
XPRT.

PROUDLY PART OF XEBIA GROUP

A Reactive Cloud: Azure Event Grid 

Scaling Scrum to the limit 

Deployment pipelines for ARM

Containerized Testing

Discover endless  
       possibilities 

Magazine N° 5/2017
XPRT.

XPRT. M
agazine N° 5/2017                      D

isco
ve

r e
n

d
le

ss p
o

ssib
ilitie

s





XPRT. Magazine N°
 
5/2017

003

Colofon

XPRT. Magazine No 5/2017

Editorial Office

Xpirit Netherlands BV

This magazine was made by 

Vivian Andringa, Pascal Naber,  

René van Osnabrugge,  

Martijn van der Sijde, Loek Duys, 

Alex Thissen, Kees Verhaar,  

Geert van der Cruijsen,  

Chris van Sluijsveld, Marco Mansi, 

Cornell Knulst, Marcel de Vries, 

Pascal Greuter, Alex de Groot, 

Roy Cornelissen, Jesse Houwing, 

Sander Aernouts, Jasper Gilhuis, 

Marc Duiker, Peter Groenewegen

Contact

Xpirit Netherlands BV

Laapersveld 27 

1213 VB Hilversum 

The Netherlands

+31 (0)35 538 19 21

pgreuter@xpirit.com

www.xpirit.com

Layout and Design

Studio OOM

www.studio-oom.nl

Translations

TechText

© Xpirit, All Right Reserved

Xpirit recognizes knowledge  

exchange as prerequisite for 

innovation. When in need  

of support for sharing,  

please contact Xpirit.  

All Trademarks are property of 

their respective owners.

  004 Communities to enable  
endless possibilities 

  014 From Search to  
Checkout without annoying  
your customers 

  018 Scaling Scrum to the limit 

  023 8 Years of CPU in a Day 

  027 Cloud Transitions   
done right! 

  038 IaaS, Containers or   
Serverless? 

  042 Containers as a   
Service in Azure 

  046 Best practices using  
Azure Resource Manager   
templates 

  055 Deployment pipelines   
for versioned Azure Resource  
Manager template deployments 

  032 Containerized Testing 

FUTURE TECH

INTRO

In this issue of XPRT. Magazine our  
experts share their knowledge about  
discovering endless possibilities

DEVOPS ADVENTURES

CLOUD STRATEGY

INFRASTRUCTURE AS CODE

If you prefer the 
digital version of 

this magazine, 
please scan the 

qr-code.

014

023

027

055

PARTNER

  009 A Reactive Cloud:  
Azure Event Grid 



004 INTRO

Communities to 
enable endless 

possibilities
Last year, Linux OS celebrated its 25th anniversary. In these years, Linux - and a lot of 

other Open Source Software (OSS) – has changed the world. While the concept  
of Open Source Software has made a significant difference to the industry, there  

is another driving force underneath successful OSS software: its community.  
While approaching the year 2018 at full speed, at the same time communities  

has emerged around us. So before you dive into the depths of the latest and  
greatest Microsoft technologies in this issue of XPRT, we’d like to elaborate on  

the power of Communities.

Author Jasper Gilhuis & Alex de Groot



XPRT. Magazine N°
 
5/2017

Emergence of communities
In the early days of both the Greek and Roman empires, it was 

quite common for wise men to gather together and share 

their thoughts. The entire philosophy of Democracy is based 

on these gatherings. Therefore, it’s not strange that the word 

community finds its origin in the Latin word ‘communis’,  

meaning ‘shared in common’. 

With the growth of IT in the second half of the 20th century, 

gatherings found a central place in the IT business. End User 

Groups were founded to share experiences, IT Pro’s shared 

their knowledge on mailing lists, and many developers  

became active on online forums. Soon this drew the attention 

of researchers, which resulted in studies that correlated  

community participation to increased productivity.

Nowadays, we see communities embedded in both our social 

and professional lives. Social networks, WhatsApp groups, 

Slack, GitHub and StackOverflow are known to everyone. 

Community principles became deeply embedded into project 

guidelines such as the Agile manifesto. The low-entry  

structures of communities with respect for everyone’s opinion 

are here to stay. 

Technology ‘Ecosystems’
Compared to other industries, communities are probably  

most deeply embedded in IT. While often gathered around a 

product or field of interest in other industries, in IT they are 

usually related to an area of expertise. Engineers have the  

tendency to focus their complete attention on a single  

technology. We see this in the structure of the community. 

Completely focused “ecosystems” on a single technology 

allow deliberate but limited learning, and are difficult to  

open up to adopt new ideas. 

A good example of such an “ecosystem” is the Open Source 

.NET Community. After Microsoft’s first source drop of  

the .NET code late 2014, they started to develop the platform 

in close collaboration with the community. Using open  

forums, ticketing systems, podcasts, and even open design  

sessions, they allowed the community to participate in the 

overall design and source code of .NET. The product of the 

community is very tangible: Core and derived community 

components have never been in better alignment with the 

design concepts of .NET. 



Introducing yourself to such an  

“ecosystem” can really enrich your 

knowledge and can help you gather 

new ideas. Not only is learning about 

the technology a fun experience, but  

it also increases your employability!  

Community engagement is – like 

volunteer work - highly rewarded by 

potential employers. Stepping outside  

of your familiar communities or even 

your comfort zone can bring about a 

whole new experience!

Community-based Product  
Development
We already mentioned that .NET and 

especially .NET Core have benefitted 

tremendously from an active  

community. The community helps to 

006 INTRO

“Technologies were clustered into several distinct  

“ecosystems” that tended to be used by the same  

developers. On the left of this chart we can see a large  

cluster representing web development (with JavaScript  

at the center) and one for Microsoft technologies  

(centered around C# and Visual Studio). On the right  

we see a constellation connecting Java, Android, and  

iOS. Other smaller correlated clusters included  

C/C++/Assembly, Raspberry Pi with Arduino, and  

languages like Python and R alongside language- 

specific IDEs.”

Source: https://xpir.it/xprt5-com1 

“Alex will make the  
impossible possible 
with his smarts  
and endless  
perseverance.”
Marcel de Vries about 

Alex de Groot



“During my early years as a  
consultant, I spent my spare time 
answering questions on mailing lists. 
It helped me understand and take  
on challenges from different angles.  
Later, it allowed me to quickly  
identify common errors and extract  
best practices.”
Xpirit’s managing director, Pascal Greuter

XPRT. Magazine N°
 
5/2017

007

shape new ideas long before they even 

get embedded into a released product. 

This form of co-creation is helpful 

because it allows early experiments 

before a single byte of production code 

is produced.

Co-creation hits the heart of the  

influence of the community on product 

development. While the feedback on 

new ideas flies in almost instantly,  

feedback on existing offerings helps 

product owners set priorities. It also 

allows them to identify complicated or 

misunderstood areas in their products.

Microsoft, Google, Facebook, and 

all other tech giants use this form of 

co-creation all the time. How many 

times haven’t you tried Gmail Beta or 

even an Alpha of ReactJS? These days, 

Microsoft even issues Go-Live licenses 

for Visual Studio and TFS pre-releases. 

Why? Because the burden of supporting 

pre-released software is cheaper than 

releasing the wrong thing.

Participate in the community! How? 

Download Visual Studio Preview now!

It runs side by side with your other 

installations.

https://www.visualstudio.com/vs/ 

preview/ 

Microsoft  Communities & OSS
As part of their global strategy, Micro-

soft has taken a major leap in embracing 

Communities and OSS. In the last few 

years, they have overcome the historical 

sentimental gap between themselves 

and the OSS world. The most tangible  

examples of these are highlighted 

below:

  SQL Server 2017 will be released on 

Windows, Linux and Docker

  Azure Cosmos DB can be used from 

any NoSQL adapter

 Bash runs on Windows1 

  Visual Studio is now fully featured  

on macOS.

Microsoft’s commitment to the  

community goes so far that it appears 

that all their activity is now on Github.  

In last year’s statistics, they became  

the most active OSS contributor!  

These numbers illustrate that it is  

beneficial for a company to not only 

rely on open source software, but also 

contribute to it. Have a look for yourself 

at https://github.com/Microsoft.

Community features have even been 

embedded into Microsoft’s product 

offering. Microsoft Visual Studio Team 

Services (VSTS), a Microsoft Azure 

Cloud-based SAAS offering, enables 

teams to work closely together on 

software development projects while 

providing a rich tool set and capabilities 

that can be used across platforms.  

This includes a wide range of topics 

such as integration with Maven, Jenkins, 

NPM Package Management, and many 

other cross-platform developments.  

In addition, advanced pull request  

workflows and Git forking enables  

communities inside companies to 

leverage the power of the collaboration. 

While this is known to many Microsoft 

developers, it is less known by other 

communities. VSTS could easily act as 

bridge between these communities!

Rules of Community Engagement
Participating in communities is free 

of charge but does not come for free. 

You can’t only take something from the 

community. Every participant is  

expected to make their contribution to 

the community. This can be as simple  

as thanking community members  

for their efforts in answering your  

1 https://xpir.it/xprt5-com2
2 https://xpir.it/xprt5-com3



008 INTRO

question. Another way is voting up 

answers on StackOverflow. The most 

important unwritten rule is to pay back 

everybody’s willingness to help with 

kindness and respect.

Some communities have strict  

Contribution Policies. A great example 

of this is the .NET Roslyn contribution 

policy2. It states clearly what is expected 

from you when you want to add some-

thing to the source code of the Just-in-

Time compilation component of .NET.

