sure your services use

private networking to connect to each other instead of the

public internet. Note that some of these features are only

available in the higher pricing tiers. Part of our services at

Xpirit is to help you finding the right balance between costs

and features.

8. Protect your data with encryption
All the previous tips and tricks are here to avoid access of

unauthorized users to your Azure environment. Another extra

way to protect your environment is to make sure your data is

not readable to a potential attacker due to encryption.

At first, we can make use of encryption in transit. This means

we will encrypt data before sending it over the network.

The typical example here is TLS encryption used with HTTPS.

By disabling HTTP endpoints or redirecting traffic to HTTPS,

we ensure our data is unreadable to attackers.

Second, we also have encryption at rest. Azure Storage

provides automatic server-side encryption to storage

accounts. This makes the data unreadable to unauthorized

users. Virtual machines running Windows or Linux can also

benefit from encryption with Azure Disks. This feature lets

you encrypt both the data and OS disks.

9. Make sure you apply pending updates
Applying updates is an important part of security and

when choosing a cloud platform like Azure, some updates

are done by Microsoft. However, a cloud platform comes

with shared responsibilities and there are parts of your

environment that you are responsible for and that you

need to update regularly. It is important to know your

responsibilities before you use a certain service. I will give

some examples below.

For Platform-as-a-Service (PaaS) products, as the name

suggests the platform is managed by Azure. For example,

you don’t need to apply security patches to the .NET runtime

on an Azure App Service. However, applying package

updates to your software is an example of components

you are responsible for. A tool like Dependabot can inform

you about pending package updates. More on this in our

previous edition of our magazine.

Virtual machines are Infrastructure-as-a-Service (IaaS)

products that require more maintenance from your side.

The hardware components like CPU, memory, disks, cooling,

etc. are managed by Azure but you are responsible for the

installed software. Azure Automation can already help you

with the update management of your operating system,

but the other software patches require extra action from

your side.

10. Monitor your environment and improve
continuously
At last, even with all security measures in place it remains

important to monitor your Azure environment and improve

continuously where needed. Microsoft Defender for Cloud

(formerly known as Azure Security Center) integrates

different security monitoring, compliance checks and alerts

in one single dashboard. This makes it a good place to look

for potential improvements to your environment.

Conclusion
Hopefully these ten tips and tricks can get you started on

your cloud journey in a secure way. Please reach out if

you have questions about the security of your Azure

environment. Our Cloud Security Scan offering can evaluate

the current state of your environment and define potential

security optimizations.

</>

Read more
 online?

078 Smooth Delivery

Infrastructure as
Code on Azure:
Bicep vs. Terraform
vs. Pulumi
On Azure, three of the most obvious choices for Infrastructure as Code (IaC) are
Bicep, Terraform, and Pulumi. Bicep is Microsoft’s own domain-specific language,
whereas Terraform is the open-source tool that is cloud agnostic. Where Bicep
and Terraform both have their own language, Pulumi allows you to write your
Infrastructure as Code using your favorite language like C#, Python, or Go.

Author Erwin Staal

https://www.twitter.com/erwin_staal
https://www.linkedin.com/in/erwinstaal
https://www.github.com/staal-it

XPRT. Magazine N°

14/2023

079

The goal of this article is to compare the three tools and

leave you with enough understanding of each of them to

make a good choice when it comes to an Infrastructure as

Code tool for your next project. We will, of course, talk about

the features of each of these tools but, more importantly, will

also compare the developer experience with each of them.

Let’s dive in and see who will be the last one standing and

who will throw in the towel first.

Introduction
Before we start comparing the three contestants of today,

let them first all properly introduce themselves.

Bicep
Bicep is a domain specific language (DSL) created by

Microsoft. It is their answer to the problems we had with its

predecessor, ARM templates. ARM templates have been

around for many, many years. Describing your IaC in ARM

templates was done using JSON. That made ARM templates

very verbose, hard to read, and even harder to maintain.