You also need to understand that the 

community gives you a good answer or 

an excellent library, but you shouldn’t 

trust it blindly as if it’s your own.  

Microsoft has recently published a blog-

post on their DevOps blog, explaining 

that many Open Source projects  

contain vulnerabilities3. You’ll always 

need to take any piece of input, use it to 

the best, but make it your own and add 

your own craftsmanship on top of it.

Conclusion
Communities deliver an awesome  

foundation for the modern engineer. 

They give you answers, deliver a  

learning environment, and even building 

blocks to accelerate. We at Xpirit try  

to leverage communities wherever  

possible. Every time we use something, 

we try to give back something.  

Feedback, thumbs up, thumbs down, 

and pull requests on GitHub. The XPRT- 

magazine is another example which 

helps us to combine what we learn and 

deliver it back to you. 

We encourage you to become a  

community member. Get active!  

Don’t be shy, there’s plenty of people 

out there who have made mistakes.  

And the community is forgiving.  

They won’t even bother about your 

mistakes, they will love it. Because  

other community members will learn 

from things you experience as difficult. 

Try and share the love! Tweet to us  

(@xpiritbv) with your greatest  

community stories and we’ll reward  

you for the community love. It will 

surely enable you to achieve endless 

possibilities! 

3 https://xpir.it/xprt5-com4

“Xpirit’s personal teddybear.  
Always there to help  
people out with a cuddle  
or by optimizing their ALM  

process.”
Geert van der Cruijsen about Jasper Gilhuis



009

XPRT. Magazine N°
 
5/2017

Designing modern event-driven systems
Any modern business-critical system must be:

 Responsive: The system responds in a timely manner, which ensures usability, utility and consistent behavior of the system.

  Resilient: The system stays responsive when failures occur. This can be realized by isolating components of the system so they 

can fail and recover without failing the entire system.

  Elastic: The system stays responsive during varying workloads. This can be realized by increasing and decreasing the resources 

for individual components without causing bottlenecks anywhere in the system.

These are exactly the features which describe Reactive Systems (http://www.reactivemanifesto.org/). These systems are based on 

a message-driven (asynchronous) architecture, so they are loosely-coupled. This makes them easier to change and they are more 

tolerant to failure than non-message-based architectures.

A Reactive Cloud: 
Azure Event Grid
Serverless compute or Function-as-a-Service (FaaS) is still gaining a lot of traction in the software 
industry due to the reduced time to market, lower operational and development costs, and  
ease of scalability. The Azure platform already provides Azure Functions and Azure Logic Apps,  
two serverless services to build modern, event-based, reactive systems. Last August Microsoft  
extended its serverless offering by introducing Azure Event Grid, a fully managed event routing  
service, capable of managing the routing of millions of events per second from any source to  
any endpoint, the IFTTT1 for the Azure platform.

Authors Marc Duiker & Marco Mansi

1 If This Then That - https://ifttt.com/

Value

Form

Means

Elastic Resilient

Message Driven

Figure 1: Reactive Systems

With Azure Service Bus, Microsoft was already providing a service for message-driven systems based on either Queues  

(for one-to-one messaging) or Topics (one-to-many messaging). Service Bus is a very powerful but also rather complex  

messaging solution, particularly suitable for enterprise solutions that require transactions or duplicate detection. Let’s see  

what Azure Event Grid has to offer.



010 FUTURE TECH

Responsive

Resource Groups

Azure Subscriptions

Event Hubs

Custom Topics

Azure Event Grid
The new Event Grid is a more lightweight event service that is highly integrated within 

the Azure platform, which means that it can be easily configured to work with Azure 

Functions, Logic Apps, and many other Azure services. By using custom topics and 

webhooks, Event Grid can even integrate with applications outside Azure, so it is an 

ideal candidate for cross-service and cross-cloud scenarios. With Azure Event Grid, 

Microsoft now offers the technology for a push-based, message-driven architecture 

that allows developers to create reactive systems in a serverless application landscape.

Azure Event Grid Concepts
Let’s explain Event Grid by means of an example: 

For a given Azure subscription we want to verify the storage accounts created in  

that subscription. The verification is just an email that is sent to an administrator  

using Logic Apps.

Figure 2: Azure Event Grid

Figure 3: Azure Event Grid Example

Event Publishers Event Handlers

Azure Functions

Logic Apps

Azure Automation

WebHooks

Topics Event Subscriptions

Azure Subscription
Event Publisher
 Topic: / subscriptions/<sub-id>

StorageAccountVerification
Event Handler
  Endpoint: /  

https://<logicappendpoint>

StorageAccountCreatedEvents
Event Subscription
 Topic: / subscriptions/<sub-id>
  EventType: Microsoft.Resource-

WriteSuccess
  Endpoint: https://<logicappend-

point>
  Prefix filter: /subscriptions/ 

<sub-id>/resourceggroups
<rg-id>/providers/Microsoft.
Storage/storageAccounts

Event
 id: <event-id>
 topic: /subscriptions/<sub-id>
  subject: /subscriptions/<sub-id>/

resourcegroups/<rg-id>/providers/ 
Microsoft.Storage/storage-
Accounts/newstorageaccount

  eventType: Microsoft.Resources.
ResourceWriteSuccess

 eventTime: <datetime>
 data: {}

When a new storage account  
is created, an event is raised  
by the Azure Subscription and  
is picked up by Event Grid.

The Event Subcription ensures  
the event is routed to the  
StorageAccount Verfication 
LogicApp.

In this case, Azure Subscriptions is  

the Event Publisher. The publisher  

categorizes events into topics. The topic  

(/subscriptions/<sub-id>) is a system 

topic since it is provided by Azure. It is 

also possible to create custom topics 

and events that can be raised from a 

custom application or function. Note 

that the maximum size of an event is 

64KB.

Every time a resource within the Azure 

subscription is created successfully, 

an Event of type Microsoft.Resources.

ResourceWriteSuccess is raised and 

published to the topic endpoint.

The event is then picked up by Event 

Grid and processed on the basis of  

an Event Subscription. The Event  

Subscription defines the routing of 

events from a certain topic to an Event 

Handler. The routing can be based on 

the EventType and prefix & suffix filters 

on the event subject. 

In this case we created a subscription 

called StorageAccountCreatedEvents 

that points to the topic:

/subscriptions/<sub-id>

where we only want to handle events 

of type 

Microsoft.Resources.ResourceWrite-

Success 

with a subject prefix of

/subscriptions/<sub-id>/resource-

groups/ <rg-id>/providers/Microsoft.

Storage/storageAccounts 

to specify the routing of storageAccount 

related events only. Note that these 

filters do not allow for wildcards or  

regular expressions, and unfortunately 

this will not be supported in the near 

future.

Finally, the endpoint in the Event  

Subscription defines the Event Handler, 

the target of the event routing. In this 

case the handler is the endpoint of the 

LogicApp: 

https://<logicappendpoint>

Event Grid is based on at least once  

delivery pattern with an exponential 

back-off. This means that if the Event 

Handler does not respond with a 200 

(OK) / 202 (Accepted) response on the 

request, Event Grid will retry, using 



XPRT. Magazine N°
 
5/2017

011

increasingly longer intervals (up to one hour) and will stop 

retrying after 24 hours. The message will be dropped if it  

can’t be delivered. A full description of the Event Grid message  

delivery and retry mechanism can be found at:  

https://docs.microsoft.com/en-us/azure/event-grid/ 

delivery-and-retry

Event publishers
At the time of writing this article, Azure Event Grid is in preview 

and supports the following Event Publishers: Azure Resource 

Groups, Azure Subscriptions, Blob Storage2, Event Hubs, and 

Custom (Event Grid) Topics. 

These are the currently available Event Types that can trigger 

events. Please note that by using Custom Topics, events can 

be triggered from custom applications that can be hosted 

anywhere.

2 The Blob Storage Event Publisher is currently in private preview.

XPRT. Magazine N°
 
5/2017

Event Publisher Event Type

Azure Resource 
Groups & Azure  
Subscriptions

Microsoft.Resources.ResourceWrite Success
Microsoft.Resources.ResourceWriteFailure
Microsoft.Resources.ResourceWriteCancel
Microsoft.Resources.ResourceDeleteSuccess
Microsoft.Resources.ResourceDeleteFailure
Microsoft.Resources.ResourceDeleteCancel

Blob Storage2 Microsoft.Storage.BlobCreated

Microsoft.Storage.
BlobDeleted

Event Hubs Microsoft.EventHub.CaptureFileCreated

Custom (Event Grid) 
Topic

Any custom application event.

The next updates to Azure Event Grid will extend support  

for the following Event Publishers: Azure Automation, Azure 

Active Directory, API Management, Logic Apps, IoT Hub,  

Service Bus, Data Lake Store, and Cosmos DB.

“Creates Azure solutions  
like a true Italian:  

with lots of passion  
and aiming for Ferrari- 

like perfection.”
Martijn van der Sijde about Marco Mansi



012 FUTURE TECH

az eventgrid event-subscription create  
[
   {
    “topic”:”/subscriptions/{subscription-id}/resourceGroups/

{resource-group}”,
    “subject”:”/subscriptions/{subscription-id}/resource-

Groups/{resource-group}/providers/Microsoft.EventGrid/
eventSubscriptions/LogicAppdd584bdf-8347-49c9-b9a9- 
dif980783501”,

   “eventType”:”Microft.Resources.ResourceWriteSuccess”,
   “eventTime”:”2017-08-16T03:54:38.2696833Z”,
   “id”:”25b3b0d0-d79b-44d5-9963-440d4e6a9bba”,
   “data”: {
        “authorization”:”{azure_resource_manager_ 

authorizations}”,
        “claims”:”{azure_resource_manager_claims}”,
        “correlationId”:”54ef1e39-6a82-44b3-abc1- 

bdeb6ce4d3c6”,
        “httpRequest”:””,
        “resourceProvider”:”Microsoft.EventGrid”,
        “resourceUri”:”/subscriptions/{subscription-id}/ 

resourceGroups/{resource-group}/providers/ 
Microsoft.EventGrid/eventSubscriptions/ 
LogicAppdd584bdf-8347-49c9-b9a9-d1f980783501”,

        “operationName”:”Microsoft.EventGrid/event-
Subscriptions/write”,

       “status”:”Succeeded”,
       “subscriptionId”:”{subscription-id}”,
       “tenantId”:”72f988bf-86f1-41af-91ab-2d7cd011db47”
       },
    }
]

The function that handles the event after parsing the event 

data will retrieve a reference to the storage account.  

The next step consists of using the Fluent Azure Management 

libraries for .NET (https://github.com/Azure/azure-sdk-for-net/

tree/Fluent) to check whether the Storage Account is using 

encryption:

AzureCredentials cred = new AzureCredentials(sp, tenantID, 
AzureEnvironment.AzureGlobalCloud);
IAzure azure = Azure.Authenticate(cred).withsubscripti-
on(subscriptionID);

string storageAccountID = eventData.subject;
string storageAccountname = subjectDictionary[“storageAc-
counts”];

bool? isEncrypted = false;

//Get the storage account
var storageAccount = azure.StorageAccounts. 
GetId(storageAccountID);

//And now let’s check if the Blob encryption is enabled
if (storageAccount.Encryption != null)
{
    isEncrypted = storageAccount.Encryption.Services.Blob.

Enabled;
}

sting returnText;

if (isEncrypted.GetValueOrDefault())
{
    returnText = $”Storage Account {storageAccountName} is 

Encrypted”;
}
else
{
    returnText = $”Storage Account {storageAccountName} is 

NOT Encrypted”; ;
}

log.Info(returnText);

In this example we will output the result to the function  

logging console.

Event Handlers
The event handlers that are currently supported are Azure 

Functions, Logic Apps, Azure Automation, and Webhooks.  

Future event handlers will include Service Bus, Event Hubs, 

Azure Data Factory, and Storage Queues. The webhooks  

Event Handler is versatile because any 3rd party service that 

supports webhooks can be used as a target.

Use case
One of our customers is a banking company and made the 

strategic decision to move to Azure. The need for security 

compliance is very high, and one of the requirements for using 

Azure Storage Accounts is that they have to use encryption. 

We can build a script that will run through all the subscriptions,  

filter the resources of the type Microsoft.Storage, and then 

check whether they use encryption. This is not extremely 

difficult, but it is still a polling mechanism in which all storage 

accounts are checked again and again, even if they are not 

changed. Moreover, the script has to be scheduled and must 

run X times per day or hour, with the chance of lagging behind 

events.

Wouldn’t it be better to be “notified” as soon as possible  

when something regarding a storage account has happened? 

This is where Azure Event Grid can help us!

This new service allows us to react as soon as something has 

happened and notify multiple subscribers (event handlers) of 

specific events. 

Implementation
The following example shows how Azure Event Grid can fire 

up events to Azure Functions. The full source code can be 

found on Github3. There is also an ARM template available as 

Gist4 that can be used to create EventGrid subscriptions from  

a script or a deployment pipeline.

The first piece we need is a function that can parse the event 

data provided from the Event Grid. The schema is well  

documented and can be found at the following location:  

https://docs.microsoft.com/en-us/azure/event-grid/

event-schema#azure-subscriptions

We will use the subscription events, which means that  

whenever something happens in a subscription (every time  

a resource is created, deleted, modified, etc.) an event will  

be published and picked up by Event Grid. 

New Storage 
Account created

Function checks 
if encryption is enabled

Azure Event Grid
sends the events to the 

function

New Storage 
Account created

Function checks 
if encryption is enabled

Azure Event Grid
sends the events to the 

function
New Storage  

Account created

Azure Event Grid  

sends the events  

to the function

Function checks  

if encryption is 

enabled

New Storage 
Account created

Function checks 
if encryption is enabled

Azure Event Grid
sends the events to the 

function

3 Source code : http://xpir.it/xprt5-eventgrid
4 ARM template: http://xpir.it/xprt5-eventgrid-arm



013

XPRT. Magazine N°
 
5/2017

Creating the Azure Event Grid subscription
The easiest way to create an Azure Event Grid subscription 

programmatically is to use the Azure CLI 2.0. You can use this 

directly from the browser in the Azure Portal using the Azure 

Cloud Shell.

The following code snippet shows how: 

az eventgrid event-subscription create 
--name CheckStorageAccountEncryption 
--included-event-types Microsoft.ResourceWriteSucces  
--endpoint “https://eventgridtest.azurewebsites.net/api/ 
HttpTriggerCheckStorageEncryption”

As you can see, we give the subscription a name: “Check-

StorageAccountEncryption”, and we tell Event Grid to send 

the events to the URL (endpoint) of the function. We also add 

a filter, and because we are only interested in successfully 

created resources, we add “Microsoft.Resource.Resource-

WriteSuccess”. 

Unfortunately, it is not possible to filter other event properties, 

e.g. the Resource Provider (Microsoft.Storage), so we have to 

do this after parsing the event in the function. 

The “Event Grid Subscription” section of the portal shows the 

subscription that was created:

Working example
Let’s create an encrypted storage account: 

az storage account create --resource-group 
EventGridTest --encryption blob --sku Standard_LRS  
--name egencrypted7

The result is shown in the function’s output log:

Conclusion
In an increasingly serverless world, Azure Event Grid is a  

valuable addition to create modern applications following an 

event-driven model. The integration with the Azure platform 

makes it an ideal candidate for Ops automation and micro-

services scenarios. 

Figure 4: Ops Automation

However, it is certainly not limited to Ops automation, thanks 

to custom topics and webhook handler capability. These make 

it very suitable for many serverless integration scenarios, even 

with third party services.

Figure 5: Serverless applications

At the time of writing this article, the service is in preview.  

In the future, Microsoft will add more event publishers and 

handlers to make the native integration in Azure and third 

parties even better, and to ensure that integration between 

different domains will become even easier and more reliable. 

Monitoring will also be added to allow inspection of ingress of 

events, event matches, pushes to event handlers, and dropped 

events.

Event Grid allows developers to focus on business processes 

when they “ just happen”, using fewer computing resources 

and without any worries about infrastructure. 

“The Xpirit bearded Hipster who 
thrives on combining technology 
with photography.”
Chris van Sluijsveld about Marc Duiker



014 FUTURE TECH

From Search to 
Checkout without 

annoying your 
customers

How Accelerated Mobile Pages and Progressive Web Apps can boost online sales. In the world of 
e-commerce, customers are becoming increasingly mobile. In The Netherlands, 50% of consumers 
are shopping on their mobile phone. Among those under 35 years of age, mobile purchases are at 

65%. Numbers for searching and browsing for a potential purchase is over 70% overall. 
 

Author Gert Hengeveld

Alibaba.com increased mobile conversions 
by 76% with a Progressive Web App.

Converting these visitors into customers 

is a delicate task. Consumers are still 

hesitant to make mobile purchases.  

The challenge lies in optimizing the  

mobile user experience. Some shops 

have tried to improve user experience  

using a native mobile app. These apps 

are installed through the Apple or 

Google app store. However, installation 

rates for mobile apps are decreasing. 

The app boom is over. Most smart phone 

users download zero apps per month. 

Unless you’re a major player and con-

sumers use your app on a weekly basis, 

chances are that your expensively built 

app is never installed.

So how can you get those smartphone 

users to make purchases? Luckily the 

web has evolved a lot in recent years. 

Features such as push notifications,  

real-time updates, seamless screen 

transitions and geolocation are all 

available on the web platform.  

Advances in front-end development 



XPRT. Magazine N°
 
5/2017

015

make it possible to achieve a highly 

interactive, high-performance user 

experience that matches a native app. 

The web also offers some advantages 

over native apps such as discoverability 

through search and social media, and 

not having to install anything. Key to a 

successful web app is user experience. 

Reduce friction in your sales funnel and 

more customers will make it to the end.

One e-commerce company recently  
deployed an immersive AMP experience  
and saw a 20–30% conversion uplift.

Progressive Web App is a broader concept aimed at describing a web app that offers 

certain features that make it fast, reliable and engaging. A PWA is a state-of-the-art 

web application that uses all of the power of the web platform, and does so  

responsibly. It’s generally a single-page application, meaning page transitions are  

fast and smooth and we can offer a high-end user experience. A Progressive Web 

App is accessible from the web like any other website, but can also be “installed” by 

adding an icon for it on the home screen. Opening the app from the home screen 

will render it in full-screen mode, essentially mimicking a native mobile app. We can 

also implement push notifications so that customers can be actively engaged.

Google shows the AMP tag for search results that support it.

Accelerated Mobile Pages and a Progressive Web App together make for a very  

potent combination. Because an AMP page is instantly available from Google and 

AMP allows us to pre-cache our PWA in the background, we can achieve a sales 

funnel that goes from Google search to checkout without ever showing a loading 

indicator or staring at a blank screen. Combine it with a user-friendly PWA and  

you’ve got a sales funnel as smooth as silk.