Splitting up a template into multiple smaller, reusable

components was way too hard. Bicep is here to solve those

problems and it really does make our life easier. Unlike the

other two tools in this contest, Bicep can only be used to

configure resources on Azure. More on that later. A very

simple Bicep template looks like this:

@description('The name of the storage account')

param name string

@description('Azure region of the deployment')

param location string

@allowed([

 'Standard_LRS'

 'Premium_LRS'

])

@description('Storage SKU')

param storageSkuName string = 'Standard_LRS'

resource storage 'Microsoft.Storage/storage-

Accounts@2021-09-01' = {

 name: name

 location: location

 sku: {

 name: storageSkuName

 }

 kind: 'StorageV2'

 properties: {

 accessTier: 'Hot'

 allowBlobPublicAccess: false

 allowCrossTenantReplication: false

 allowSharedKeyAccess: true

 minimumTlsVersion: 'TLS1_2'

 supportsHttpsTrafficOnly: true

 }

}

output storageId string = storage.id

The above example deploys a storage account on Azure.

It gets a few inputs, specifies the resource, and returns an

output that can be used by other templates or scripts.

Terraform
Terraform is an open source IaC tool owned by HashiCorp.

It was created in 2014 and, like Bicep, is a DSL. A big

difference between Bicep and Terraform is that Terraform

can manage infrastructure on all big cloud platforms and

other services. What we in Terraform call 'Providers' enable

Terraform to work with virtually any platform or service with

an accessible API. These providers are often created by the

owner of the targeted platform but there are also numerous

providers created by the community. Most of them are

open source. You could even build your own if you need to.

The example below creates a storage account using

Terraform.

terraform {

 required_version = ">= 1.1.7"

 required_providers {

 azurerm = {

 source = "hashicorp/azurerm"

 version = ">= 3.27.0"

 }

 }

}

provider "azurerm" {

 features {}

}

variable "name" {

 type = string

}

variable "resource_group_name" {

 type = string

}

resource "azurerm_storage_account" "storage" {

 name = var.name

 resource_group_name = var.resource_group_name

 location = "westeurope"

080 Smooth Delivery

 account_tier = "Standard"

 account_replication_type = "LRS"

}

output "storageId" {

 value = azurerm_storage_account.storage.id

}

As you can see, this configuration is slightly more complex

compared to the Bicep version which has the same result.

In Terraform you first need to configure a provider since you

could be working with one or more providers. A provider

could have a specific configuration, hence the 'azurerm'

provider block. Defining a variable is a bit more verbose.

You can, unlike in Bicep, move them into a different file which

could increase readability. The same goes for outputs, the

terraform block or the provider configuration.

Pulumi
Pulumi is our third contestant of today. It was named after

the company that created it in 2018. What makes Pulumi

different is that it allows you to write your infrastructure

as code in your favorite language: TypeScript, JavaScript,

Python, Go, .NET, Java, and YAML. Like Terraform, it allows

you to manage infrastructure on basically any cloud or

service provider. Even if it is not supported by default, you

could always easily create your own code to interact with a

service provider's API. The example below creates a Storage

Account in Azure using C# and Pulumi.

using Pulumi;

using Pulumi.AzureNative.Resources;

using Pulumi.AzureNative.Storage;

using Pulumi.AzureNative.Storage.Inputs;

using System.Collections.Generic;

return await Pulumi.Deployment.RunAsync(() =>

{

 var config = new Pulumi.Config();

 // Create an Azure resource (Storage Account)

 var storageAccount = new StorageAccount(config.

Get("storageAccountName"), new StorageAccountArgs

 {

 ResourceGroupName = config.Get("resourceGroupNa-

me"),

 Sku = new SkuArgs

 {

 Name = SkuName.Standard_LRS

 },

 Kind = Kind.StorageV2

 });

 // Export the primary key of the Storage Account

 return new Dictionary<string, object?>

 {

 ["storageId"] = storageAccount.Id

 };

});

The first thing you need to do here is grab the Nuget

package for Azure. From there, every resource is created by

instantiating an instance of a specific class and passing in

a few parameters.

You might be wondering, wasn't there a version of Terraform

in which I can use a programming language as well? Yes,

that is true! It is called Terraform CDK (Cloud Development

Kit). I have left it out for a few reasons. The most important

one is that I simply have never used it. I personally don't see

it used in the wild often. That might be because the product

has not reached version 1.0 yet and Terraform itself warns

for breaking changes. It also supports a few less languages

compared to Pulumi.

Single or Multi Cloud support?
An important consideration while picking any of these tools

is what platforms you are deploying onto. Two of the three

tools we discuss here, Terraform and Pulumi, have multi

cloud support. That means that they can interact with

multiple cloud providers and services. You could, for

example, create an App Service in Azure and then pass that

URL to Cloudflare to register in DNS. As you see, that is not

limited to the just the three big cloud vendors but includes

monitoring tools, DNS providers, GitHub, Azure DevOps, and

much more. A downside can be that these tools do not

always support every feature of a cloud vendor or do not

support a new feature on launch day. These services often

rely on the community to implement features. For Terraform

you need to wait for the provider to be updated. Since they

are mostly open source you can do that yourself of course.

Pulumi uses two types of providers, "bridged" providers

which use Terraform providers to map out the different

functions available for each API on the cloud provider, or

"native" providers which map out the functions directly from

the Cloud Provider API. With the bridged providers you

obviously have the same issues as with Terraform native.

For the Azure provider that is not the case since it is a

native provider. It is updated every night automatically

by recreating it against the Azure APIs.

To give you an idea of what a multi cloud implementation

could look like in these tools, let's start with an example in

Terraform. The below code will create an Azure App Service

and configure a custom domain on it. The domain is

registered with Cloudflare.

XPRT. Magazine N°

14/2023

081

resource "azurerm_service_plan" "app_service_plan" {

 name = "asp-${var.project_name}

-${var.environment}"

 resource_group_name = var.resource_group_name

 location = var.location

 os_type = "Linux"

 sku_name = "B1"

}

resource "azurerm_linux_web_app" "app_service" {

 name = "app-${var.project_name}

-${var.environment}"

 resource_group_name = var.resource_group_name

 location = var.location

 service_plan_id = azurerm_service_plan.app_

service_plan.id

 site_config {}

}

resource "cloudflare_record" "domain-verification" {

 zone_id = "72e0e6d795ec809b9158033c4a4c73d3"

 name = "asuid.tf-demo.staal-it.nl"

 value = azurerm_linux_web_app.app_service.custom_

domain_verification_id

 type = "TXT"

 ttl = 3600

}

resource "cloudflare_record" "cname-record" {

 zone_id = "72e0e6d795ec809b9158033c4a4c73d3"

 name = "tf-demo.staal-it.nl"

 value = azurerm_linux_web_app.app_service.

default_hostname

 type = "CNAME"

 ttl = 3600

}

resource "azurerm_app_service_custom_hostname_

binding" "hostname-binding" {

 hostname = "tf-demo.staal-it.nl"

 app_service_name = azurerm_linux_web_app.

app_service.name

 resource_group_name = var.resource_group_name

 depends_on = [

 cloudflare_record.domain-verification,

 cloudflare_record.cname-record

]

}

First, the app service plan and the web app itself are

created. Next, we create the two records in Cloudflare.

You can distinguish the two providers we use by looking at

the name of the type we create. Stuff for Azure starts with

'azurerm', stuff for Cloudflare with ‘cloudflare' The last step

is to set the domain on the App Service ones they exist in

Cloudflare.

Using Pulumi and C#, the exact same functionality is

achieved using the following code:

using Pulumi;

using Pulumi.AzureNative.Web;

using Pulumi.AzureNative.Web.Inputs;

class AppService : Pulumi.ComponentResource

{

 [Output("AppServiceEndpoint")]

 public Output<string> AppServiceEndpoint {

get; private set; }

 public AppService(string name, AppServiceArgs args,

ComponentResourceOptions? opts = null)

 : base("azure:custom:appservice", name, opts)

 {

 var appServicePlan = new AppServicePlan

($"asp-{name}", new AppServicePlanArgs

 {

 ResourceGroupName = args.ResourceGroupName,

 Kind = "App",

 Sku = new SkuDescriptionArgs

 {

 Tier = "Basic",

 Name = "B1",

 },

 }, new Pulumi.CustomResourceOptions

{ Parent = this });

 var app = new WebApp($"app-{name}",

new WebAppArgs

 {

 ResourceGroupName = args.ResourceGroupName,

 ServerFarmId = appServicePlan.Id

 }, new Pulumi.CustomResourceOptions

{ Parent = this });

 AppServiceEndpoint = app.DefaultHostName;

 var domainVerification = new Pulumi.