<amp-img src=”image.jpg” width=”90” height=”50” layout=”responsive”> 
</amp-img>

The AMP project provides a predefined set of web components to build your pages in  

order to optimize performance across devices.

Driven by modern web technologies
The technology required to achieve this seamless shopping flow is about to  

become mainstream. Google introduced Accelerated Mobile Pages in 2015 but has 

only recently started encouraging it for e-commerce. Progressive Web Apps are 

made possible by new browser features such as Service Workers and the Push API.

It’s a common misunderstanding that a Progressive Web App must be powered by 

a modern client-side UI rendering library. In fact, you can still render webpages on 

the server. All you really need in order to get a baseline PWA is an app manifest file 

and a service worker, which is just a tiny bit of JavaScript that can be bolted onto any 

webpage. However, this will not get anywhere close to offering that app-like feeling 

that we would like to achieve.

The mobile web experience
Two major breakthroughs in high- 

performance web experiences came 

from Google in 2015 as it introduced 

Accelerated Mobile Pages (AMP) and 

Progressive Web Apps (PWA). Two very 

different techniques trying to solve the 

same problem: how to make the web 

fast and reliable. Accelerated Mobile 

Pages is a way to build a lightweight 

version of your webpage that Google 

(and others) will make instantly available 

right from its search results, at least on 

mobile. AMP pages are very limited in 

functionality, but blazingly fast. They are 

also more likely to be at the top of the 

search results.

From Search to  

Checkout can be  

done without  

loading delays.



016 FUTURE TECH

{
  “short_name”: “Acme Shop”,
  “name”: “Acme Corporation Online Shop”,
  “icons”: [
    {
      “src”: “launcher-icon-2x.png”,
      “sizes”: “96x96”,
      “type”: “image/png”
    },
    {
      “src”: “launcher-icon-3x.png”,
      “sizes”: “144x144”,
      “type”: “image/png”
    },
    {
      “src”: “launcher-icon-4x.png”,
      “sizes”: “192x192”,
      “type”: “image/png”
    }
  ],
  “theme_color”: “#6c1d5f”,
  “background_color”: “#f8f7fc”,
  “start_url”: “/index.html”,
  “display”: “standalone”,
  “orientation”: “landscape”
}

A Web App Manifest makes your app look like a native one.

In practice, most companies that have deployed a PWA are indeed using a modern UI 

library such as React. These tools help us build high-performance user experiences, 

including fluent transitions and animations. As a bonus, we can usually run the same 

code to render HTML on the server. Server-Side Rendering makes sure that search 

engines and social media sites are able to crawl and access your content. Accelera-

ted Mobile Pages must always be rendered on the server. This simplifies caching and 

avoids running heavy JavaScript code on a slow device. In effect this means that to 

combine a PWA with AMP, we have to render our pages both on the client-side and 

the server-side. To do this efficiently, it makes a lot of sense to run the same code on 

both sides using Node.js.

<!doctype html>
<html>
  <head>
    <meta charset=”utf-8”>
    <script async src=”https://cdn.ampproject.org/v0.js”></script>
    <title>Acme Corporation Online Shop</title>
    <!-- ... -->
  </head>
  <body>
    <!-- ... -->
  </body>
</html>

The AMP HTML must be rendered server-side.

Building a stellar e-commerce experience

Following the previous paragraphs it should come as no surprise that the two  

primary ingredients for our e-commerce front-end are a PWA and AMP.  

Here’s what it takes to build these and hook them up.

A high performance front-end framework with SSR capability

To get started, we need a tool to help us build the user interface and deal with 

client-side logic such as keeping state and handling transitions. In order to serve  

AMP documents without a lot of additional work, it will need to support Server-Side 

Rendering. Because a large part of our audience will be on mobile, performance  

is an important aspect. Luckily there are tools such as Lighthouse to measure  

performance and plenty of benchmark apps. Although React is the most popular 

choice in this space, Preact and Vue are very solid alternatives worth considering. 

Setting up universal server-side rende-

ring is still very complex. Luckily there 

are several frameworks which provide  

universal server-side rendering out of 

the box: Next.js for React projects and 

Nuxt.js for Vue. Both offer significant 

benefits over a plain React or Vue setup.

Back-end for Front-end  
(BFF pattern)

You may want to split up your back-end for 

front-end to create verticals and avoid a 

monolithic front-end.

AMP documents must be rendered on 

the server. We could of course do this 

in any back-end technology, but to be 

able to reuse interface components 

between AMP and our PWA, we should 

be using the same technology. As such 

we’ll need Node.js to render our Preact 

components on the server. Running 

JavaScript on the server has the added 

benefit that your front-end developers 

can take ownership and responsibility 

for their entire product. In addition, 

many innovations in front-end  

optimizations are adopted by the  

Node.js community first, and generally 

very easy to apply. On top of Node.js, 

we’ll need a server framework such as 

Express. We can still use our existing 

back-end services as backing for the 

Node.js service, so we won’t be moving 

any important business logic.



XPRT. Magazine N°
 
5/2017

017

A Service Worker to install from AMP

A Service Worker is what allows our 

app to work offline and enable push 

notifications. It’s a script that can be 

installed in the browser and run in the 

background to cache resources and act 

on events. To make the transition from 

Google to our app appear instantly,  

we can use amp-install-serviceworker  

to install our Service Worker in the 

background while the customer is 

browsing our AMP page. This way we 

can pre-cache necessary resources for 

our app in the background so it will  

load instantly when the customer clicks 

through to the product detail page.  

Because the PDP is part of our single- 

page app, any subsequent page  

transitions can be instant too.

Attention to detail
Perhaps the most import aspect in 

building a high-quality web experience 

is attention to detail. There are many 

aspects to web development which  

are easily overlooked or discarded  

because they are “too much work”.  

These include performance, user  

experience design and overall look & 

feel. Unfortunately, they are the first 

casualties of deadlines, budget  

restrictions and developer laziness.  

It’s very sad to see a great concept 

being poorly executed, but in reality 

that’s what happens. The key is to not 

settle for a sub-par user experience.  

It’s better to build half a product with 

only a few well built features than to 

build a half-assed one with many  

poorly executed features. Setting a  

performance budget is a good way  

to keep an eye on performance.  

There’s a whole list of things that we 

can do to improve it. Of course,  

performance alone isn’t going to cut it. 

Consumers expect a polished product, 

especially on mobile. That means hiring 

UX designers and performing usability 

tests. Because we’re targeting many 

devices, taking a mobile-first approach 

to interface design and development is 

highly recommended.

Final thoughts
The web is evolving at a rapid pace. 

Google continues to push the web as 

a platform. Targeting the web as the 

primary platform makes a lot of sense 

for e-commerce, as smartphone users 

are unlikely to install a native app.  

New browser capabilities allow us to 

provide a high-end mobile user  

experience, while reaping the benefits 

of the web platform. Luckily, tools have 

evolved to make adoption of current 

best practices much easier than it used 

to be. Nowadays we can offer our 

customers an e-commerce experience 

that will not alienate or drive them away, 

but one that they will love. 

“Gert will fix stuff 
without checking  
the manual, but at  
least he gets the  
job done.”
Wietse Venema about 

Gert Hengeveld



018 DEVOPS ADVENTURES

Meet Peter, he’s a product owner of a new team starting on the greatest invention 

since sliced bread. It’s going to be huge. It’s going to be the best. Peter has started on 

this new product with a small team, six of his best friends and it has really taken off. 

In order to meet demands while adding new features, Peter needs to either get more 

value out of his teams and if that is no longer possible, add more team members.

He and his teams have worked a number of sprints to get better at Scrum, implemented 

Continuous Integration even to deliver to production multiple times per day. It is 

amazing what you can do with a dedicated team willing to improve.1 But since their 

product was featured in the Google Play Store they’ve found themselves stretched  

to their limits. Peter has found himself in the classical situation in which many 

product owners and project managers find themselves. How do you replicate the 

capabilities of your existing team without destroying current high-performant teams? 

He contacts a good friend, Anna, who has dealt with this situation before and asks  

for her advice.

Scaling  
Scrum to  
the limit

You’re likely to have been asked the question: “we need to go faster, how many more  
people do we need?” Most people naturally understand that just adding a random  

number of people isn’t likely to make us any faster in the short run. So how do you  
scale Scrum to the limit? And what are those limits?

Author Jesse Houwing

1 https://xpir.it/xprt5-scaling-scrum1

PO



XPRT. Magazine N°
 
5/2017

019

Anna explains that there are two options of gradual growth that have a very high 

chance of succeeding with limited risk to his productive team. 

1. Grow and split model

In this model, new team members are added to the existing team, one team member 

at a time and taking enough time to let the new member settle before adding the 

next. Once the team reaches a critical point, a natural split is bound to happen and 

you’ll end up with two or more smaller teams. Peter remains the sole Product Owner 

(a product is always owned by a single owner in Scrum), but as they grow they  

may add an additional scrum master to help facilitate and help the teams to keep 

improving.

Most often the split happens naturally when a team grows beyond a certain size.  

This allows the team to self-manage their new composition. However, the new teams 

may never perform as well as the original team.

2. The apprentice model

The second model, Anna explains, uses an age-old model to train new people on 

the job. In the apprentice model the existing team takes on two apprentices who are 

trained in the ways of working and the functional domain. After a couple of sprints 

these apprentices reach their journeyman status and start a team of their own.

The biggest advantage of this model is that the original team stays together. They do 

have to onboard and teach the apprentices, which is likely to impact the way they 

work together, but this model has a much higher chance of retaining the productivity 

of the original team.