Cloudflare.Record("domain-verification",

new Pulumi.Cloudflare.RecordArgs

082 Smooth Delivery

 {

 Name = "asuid.pulumi-demo.staal-it.nl",

 ZoneId = "72e0e6d795ec809b9158033c4a4c73d3",

 Type = "TXT",

 Value = app.CustomDomainVerificationId,

 Ttl = 3600,

 }, new Pulumi.CustomResourceOptions

{ Parent = this });

 var record = new Pulumi.Cloudflare.Record

("record", new Pulumi.Cloudflare.RecordArgs

 {

 Name = "pulumi-demo",

 ZoneId = "72e0e6d795ec809b9158033c4a4c73d3",

 Type = "CNAME",

 Value = app.DefaultHostName,

 Ttl = 3600,

 }, new Pulumi.CustomResourceOptions

{ Parent = this });

 var exampleCustomHostnameBinding =

new WebAppHostNameBinding("exampleCustom-

HostnameBinding", new()

 {

 HostName = "pulumi-demo.staal-it.nl",

 Name = app.Name,

 ResourceGroupName = args.ResourceGroupName,

 }, new CustomResourceOptions { DependsOn =

{ domainVerification, record }, Parent = this

});

 this.RegisterOutputs();

 }

}

Our last contender, Bicep, is always on par with any feature

available in the Azure cloud on launch day. For Bicep,

that is a lot easier since it is a single cloud tool built and

maintained by Microsoft itself. A big downside of this single

cloud tool is that you are limited to managing your Azure

infrastructure. More specifically, you can only interact with

what we call the Azure control plane. Azure operations can

be divided into two categories - control plane and data

plane. Simply put, you use the control plane to manage

resources in your subscription, you use the data plane to

manage the internals of a resource. For example, Bicep

allows you to create a SQL Database but does not let you

create a user in that database. Bicep also does not let

you interact with Active Directory. Creating an Enterprise

Application and using it in your IaC is not an easy task.

There are mainly two alternative approaches here; run

some code in your CI/CD pipeline and feed the result to

Bicep on deploy or use the DeploymentScripts resource.

The DeploymentScripts resource allows you to run an

Azure CLI or PowerShell script during the execution of Bicep.

We could use that to accomplish the example with

Cloudflare we saw in Terraform and Pulumi. What happens

under the hood when you use a DeploymentScripts resource

is that an Azure Container Instance will be created, and a

container will be deployed to run your script. This is slow

and does not support enterprise features like network

integration. This often limits the use of that resource.

Creating the App Service and records in Cloudflare using

Bicep would look like this:

param name string

param location string

param cloudFlareToken string

var record = 'bicep-article-demo'

var domain = 'staal-it.nl'

resource appServicePlan 'Microsoft.Web/server-

farms@2019-08-01' = {

 name: 'asp-${name}'

 location: location

 sku: {

 name: 'B1'

 capacity: 1

 }

}

resource webApplication 'Microsoft.Web/sites -

@2018-11-01' = {

 name: 'app-${name}'

 location: location

 properties: {

 serverFarmId: appServicePlan.id

 siteConfig: {

 netFrameworkVersion: 'v6.0'

 }

 }

}

resource cloudflare 'Microsoft.Resources/deployment-

Scripts@2020-10-01' = {

 name: 'cloudflare'

 location: location

 kind: 'AzurePowerShell'

 properties: {

 forceUpdateTag: '1'

 azPowerShellVersion: '8.3'

XPRT. Magazine N°

14/2023

083

 arguments: '-hostname "${record}" -domain

"${domain}" -destination "${webApplication.proper-

ties.defaultHostName}"'

 environmentVariables: [

 {

 name: 'CLOUDFLARE_API_TOKEN'

 secureValue: cloudFlareToken

 }

]

 scriptContent: '''

 param([string] $hostname, [string] $domain,

[string] $destination)

 $zoneid = "72e0e6d795ec809b9158033c4a4c73d3"

 $url = "https://api.cloudflare.com/client/v4/

zones/$zoneid/dns_records"

 $addresses = (

 ("awverify.$hostname.$domain",

"awverify.$destination"),

 ("$hostname.$domain", "$destination")

)

 foreach($address in $addresses)

 {

 $name = $address[0]

 $content = $address[1]

 $token = $Env:CLOUDFLARE_API_TOKEN

 $existingRecord = Invoke-RestMethod

-Method get -Uri "$url/?name=$name"