It may take a few sprints for the new 

team to reach the same level of  

productivity as the original team had, 

but you’ll have a higher chance of 

keeping your first team stable and  

productive.

Unfortunately, in this model there are 

no guarantees either. Adding new  

people to an existing team can have 

lasting effects, even after these  

people leave. These effects can be both 

positive and negative. E.g. they may 

bring along a new testing technique  

that helps everyone become more 

productive, or they may involve new 

insights that cause division among the 

original team. Depending on the team, 

they may be able to benefit from both, 

but it may also tear them apart.

It’s always the case that the original 

team will now have to learn to  

cooperate with the newly formed team, 

which will likely have a massive impact 

on their productivity. 

Knowing when to stop scaling
Peter asks his team which model they 

feel most comfortable with and the 

team decides to start with the grow-

and-split model, and after they’ve split 

off into two teams, adopt the apprentice 

model to grow further if needed.

He also asks Anna to join his company. 

She takes up the mantle of Scrum  

Master and focuses on helping the 

teams improve and helps them  

discover solutions for many of the 

problems introduced by working with 

multiple teams.

Meanwhile, Peter keeps asking the 

teams to train new team members and 

steadily the number of teams grows.

One afternoon Anna comes knocking 

on Peter’s door and shows him a couple 

of statistics she has kept for as long as 

she has been working in the company. 

According to her statistics, she had been 

tracking the value delivered per sprint as 

well as each team’s velocity - the latest 

additions haven’t been able to really  

deliver more. She argues that the 

overhead of working together with so 

many teams has reached the maximum 

sustainable by the current architecture. 

PO

SM SM

SM

Figure 1: Grow and Split.

Sprints

PO

SM

Sprints
SM

SM

Figure 2: Apprentice Model



She asked the teams and found out that 

people are tripping over each other’s 

work, integration regularly fails, and 

people are spending too much time in 

meetings and not enough time on  

“real work”. Despite the practices she 

has introduced, such as cross team 

refinement and visualization of  

dependencies, it seems that they have 

reached the maximum size for the 

product.

While Peter is a bit disappointed, he has 

to admit that Anna warned him that he 

couldn’t just keep adding people and 

expect an ever-increasing amount of 

work to be delivered.

Useful metrics while scaling
While velocity (story points delivered), 

hours spent and number of tests passed 

are all viable ways of tracking progress 

for a development team, it’s easy to 

measure the speed at which worthless 

junk is being delivered to production, 

without really knowing it.

This is why Anna also kept track of  

other metrics, such as value delivered, 

customer satisfaction (through app 

store reviews), incidents in production 

(through the monitoring tools they  

have in place) and more.2

Keeping statistics about the amount of 

value delivered while you’re scaling is 

important. You will probably find that 

while the total number of teams  

increases, each new team adds less  

and less value. This is a sort of glass 

ceiling that you may hit sooner or  

later. Breaking through it may require 

drastic changes to the application’s  

architecture or to the way the teams 

work together.

As Peter and the original team never  

expected the product to take off this 

fast, the architecture of the application 

was put together a bit haphazardly.  

And under the pressure to deliver,  

they cut a few corners left and right.  

He calls all of his teams into the  

company canteen and explains his  

predicament. Each team selects one 

or two of their most experienced team 

members and they form a temporary 

team of experts to figure out how to 

break up their little architectural  

monster. After peeling off a few  

functional areas and refactoring them 

into smaller, individually deployable 

parts of a cohesive functional unit, it 

quickly becomes apparent that this 

new architecture prevents them from 

tripping over each other’s toes.

You may have heard of this model  

before: small functional cohesive units 

of code that maintain their own data 

and that are called Microservices.  

These small units are ideal to form 

teams around and give these teams a  

lot of freedom.

Could we have done it differently?
Sometime later Peter finds Anna in the 

company coffee corner and asks her 

whether they could have taken another 

approach, one that would have shown 

the issues in their original architecture 

at an earlier stage of their product’s 

development. He also wonders whether 

they could have scaled faster by hiring 

experienced teams.

Anna explains that there was a third 

option she never explained to Peter, 

because it carried a much higher risk, 

and she didn’t dare risking the product. 

The third option was to quickly add a 

number of teams all at once, preferably 

teams of people who had already had 

some experience working together and 

that had experience working at such 

scale. At the same time, the original 

team members would be scattered 

amongst the newly formed teams, 

optionally rotating to share their specific 

knowledge of the domain or proces-

ses, and to explain the architecture and 

infrastructure.

3. Scatter (and rotate) model

In this model, given that you hit the 

problems in the established processes 

and in the architecture head-on,  

everyone needs to work together to 

quickly find solutions to all of the  

problems they encounter. If they  

manage this, they may be able to  

quickly find a way to work together. 

They may, however, also completely 

come to a stand-still or the amount of 

conflict may reach levels unimagined 

before.

To ensure the new teams have equal  

access to the knowledge and skills of 

the original team, the original team 

members often rotate amongst the 

newly formed teams or they are not 

dedicated to any team for a few sprints, 

before everything settles down.

If this model had succeeded, they may 

have been able to scale much faster. 

However, they could also have been out 

of business.

Peter reflects that had they had a direct 

competitor in the market who was able 

to deliver much faster, they could have 

taken this risk. But it would have been 

an all-in gamble. He’s glad they weren’t 

in that situation.

Conclusion 
There isn’t really a hard limit in terms  

of how many people can contribute to 

an agile product or organization.  

But clearly there are limits to the pace at 

which you can grow, to the amount of 

control you can have over what is going 

on in every team, and to what the pro-

duct’s or organization’s architecture and  

processes can sustain.

There are multiple models to grow your 

ability to deliver value. While adding 

teams may seem the easiest solution, 

investing in continuous integration, 

automated deployments, and a  

flexible architecture may deliver more 

sustainable value faster. 

020 DEVOPS ADVENTURES
V

al
u

e
 d

e
liv

e
re

d

Number of teams

Figure 3: The sky may not be your first limit.

2 https://xpir.it/xprt5-scaling-scrum2

V
al

u
e

 d
e

liv
e

re
d

Number of teams

Figure 4: Drastic changes enable new growth.



XPRT. Magazine N°
 
5/2017

021

When you do need to scale beyond what’s possible with a single team, remember 

that if you’re not ready for it, you’ll exponentially scale your team’s dysfunctions.  

To be very blunt, if you scale shit, you end up with heaps of it. When you’re able  

to deliver quickly, efficiently and professionally, you can scale your teams. 

Keep measuring while you scale and keep evaluating your way of working,  

collaboration and architecture. Using your statistics, you can make an  

informed decision whether to scale further. Without them, you may be  

degrading your ability to deliver value without ever knowing it.

Keep inspecting your processes, tools, architecture and team composition  

regularly. Your team will probably know what to improve in order to deliver  

more of the right things more efficiently. 

Figure 5: Scatter (and rotate) model

PO

SM

SM SMSM SM

SM

SM SM

SM SM

1
2 3

3 3

1 1

2 2

“Soon to bring the joys of 
Scrum to a place near you! 
Trainer, coffee connaisseur, 
ALM expert, Jesse is a great 
addition to any team.”
Loek Duys about Jesse Houwing

Sprints



Do you have any training budget left? Use it now!

Get trained by the world’s leading experts, scale your skills 

and learn everything you need to boost your career.

Visit Xpirit.com/training or training.xebia.com for more details.

Empower yourself.

training.xebia.com

Xebia Nederland B.V.    •    Laapersveld 27    •    1213 VB Hilversum    •    +31 35 538 19 21     •    training@xebia.com

Amsterdam O­  ce      •    Wibautstraat 200      •    1091 GS Amsterdam

Register now by using discount code XPIRIT10 and get

10% discount on these courses:

Microservices with NServiceBus   7 & 8 November

Scaled Professional Scrum   20 & 21 November

Azure Beyond Cloud Services   23 & 24 November

Microservices with Azure Service Fabric   11 & 12 December



023

XPRT. Magazine N°
 
5/2017

On June 16, 2017, Xpirit kicked off its first Global DevOps Bootcamp in New Zealand 

and finished at the Western part of the continental United States. With events in 

Australia, India, Europe, South and North America, we were chasing the sunrise to 

have VMs ready to go at each location. During the event, each attendee had access 

to their own private dual-core Windows virtual machine running in Azure. At peak, 

1,500 VMs were running using 3,000 cores of compute and over 180 tera bytes of 

storage. Each attendee had their own private environment to work with Visual Studio, 

Docker, and the other tooling needed to work with the hands-on labs and get their 

hands dirty with DevOps in a lab environment. 

All made possible through hundreds of individuals putting hard work on the event, 

the power the Azure cloud, and Valhalla.

Come to Valhalla
Valhalla is the name of our solution built on top of Azure that makes events like the 

Global DevOps Bootcamp, the DockerCon 2017’s hands-on lab pavilion, and even 

20-person hands-on workshops easy to run providing one or more virtual machines 

for each attendee. The first event hosted on Valhalla was a Microsoft ALM lab back in 

early 2014. Since then, Valhalla has provided a solid foundation for running traditional 

instructor led training classes, road-shows for Microsoft in the United States, Europe, 

and Middle-East as well as DockerCon 2016 and DockerCon 2017 where each lab  

attendee received three Linux-based VMs and/or three Windows-based VMs work 

with various Docker and Windows Containers related labs.

Valhalla was born out of a need to 

reduce the costs related to providing 

hands-on access to Microsoft’s ALM 

stack. We had been working with folks 

in the Microsoft US subsidiary focused 

on helping them find ways to make on 

site events at customer locations and 

open events at Microsoft offices better 

by providing customers an opportunity  

to try the latest versions of Visual  

Studio and Team Foundation Server in  

a hands-on experience, on demand.  

We had been looking at using Azure 

hosted virtual machines. But there were 

some issues. One big non-technical  

impediment was the original billing  

model. In June 2013, Microsoft moved 

to a per minute billing model as well  

as they stopped charging for compute  

when VMs were not running.  

This change pushed things over the 

proverbial hump. We knew we could 

build an affordable system on top of 

8 Years of CPU  
in a Day
Come to Valhalla with 
Azure DevOps #ftw

The idea seemed simple: bring the global community together so they could share and learn  
how to best use DevOps on the Microsoft stack using Visual Studio Team Services, Microsoft Azure, 
with Visual Studio 2017 and Xamarin tools. Do this one day a year and make the event global.  
This meant marshalling people, locations, and resources across the globe. But having a global 
meet up wasn’t enough. Xpirit wanted it to be hands-on.

Authors Brian A. Randell & Ian Griffiths, DuoMyth

Do you have any training budget left? Use it now!

Get trained by the world’s leading experts, scale your skills 

and learn everything you need to boost your career.

Visit Xpirit.com/training or training.xebia.com for more details.

Empower yourself.

training.xebia.com

Xebia Nederland B.V.    •    Laapersveld 27    •    1213 VB Hilversum    •    +31 35 538 19 21     •    training@xebia.com

Amsterdam O­  ce      •    Wibautstraat 200      •    1091 GS Amsterdam

Register now by using discount code XPIRIT10 and get

10% discount on these courses:

Microservices with NServiceBus   7 & 8 November

Scaled Professional Scrum   20 & 21 November

Azure Beyond Cloud Services   23 & 24 November

Microservices with Azure Service Fabric   11 & 12 December



024 DEVOPS ADVENTURES

Azure. Moving from just ALM related content, it expanded to 

be a general-purpose system to provide “students” with access 

to a one or more VMs, all within a managed environment in 

the cloud.

Over the summer of 2013, we designed the system and figured 

out funding. In September, we started writing Valhalla origi-

nally in partnership with our friends at Endjin. In the beginning, 

the VMs were to run on top of the IaaS infrastructure where 

each virtual machine was allocated with a Cloud Service.  

We designed the system to support a single payee model as 

well as a shared payee model. We used web sites hosted in 

cloud services, pushing messages to queues and worker roles 

to process commands from the queues with table and blob 

storage as our persistence stores. We wanted to make the 

system easy to use and manage yet be flexible when it came 

to the types of content to support. In the beginning, we only 

supported Windows VMs. As Azure changed, so did we, adding 

support for Premium SSD storage and Linux VMs.

Valhalla Today
Naturally, creating a single virtual machine in Azure using the 

Azure Portal is easy. The UI guides you through the steps until 

you click the final button.

If you’re running regular events or even one large event you’ll 

obviously want to automate this—nobody wants to walk 

through this VM creation wizard 1,500 times. And while you 

might think just a little bit of PowerShell or an ARM template 

makes it all “simple”, it turns out it’s a bit more complicated.

From the beginning, we designed Valhalla to support flexible 

class deployments (type of VMs, number of VMs, number of 

delegates) as well as multiple subscriptions. In fact, having 

multiple subscriptions is a key way to scale with Azure both for 

performance as well as scale out. If you run events needing 

many hundreds of VMs you will rapidly discover that the simple 

resource structure you get if you create a VM through the 

Azure portal does not scale—you will run into Azure’s per- 

subscription resource limits, such as the default limit of  

50 Virtual Networks. You can get this limit lifted with a support 

request but there’s a hard limit of 500, so you can’t use the 

simplistic one-VNET-per-VM model beyond that point  

(but equally, there can be issues if you put all your VMs on 

a single VNET). With careful resource design you can create 

thousands of VMs in a single subscription but you are then  

likely to run into Azure’s per-subscription API rate limiter, 

which can slow you down or even cause operations to fail  

entirely. So multiple subscription support becomes a must- 

have at sufficiently large scale.

At the simplest level, we want to provide a person with access 

(RDP or SSH) to one or more virtual machines for a period of 

time. In most scenarios, we provide access to the delegates  

via a custom e-mail message that we send out using the  

SendGrid service. That said, proctors at an event can hand out 

the delegates access information instead.

We define what VM(s) a user gets in something we call a 

bundle definition. A bundle defines a number of pieces of data 

including the recommended Azure VM size to use, whether 

the VM needs to be accessible through a public IP, and more.

Valhalla Architecture

Secured by AAD Redis pub/sub SignalR
backplane enables
Web UI to reflect
worker progress

Jobs controlled
Via Azure Storage
Queues

Monitored by Applications  

Insights

Web UI

ARM
(Azure Resource  

Manager)

VMs and  
related Azure 
resources

Azure Subscriptions

Other APIs
(e.g. VSTS)

Web Job



XPRT. Magazine N°
 
5/2017

025

For storage, Azure supports two types for virtual machine hard drives (VHDs): basic 

and premium. The difference at its core is simple: premium storage is backed by 

solid-state drives (SSDs). While more expensive to run long term, we’ve built  

optimizations into Valhalla to keep them around only as long as needed. You only  

pay for the time the VHDs are allocated. Premium storage can provide a more  

performant experience when using interactive Windows sessions in particular.  

We support just about any VM that you would have access to in an Azure subscription.

Valhalla Architecture
While Azure Storage is used for VMs, we use SQL Database (Microsoft’s name for 

its cloud version of SQL Server) as our main persistence store for tracking classes, 

resources, etc. In earlier versions of Valhalla, we used Azure Table Storage. While 

providing good performance and cheap storage, the programming model left a bit to 

be desired. We found the more traditional data programming model in SQL Database 

more productive. We use SQL Database to store most data about the system.

Again, as we’ve evolved Valhalla, we changed how we handle security. Our original 

system had its own role-based security model. Our current version relies on  

Azure Active Directory. Currently our system is mainly accessed by ourselves and 

customers who need to manage classes and events. Delegates don’t need to log in 

to use their VMs. However, Azure AD’s flexibility means we can support other Azure 

accounts, MSAs, Google, Facebook, and more.

As a cloud-based solution, the main UI of the system is implemented as an Azure App 

Service Web App. We use slots to make it easy to deploy new versions of a site.

Web Jobs handle long-running requests. Any time Valhalla needs to do something  

in Azure, whether it’s scanning an Azure subscription’s storage accounts for newly- 

updated VHD images, or creating VMs for an event through the ARM (Azure Resource 

Manager) API, that work runs in a Web Job.

We use Redis Cache to enable the Web Job to provide progress notifications for its 

long running work to end users. We are using SignalR to enable our web servers to 

push notifications to browsers, and we are using SignalR’s Redis Cache backplane  

to make it possible for our Web Job to generate notifications that will be routed to 

whichever web server is managing the connection back to the relevant end user. 

Under the covers, this uses Redis Cache’s pub/sub mechanisms.

We use Application Insights mainly for diagnostic purposes. If something goes 

wrong, Application Insights is very good at providing a holistic view—you can track 

an operation’s progress through from some end user’s browser through to the Web 

App and then on through the Web Job. Application Insights provides automatic 

interception of any operations that use Azure Storage or SQL Azure, and the ability to 

discover all of the events relevant to a particular request make it easy to get a good 

overview of everything that happened up to the point of failure.

DevOps
At this point it’s pretty clear that Azure 

provides us with flexible platform for our  

system and power on demand for our 

customers. However, with just two guys  

running the company, it helps to have a 

good DevOps process. Donovan Brown 

from Microsoft likes to say that “DevOps 

is the union of people, process, and 

product to enable continuous delivery 

of value for our end users.” One advan-

tage we have is we’ve been doing  

software development for over fifty 

years between us. And our general 

mindset is to change our process as 

needed to do more with less so we  

can deliver value. Thus, we’ve got the 

people and process part down pretty  

good (knowing it’s a journey not a 

destination).

From a product perspective, we’re  

all-in with the cloud with Visual Studio 

Team Services (VSTS). Back in 2013,  

it wasn’t completely obvious but we 

started managing our source code  

using Git repos in VSTS. Over time,  

the flexible branching model has  

made it easy for us to work distributed 

Test Results

Total tests Failed tests Pass percentage Run duration

637

(+637)

100%

(+100)

28s 866ms

(+28s 866ms)

0

(+0)

Passed (637)

Failed (0)

Others (0)

New (0)

Existing (0)

Plan +

Track

DevOps

Develop + Test

Monitor + Learn

Release



026 DEVOPS ADVENTURES

across two continents and eight hours’ time difference. We use the Scrum  

template with Product Backlog Items, Tasks, and Bugs to plan and track our work. 

Our sprints are generally thirty days.

Naturally we care about quality and thus we’ve worked to build various automated 

quality checks into our process. It starts with unit tests that we run from within  

Visual Studio as well as during our automated build process. Our build process  

produces deployable packages, and runs a full suite of unit tests and integration  

tests. Our builds run using a continuous integration off master, and any feature  

branches which is nice when we’re working on different features.

Our release process has evolved over time and this is a critical area to keep us  

moving forward. With our various customers and events, updating our bits in  

Azure is not something we want to be doing manually. We were early adopters of  

the “new version” of Release Management that’s built into VSTS and it has served  

us well. We don’t do a typical pipe line development from dev to test to prod.  