-Headers @{

 "Authorization" = "Bearer $token"

 }

 if($existingRecord.result.Count -eq 0)

 {

 $Body = @{

 "type" = "CNAME"

 "name" = $name

 "content" = $content

 "ttl" = "120"

 }

 $Body = $Body | ConvertTo-Json -Depth 10

 $result = Invoke-RestMethod -Method Post

-Uri $url -Headers @{ "Authorization" =

"Bearer $token" } -Body $Body -Content-

Type "application/json"

 Write-Output $result.result

 }

 else

 {

 Write-Output "Record already exists"

 }

 }

 '''

 supportingScriptUris: []

 timeout: 'PT30M'

 cleanupPreference: 'OnSuccess'

 retentionInterval: 'P1D'

 }

}

resource symbolicname 'Microsoft.Web/sites/

hostNameBindings@2022-03-01' = {

 name: '${record}.${domain}'

 parent: webApplication

 dependsOn: [

 cloudflare

]

}

As you can see, we need a lengthy PowerShell script that

we had to write ourselves to get done what the other tools

nicely abstracted away for us. You also do need to know

another language and tooling to get the same result.

Developer experience
An important difference between these three tools is the

language they give you to write your Infrastructure as

Code. Both Terraform and Bicep are what we call a Domain

Specific Language (DSL). A DSL is what you would think it is;

a language created for a very specific domain. In general,

these DSLs are a bit easier to learn compared to a

Programming Language (we will talk about programming

languages in a bit). That is partly because they are less

complete and guide you a bit more in a certain direction of

doing things. That is not to say that they are easy. You still

need to know how to properly structure things not to make a

big mess out of your IaC.

What sets Pulumi apart from the other two tools is you can

use your favorite programming language to write your IaC.

You can use Java, Node, Python, .NET (F#, C#, VB) or GO. Any

of these languages are way more flexible than a DSL. They

are better known by more people, well supported in a wide

range of IDE’s and other tooling, and communities around

them tend to be much larger. A downside could be that a

programming language is harder to learn. You need to be

quite an experienced developer to write maintainable and

testable code, for example. The power and flexibility,

084 Smooth Delivery

however, you get with a programming language gives you

unlimited expressiveness and control far beyond what Bicep

and Terraform could offer. You could use different tools like

Azure App Configuration to store your configuration, use

Key Vault to store secrets, or use feature flags to hide new

infrastructure or only deploy that for a specific client first.

It is also very easy to incorporate Pulumi code in a tool

you build. If you are a platform team building a self-

service portal, Pulumi could be integrated to handle the

deployment to various services. Onboarding a new team

could be a single click of a button that creates a repository

in GitHub, create a subscription in Azure, creates the

connection between GitHub and Azure, and set the correct

permissions on both environments.

IDE and other tooling
A big part of the developer experience is the availability of

proper support in your favorite IDE and additional tooling.

Starting with Bicep we can say that support in VS Code is

really good after installing the extension. It supports

validation, Intellisense, Snippets, Code navigation, code

completion, formatting and even a few quick fixes when

making a typo, for example. A feature I often use is the

completion of a resource using the 'required-properties'

option. That will be presented to you when creating a

resource as shown below:

When I hit enter, the complete resource will be created, and

I get to fill in the blanks that are required. It then also helps

me to fill in the correct value for properties that have a

defined list of allowed values preventing me from picking

the wrong option or making a typo.

Another interesting feature is the one that allows you to

import an existing Azure resource. You provide the identifier,

and the bicep template will be generated. That is a quick

win when you want to create infrastructure as code for

resources that were created manually in the past.

The VS Code extension for Terraform is not as complete as

the one for Bicep. It should support things like Intellisense

but I find it lacking quite regularly. It does support snippets

but only for a limited set of its built-in features such as using

a for-each or creating a variable. It does not have snippets

for specific resources. That, of course, makes sense since it

would then need to support snippets for many, many

providers. There are extensions for that, but you need to find

and install them yourself and, at least for Azure resources,

they are not as complete as in Bicep. Something like

presenting a list of options for a well-known value like the

storage SKU in the above Bicep example is not available in

at least three extension that I've tried.

The developer experience in the IDE for Pulumi is completely

different. It depends on the language you choose to write

your IaC in and the editor that you use. The experience is no

different than writing any application using that tool and

IDE. I can only speak for C# in combination with VS Code,

Jetbrains Rider or the full version of Visual Studio. What I

find is the developer experience is way better than for the

other two tools. A full-fledged IDE like Rider or Visual Studio

in combination with a powerful language is simply hard to

beat.

If we look beyond the IDE at additional tooling, then we

see that Terraform does a really good job. There are tons

of additional tools out there that help you keep things

manageable and secure. To name a few: there is TFLint

(A static analysis tool for Terraform code that helps you

detect and fix style issues, syntax errors, and best

practices violations), TFSec (Uses static analysis of your

terraform code to spot potential misconfigurations),

terratest (a Go library that provides patterns and helper

functions for testing infrastructure), checkov (Checkov is

a static code analysis tool for infrastructure as code)

and terraform-docs (Generates Terraform modules

documentation in various formats). All these tools nicely

integrate with git pre-commit allowing you to prevent

unwanted code in your main branch.

Bicep is a bit behind but is quickly catching up here.

Quite recently, for example, support for checkov was added.

XPRT. Magazine N°

14/2023

085

Integrated into Bicep itself is a linter that has quite a few

rules that are checked automatically. For those that worked

with ARM Templates, these rules are the same as in the

ARM Template Toolkit. Bicep is also supported by PSRule, a

cross-platform PowerShell module to validate infrastructure

as code. It currently has over 250 rules for best practices

defined by Microsoft. PSRule also allows you to write your

own tests and thus is extensible. Since Bicep is transpiled

(Transpiling is a specific term for taking source code written

in one language and transforming into another language

that has a similar level of abstraction.) into an ARM template,

any tool that is supported there is supported for Bicep

although that is not always ideal since you then get your

results on a generated ARM template instead of your

specific Bicep template.

The ecosystem for Pulumi seems to be a lot smaller

compared to the other two tools. Of course, you can use

more general tools that would work with your language of

choice. A testing framework is a good example. I have not

found any security scanner like TFSec or SonarCloud, that

supports Pulumi. SonarCloud, for example, could scan your

C# code, but it will not look at how you specifically configure

a storage account.

Developer flow
Creating infrastructure with any of these tools starts with

writing the code. When you want to deploy that code, things

look a little different. Terraform and Pulumi both take the

default route of first figuring out what needs to change,

show you that result, ask you whether that is correct,

and then allow you to confirm or abort the deployment.

In Terraform you often use the 'terraform plan' command

to figure out what needs to change, and then run the

'terraform apply' command to apply the changes.

Pulumi has similar functionality. Below is an example on

what Pulumi would present us when we deploy a simple

storage account as you’ve seen in the introduction of

Pulumi.

Pulumi and Terraform can give you this functionality

because they store every single detail of the infrastructure

you deploy in what we call a state file. That allows them to

compare your current templates with what should be

deployed and what the configuration in your cloud or

services is. That does mean that this state needs to be

stored somewhere. Both tools offer a SaaS service to handle

that for you, which they obviously charge you for. You can

also store these state files in, for example, an Azure storage

account. You do need to keep them secure since, especially

for Terraform, they do contain plan text password and keys.

Bicep does not know this state thing. Azure is its state.

Whenever you run a deployment, your Bicep templates will

be compared with the current state in Azure and changes

will be applied. You can, optionally, use the -what-if flag.

That will then show you what changes will be made.

That feature, however, still contains a few bugs and therefore

is not as reliable as in the other two tools1.

Another difference with the other two tools is where the

changes are being executed: server-side or client side.

Bicep is run server-side. Your Bicep templates are

transpiled into ARM and then sent to the Azure Resource

Manager. The other two tools execute your changes locally

using their engines by calling APIs. That has a few

advantages. One of them, for example, is that Terraform

and Pulumi allow you to wait for x amount of time between

the deployment of two resources. That can sometimes be

convenient when assigning permissions and waiting for a

few seconds before those are in effect. Bicep does not offer

such a feature.