What usually happens is we do lots of deployments to one of our dev environments, 

then to test environments followed by prod. The key is that we can have multiples  

of each type of environment. They’re different by purpose and customer but not  

by code. In addition to the deployment task, which involves pushing out any core 

service changes via ARM, the web sites, web jobs, as well as handling slot swaps, we 

use Selenium to run automated regression tests against the user interface of our  

web site. We have a specialized release definition for running these end-to-end  

tests that creates a whole new Valhalla environment (with the full set of Web Apps, 

SQL Server etc. deployed to a dedicated resource group) so we can test all  

functionality from scratch on a newly-deployed system, and this release then  

tears down the environment if the tests all complete successfully.

As a side note, we use Azure Key Vault to manage secrets such as SQL Server  

passwords and SendGrid credentials as part of DevOps. This enables us to avoid  

storing any secrets in source control, and also to keep them out of our build  

configuration. (VSTS’s ARM deployment task is able to look up the secrets itself  

when it needs them by accessing the Key Vault directly.)

We track a wide range of data per event such as users, VM allocations, etc. in addition 

to data gathered from Application Insights. We also work to have post-mortems with 

customers to improve the system. New feature work comes from feedback as well 

as from our experience at running events, large and small. The larger events, like the 

Global DevOps Bootcamp, help us add make the system more robust for all events.

Lessons Learned
The saying goes “there’s no place like production”. Over the years we’ve learned  

a number of things running on Azure. One key learning is that multiple Azure  

subscriptions are necessary for large scale due to hard resource limits and ARM API 

rate limiting. Another key learning is test, test, test. Repeatability is vital. End-to-end 

testing is especially valuable—our full-system tests have caught more regressions 

than anything else. And as always, the only constant is change. Azure is dynamic and 

is a fantastic platform on which to build solutions. It’s amazing to think that we can 

use over 180 terabytes of storage, have 1,500 VMs spun up burning eight years of 

CPU in a day and then give it back to the cloud. Come to the cloud, we think you’ll 

like it. 

Ian Griffiths
Ian is an independent consultant, developer, 
speaker, and author. He has written books 
on Windows Presentation Foundation, 
Windows Forms, and Visual Studio. He lives 
in London but can often be found on various 
developer mailing lists and newsgroups, 
where a popular sport is to see who can get 
him to write the longest email in reply to the 
shortest possible question.

Brian A. Randell
Brian A. Randell is a Partner with MCW  
Technologies LLC. For more than 20 years  
he has been building software solutions.  
He educates teams on Microsoft techno­
logies via writing and training—both in­ 
person and on demand. He’s also a  
consultant for companies small and large, 
worldwide, including Fortune 100 companies  
like Microsoft. Brian lives in Upland, CA. 
When not working, Brian enjoys spending 
time with his wife and two children who 
enjoy making him look bad on the Xbox One 
(with and without Kinect). He loves watching 
movies, listening to heavy metal, and driving 
his 2008 E60 M5.



XPRT. Magazine N°
 
5/2017

027

Do you have a business case for 
migrating to the cloud?
When we talk with organizations about 

cloud transitions, we see that a lot  

of different approaches are taken. 

The reason for this is that the chosen 

approach and steps to take are highly 

dependent on the perspective of who 

in the organization is asked to lead the 

transition.

If you ask the developers how they can 

move their application to the cloud, 

they will come up with great plans on 

how to change their application’s  

architecture to micro services and 

how they can use the latest .NET Core 

framework, since it has been optimized 

for cloud workloads. This will lead to 

a high investment before things can 

be moved, because the fundamental 

differences of this type of architecture 

require the application to be rewritten.

If you ask the IT operations department 

how to make the transition, they will 

come up with a new way to provision 

infrastructure and set up a service  

catalog from which customers can 

request new virtual machines that  

will now be provisioned in the cloud. 

Furthermore, you will see extensive 

network architectures and a lot of  

complexity, because they try to  

implement their current systems using 

cloud infrastructure, which is quite 

different when you want to get the 

maximum benefits from the cloud.

These are two examples of many  

other perspectives. Are they wrong?  

We don’t think so. But we do think 

these approaches are suboptimal and 

will incur high costs and low return on 

investment. To prevent this, an answer 

should be given to the question:  

which migration strategy will contribute 

to your organization’s business and  

IT goals? In other words: what is the  

business case for migrating an  

application to the cloud?

From CAPEX to OPEX
The cloud is a real game changer.  

Not only from a technical perspective  

but even more so from an economical  

perspective. In the past, an organi zation 

had to spend significant amounts of 

money to start a competitive online  

service. However, these capital  

expenses (CAPEX) are mostly gone,  

and all costs are moving to operational  

expenses (OPEX). This is because you 

don’t have to invest in hardware, but 

instead you pay the cloud provider 

for the resources you use. This is the 

on-demand, Pay-As-You-Go nature of 

the cloud. From this shift, we can see 

two forces that require our customers 

to change the way software is delivered. 

The first force concerns independent 

Software Vendors (ISV’s) that are now 

asked to provide their Software-as-a-

Service, because their customers want 

the same model for the software they 

buy as they now do with hardware in 

the cloud. The second force concerns 

enterprises that are driven to reduce 

their operational costs and one way to 

make this happen is by adopting the 

cloud. You see many enterprises state in 

their plans to totally move to the cloud 

and get rid of their own datacenters. 

This sounds very lucrative at first, but 

sometimes one tends to forget that 

just moving your existing machines to 

machines in the cloud is not at all  

economically beneficial. Your over-

all costs will probably become much 

higher. 

CAPEX = Capital Expenditures,  

investment costs for developing a 

system

OPEX = Operational Expenditures,  

the returning costs when using a  

system

Cloud Transitions  
done right!
It is no longer a question whether your organization will move applications to the cloud; it’s only  
a matter of when and how it must be done. In this article, we will share our insights on what is  
required to make this transition successful. We will highlight various perspectives that should be 
taken into account when you consider a cloud migration and explain how you can determine  
the right strategy to follow. 
 
Author Marcel de Vries & Martijn van der Sijde



028 CLOUD STRATEGY

How do you move to the cloud  
the right way?
The first thing to understand is that 

moving to the cloud is not a matter of 

one size fits all. For example, if you are 

the ISV as mentioned in the previous 

paragraph, you need to look at your 

current software and determine the 

cost involved if you are now hosting 

this software yourself. You are now 

confronted with the incurred costs your 

customers had. These costs should be 

replicated for every customer you have. 

You need to look at what is the state 

of the software and in what part of the 

lifecycle it is. Has it just been built, has 

it been out there for a long time and 

does it already need significant rework, 

or is it a product that is at the end of its 

lifecycle and you need a way to provide 

SaaS but you don’t want to invest?

Depending on the lifecycle phase of 

your application, you can project it on  

a cloud migration strategy model such 

as the Gartner 5-R model (Rehost, 

Refactor, Revise, Rebuild, Replace), 

the Azure 5-R model or the AWS 6-R 

model. These “R” models state that you 

need to pick one of these strategies  

based on your company’s cloud  

migration goals as well as the require-

ments and constraints of the specific 

application.

To demystify the options you can 

choose from, the strategies from the 

various “R” models are combined and 

explained in the following table.

After you have selected one of the  

strategies, you need to look at two  

factors. The first factor is the Capital  

Expense if you choose to Rehost,  

Refactor, Rebuild or Replace. With all 

these strategies, you need to invest in 

your solution before you can run in the 

cloud. Next you need to look at the 

operational expense of running this 

application in the cloud for the next  

5 years. This will result in a graph that  

can show you the total amount you  

will spend in the next 5 years, given a 

selected strategy. 

To give you an idea of the result of  

this approach we will give an example  

of one of the cases we have seen in  

the field. The following graph depicts  

a 5-year plot of the capital and  

operational expenses of a product that 

needed to be moved to the cloud. 

The problem statement that needed  

to be answered in this case was: how 

can we move our product to the cloud 

as quickly as possible with a capital 

expense as low as possible and still  

have a cost-effective operational  

expense for running the product for  

our customers in the long term.

 

Strategy Description Pros & Cons

Remove/Retire Turn off applications from the  
portfolio that are no longer useful/not contri-
buting to business goals.

+
   Positive impact on business case
   Frees up time to spend on other  

applications

Retain/Revisit Applications that have no priority for moving 
now. Leave as-is and evaluate again when 
most of the application portfolio has been 
shifted to the cloud.

+
   Focus on applications that deliver most 

business value

Rehost Lift-and-shift your solution from on-premise 
to IaaS. Practically this  
means moving your current (virtual)  
machines to virtual machines in the cloud. No 
changes are made to your code.
Another way of rehosting is containerization 
of your application.

+
   No changes to the code (minimal changes 

in case of containerization)
-
   No utilization of cloud benefits like  

scalability

Refactor/Replatform/Revise Move to PaaS with minor adjustments, ma-
king relatively small changes to the existing 
application so it becomes more efficient in 
resource use, especially when you are serving 
multiple  
customers with the same software.  
This is better known as making an application 
multi-tenant.

+
   Better OPEX cost model compared to 

Rehost
   Reuse of code considered as strategic  

or differentiating
-
  Cloud lock-in on PaaS

Rebuild/Refactor/Re-architect Cloud-native move to PaaS, completely repla-
cing the application and maximum  
use of cloud benefits. This is the  
developer’s dream, where you go in the whole 
way, and use as much as possible Platform-
-as-A-Service from the cloud, so you obtain 
the best operational  
expense model.

+
   Full cloud-native benefits such as  

scalability
   Most optimal OPEX cost model for  

custom software
-
  Lock-in when using PaaS services

Replace/Repurchase Discard the application and move to a sub-
scription-based Software-as-a- 
Service product.