1 https://aka.ms/WhatIfIssues

https://aka.ms/WhatIfIssues

Community
As with writing any piece of software, when writing your IaC you will run into

trouble, get errors that you cannot explain or have questions on how to best do

things. It is therefore essential that the weapon of choice here has a large and

vivid community to which you can reach out. It is a bit hard to quantify large

and vivid. What I have done is look at both the search trends in Google and

StackOverflow. Let’s start with the first one. When we look at the number of

questions posted using a specific tag then we see the following data:

What we learn from this is Terraform has the most questions and activity on

the platform by far. Results for Bicep and Pulumi are quite similar. We do have

to point out here that the questions for Bicep will, of course, be also always

Azure specific. That will not be the case for Pulumi, so there might be fewer

relative questions and answers there.

The next graph shows Google search trends for the following three keywords

over the last year: azure bicep (just bicep gives a lot of other results as you can

imagine…), Terraform and Pulumi.

Red: Terraform, Blue: Bicep, Yellow: Pulumi

What we see here is that, again, Terraform is by far the biggest in terms of being

searched for on Google. Bicep and Pulumi are so far behind that we cannot get

any useful numbers for them from this graph. The next graph shows only Bicep

and Pulumi for the last 5 years.

Red: Pulumi, Blue: Bicep

086 Smooth Delivery

XPRT. Magazine N°

14/2023

087

What we see here is Pulumi is more popular compared to

Bicep at a first glance. When we do consider that the target

audience for Pulumi is way bigger, you could argue that you

probably get better results for Bicep as they will be more

relevant to you. The upwards trend is quite similar for all

three tools.

So, which one?
Now that we've looked at these three tools from different

angles, it is time to name the winner. Unfortunately, as

always, that depends on various factors. Let’s start with

Bicep. I find it to be the easiest tool to learn and explain

to others. Tooling is good, and it is very easy and quick to

deploy your first resource. Not needing to store state

somewhere is a small plus. It can only configure items in

the Azure cloud which very much limits its use-cases.

I would pick Bicep when working on small environments

only in the Azure cloud with an in-experienced team.

Terraform is much more powerful and therefor a good

choice for more advanced environments that span

multiple cloud or service providers. It also lets you configure

the internals of a resource (remember the control plane vs

data plane discussion with Bicep?) allowing you to really

configure your infrastructure end-to-end using a single

language. With power comes complexity and responsibility.

Having to manage state and learn to work with it makes

Terraform have a bit steeper learning curve compared to

Bicep. I would go for Terraform for any project that is not

super simple, unless…

Pulumi is by far the most powerful tool of the three.

The expressiveness, power, and freedom a programming

language offers is unparalleled. If you can live with a smaller

ecosystem, which might change, and have engineers that

know how to use a programming language, Pulumi would

be my weapon of choice.

</>

All code used in this article can be found here:

https://github.com/staal-it/article-bicep-terraform-pulumi.

Read more
 online?

https://github.com/staal-it/article-bicep-terraform-pulumi

088 Smooth Delivery

Adding Load
Testing to your
CI/CD workflows in
GitHub Actions
Load testing is a technique that focuses on evaluating the performance of an
application under normal or expected load conditions. The goal is to determine how
the application behaves when it is subjected to the expected levels of usage and traffic.
Load testing is often used to verify that a system can handle the expected number of
users and transactions, and to identify any performance bottlenecks or issues that
may impact the user experience.

Author David Sanchez

Microsoft Azure offers a service called Azure Load Testing.

One of the key benefits of using this service is that it allows

you to test your application’s performance at scale without

having to invest in expensive hardware and infrastructure.

Additionally, it is highly configurable and can be used to test

applications hosted on a variety of platforms, including

Azure, on-premises servers, and third-party cloud

providers.

What do we need?
In addition to an Azure Subscription, and a GitHub account,

we will need an Apache JMeter script, which typically

consists of a series of test elements, including thread

groups, samplers, listeners, and assertions. The thread

groups define the number and type of virtual users that will

be simulated, while the samplers define the specific actions

or requests that will be performed by the virtual users.

The listeners capture the performance data generated by

the test, and the assertions define the expected results

of the test and verify that the actual results match the

expectations.

Here is an example of what the JMeter script looks like.

You can find this script in the sample code that I created as

part of this article https://raw.githubusercontent.com/

dsanchezcr/LoadTestingDemo/main/LoadTestingScript.jmx.

Getting Started
In the following example, we are going to use Azure Load

Testing in our GitHub Actions workflow to detect when our

web app has reached a performance issue. We are going

to define a Load Test scenario with a specific number and

type of virtual users that will be simulated, as well as the

test duration and the type of workload to be simulated,

which in this case is just an HTTP Request. In addition,

you can also use either Visual Studio or the Azure Portal to

create and configure your load test scenario.

Once the load test scenario is defined, we can review the

results and the monitoring data, which includes metrics

such as response time, CPU usage, and network traffic, as

well as custom performance counters that we can define.

With this data we identify bottlenecks and optimize the

application’s performance.

https://raw.githubusercontent.com/dsanchezcr/LoadTestingDemo/main/LoadTestingScript.jmx
https://raw.githubusercontent.com/dsanchezcr/LoadTestingDemo/main/LoadTestingScript.jmx

XPRT. Magazine N°

14/2023

089

The scenario
I developed a simple Web App built with ASP.NET Core using

.NET 7 that connects to an Azure Cosmos DB and adds a

record of each visit to the page and retrieves the data from

all the visits.

Here is a screenshot of how the application looks like:

The environment
This web app is running on an App Service Basic plan,

and it has Applications Insights to monitor the performance

of the application. The Cosmos DB is set with the free tier

(1000 RU/s and 25 GB). I want to find out if the application

running in this environment can support up to 100 c

oncurrent users.

Here is a screenshot of the Resource Group created with

the Azure resources for this application.

The repository
You can check out the GitHub repository in this link

(https://github.com/dsanchezcr/LoadTestingDemo).

There you can fork the repository, use the ARM template to

deploy the Azure services needed and run the Load Testing

in your environment.

⚠ Note: Microsoft Azure only allows you to create one

Cosmos DB Free Tier resource per subscription, you might

get an error if you already have one Cosmos DB Free Tier in

your subscription.

This repository has a GitHub Action that Builds & Deploys the

application and runs the Load Test in Azure Load Testing.

You can find the workflow in the Action tab of the repository.

Here is a screenshot of what the Action looks like. You can

see it is failing in the LoadTest job.

The GitHub Action
The workflow consists of three steps and runs on every push.

This first step builds the .NET application, the second step

deploys the application to the Azure App Service and the

third step runs the Load Test job using the following files that

are in the root folder. The first file is the JMeter script used to

specify the steps of the Load Testing, the second file is the

configuration of the Load Testing.

• LoadTestingScript.jmx

• LoadTestingConfig.yaml

The Azure login is required to communicate with the Azure

Load Testing service to send the JMeter script and the

configuration for the test. In this configuration, we can

define the number of engines we want to run the test and

the failure criteria, in this case, the threshold we have is an

average response time lower than 5 seconds and error

percentage lower than 20%.

The Results
As you can see from the previous image, the Load Test failed

because the average response time was higher than we

expected (5 seconds). We can get more details about the

test run in the Azure Portal.

Here is a screenshot of the result of the test run in the

Azure Portal.

https://github.com/dsanchezcr/LoadTestingDemo

090 Smooth Delivery

In the Azure App Service, we can see the metrics with the

response times (higher than 5 seconds) and the number of

requests with the Data in and Data out. Here is a screenshot

of the key metrics in Azure Portal:

In addition, I added Application Insights to monitor the

web app. In the Azure Portal we can see the performance

issues and failures. Here is a screenshot of the performance

section for the web application:

From the image above you can see where the requests

came from. In this case, I am running Azure Load Testing

in the East US region (Virginia). Here is a screenshot of the

exception captured in the transaction:

Conclusion
Load Testing should not be run in a production environment.

Try it on a Dev/Test, QA or pre-production environment.

Even if you are running on deployments slots, remember

that the web app will still run on the same App Service Plan,

and this could affect your production environment or cause

a Denial-of-Service Attack.

If you would like to learn more about Azure Load Testing,

I recommend you review the service documentation using

this link: https://learn.microsoft.com/azure/load-testing.

</>

David Sanchez

Read more
 online?

https://learn.microsoft.com/azure/load-testing
https://www.twitter.com/@dsanchezcr
https://www.linkedin.com/in/dsanchezcr
https://www.github.com/dsanchezcr
https://youtube.com/@dsanchezcr

OCT 09 - 11 | 2023 UTRECHT, NETHERLANDS

www.techorama.nl

If you prefer the digital
version of this magazine,
please scan the qr-code.

Together
we drive
change.

www.xpirit.com