+
  Fully outsourced application
-
  Possible data lock-in
   Potentially difficult to customize and  

integrate

Table 1: Cloud migration strategies



XPRT. Magazine N°
 
5/2017

029

For this specific case an estimate was made of the number of users of the product  

in each year and of the required changes to the product for each strategy.

When you look at this graph you see that a Rehost strategy will have a low upfront 

investment (capex) in the case of this product, but operational expenses make the 

total costs increase linearly. This is due to the costs of required virtual machines 

being used each year. 

The Refactor strategy focuses on changing the product to make it multi-tenant, 

which is more resource-effective than a Rehost strategy. This is because the product 

will no longer require dedicated resources for each customer.

The Rebuild strategy will have the highest initial cost, because of the impact of 

required changes to the product. On the other hand, annual operational costs are 

relatively low because of the optimal usage of native cloud services, resulting in zero 

server maintenance.

The Replace strategy will substitute the product for a Software-as-a-Service solution. 

This is an interesting scenario from a cost perspective. The sub scription of the  

product will be paid each period. The important question here is whether the pro-

duct is a strategic differentiator. In other words: does the product contribute  

to innovation and differentiation of the product compared to the competition.

Transition Strategy

600000

500000

400000

300000

200000

100000

0

Rehost (Lift and Shift)

Refactor (Multi tenant)

Rebuild (Cloud Native)

Replace (Saas)

0 1 2 3 4 5 6 7

Looking at the problem statement, the 

question is: when does it become  

economically viable to make the invest-

ment to change the product, allowing  

the investment to be earned back in the 

long term.

You can see that the Rebuild strategy 

has the best operational cost model. 

After the initial investment, the cost 

line hardly increases compared to the 

other cost lines. Eventually it will be the 

cheapest, but the return on investment 

will take a couple of years because of 

the high initial costs. Another drawback 

is that time-to-market of the product 

will be longer compared to strategies 

requiring less significant changes.  

If you only do the lift-and-shift, you will 

see that within one year it will be more  

expensive then refactoring the appli-

cation to support multi-tenancy. The 

latter scenario is cheaper because one 

instance of the application will provide 

service to multiple customers whereas 

a dedicated application provides service 

to a single customer.

Based on this graph you could deduce a 

strategy of starting with a lift-and-shift, 

then start the investment first for multi- 

tenancy (Refactor) and then Rebuild it 

to cloud-native. Since it probably won’t 

make a lot of sense to refactor and 

rebuild at the same time, you may want 

to choose a scenario where you look for 

options to gradually refactor towards a 

full cloud-native product.

Figure 1: Cost comparison

“Thinks about architectures 
so vast and huge, that his  
2 meter arm span is not  
wide enough to illustrate  
the range and size of things  
he talks about. “
Jasper Gilhuis about Marcel de Vries



“Even though I could  
recognize Martijn for his  
analytical skills, I rather  
focus on his friendly  
appearance and ability  
to connect people.”
Alex de Groot about Martijn van der Sijde

030 CLOUD STRATEGY



031

XPRT. Magazine N°
 
5/2017

How to assess the applications you will move?
When assessing the applications that are going to move to the cloud, they need to be 

assessed on multiple levels. As stated before, it is important to determine the current 

phase in the application lifecycle. Next: where do we want to go with this product?  

At one time it may have been a “system of innovation”, but by now each competitor 

also has it. This is the moment you choose to replace it with a SaaS solution. If the 

system will still be differentiating or innovating, it makes sense to look at the  

scenarios Rehost, Refactor and Rebuild. Practically this means that the initiative for 

cloud transformation allows you to Revisit the strategic importance of applications  

in the portfolio, and gradually migrate towards the cloud. The following figure shows 

the flow of assessment.

Figure 2: Decision tree for application portfolio assessment

Cloud transitions done right
Looking at cloud migration strategies there is no single strategy that will be  

appropriate for all applications in the portfolio of an ISV or enterprise. A mix of  

different approaches is required, based on the value that an application delivers  

versus the costs (investment and operational) of any selected strategy.  

Because these strategies depend highly on the situation, application, and types  

of cost involved, there is no one-size-fits-all solution.

In this article, we have described an approach for creating a business case for your 

applications when you move them to the cloud. If you ask your development team, 

you will get a different solution than when you ask your operations team. The major 

difference is that we have added the economical perspective, and this will allow you 

to create a balanced view on how to make the transition and predict the costs and 

benefits. 

Asses application

System of  
Record?

Yes

No Not anymore

Not anymoreNo

Yes

Yes Still the case

Still the case

System of  
Differentation?

System of  
Innovation?

Move to SaaS  
solution (Replace)

Evaluate cost 
scenarios

Continuously 
Optimize

RebuildRefactorRehost

Revisit

Revisit

The main benefit of this example is that 

this way of assessing applications will 

yield a set of possible scenarios and it 

will give you insight into a hard  

business case to make the investment 

and determine the best strategy.

An Enterprise perspective
When you are in an enterprise  

organization you can also make this 

same kind of assessment, but the  

difference will be that you need to deal 

with a portfolio of applications. In this 

case, you are best off to first divide  

the applications roughly into three 

categories.

 Custom-built

 Custom-built by a partner

 Off-the-shelf and hosted on-premise

The category Custom-built involves 

software that is built to make a  

difference for the company. Gartner 

calls these systems “Systems of  

Innovation”. These systems can be  

assessed in exactly the way we  

described for the ISV and from that  

you can pick the best scenarios.

The category Custom-built by a partner 

includes the systems of differentiation, 

where you often buy a partial off-the-

shelf solution, but fully tailor this to  

the needs of the organization.  

These systems can also be moved to 

the cloud. In this case, you often ask  

the partner that built the product to  

take care of this. 

The category off-the-shelf, usually  

means “Systems of Record”. These are 

the systems you need, but everyone  

has the same and it is just there to  

ensure that you can run your business. 

There is no way you can gain an  

advantage by doing this differently  

from your competitor. For this category,  

you can often just move to the  

Software-as-a-Service solution of  

the vendor.



032 CLOUD STRATEGY

Many organizations nowadays are implementing continuous delivery practices to accelerate their 
time to market. An important part of continuous delivery is automated testing. However, a lot  
of companies are still struggling with how to do this in an effective way. Although a lot of test  

automation practices have appeared over time, the effort and time required for testing is still a  
bottleneck for many organizations. In this article you’ll learn how the power of containerization  

can be leveraged to shorten your feedback cycles, reduce testing effort, and accelerate your  
time to market. 

 
Author Cornell Knulst & Sander Aernouts

Containerized 
Testing

How automated testing is done nowadays
Containerized testing is a new practice within the space of automated testing.  

Before we look at what containerized testing has to offer in addition to other test 

automation practices, let’s briefly look at commonly used practices nowadays.

Figure 1 - Common test automation practices

A lot of current practices have to do with the implementation of your tests.  

One well-known practice in the domain of test automation is the Test Automation 

Pyramid1. This pyramid describes that you implement your automated tests at the 

lowest pyramid level possible. The lower the level in the pyramid, the more  

autonomous, granular and maintainable your test cases are, and the faster your test 

execution. Other successful practices related to test implementation include the 

Page Object Pattern and Screenplay Pattern for creating maintainable UI tests. 

In addition to implementation-related 

practices, process-related practices  

also appeared to be very suitable for 

automated testing. For instance,  

Acceptance Test Driven Development 

(ATDD) enforces development teams 

to create automated acceptance tests 

before actually coding the functionality. 

To deal with tests that can’t be auto-

mated, as the Test Matrix2 tells us, the 

practice of “Testing in production” was 

introduced to shorten time to market by 

executing those tests in production.  

For example, instead of executing  

Usability Tests as part of the delivery 

process, A/B testing can be used to  

execute this type of test in production.

Thanks to the above-mentioned  

practices, a lot of organizations are able 

to reduce the time required to deliver 

new functionalities into production.  

But if we look at the time, effort and 

costs that are needed to set up and 

manage a testing infrastructure, it is 

remarkable to see that only a few  

practices exist in this area, for example  

DTAP. Looking at the operational costs 

and realizing that the testing infra-

structure is idle most of the time, 

wouldn’t it be better to have the  

testing infrastructure on demand?  
1 https://xpir.it/xprt5-container-testing1
2 https://xpir.it/xprt5-container-testing2

Implementation

Infrastructure

Process

 Test Automation Pyramid
 Page Object pattern
 Screenplay pattern
 Triple A’s
 Specification by Example
 Test matrix
 ....

 DTAP
 Containerized Testing

 TDD
 ATDD/BDD
 Living documentation
  Testing in production 

(A/B testing, Canary 
releasing, ...)

  Delivery pipeline (stages, 
quality gates, ...)



XPRT. Magazine N°
 
5/2017

033

For example, you will have different environment blueprints 

for security, perfor mance, integration, and end-to-end testing. 

The nice thing about this approach is that we can set up a 

given environment on-demand, depending on the type of  

test we want to execute. Figure 3 shows an example of a 

containerized test environment, the same environment as we 

had in figure 2. However, it uses containers for the application 

under test and all other test infrastructure required to run the 

tests.

Figure 3 - Test environments in a containerized testing world

Being able to set up isolated environments means that there is 

no real need for Development, Test, Acceptance and Produc-

tion environments (DTAP) anymore. Instead, we can think in 

stages and use the quality gates within each stage to assess 

the quality level of our application and its components. In 

that case, we might actually say that DTAP is dead. Using the 

concept of environment-as-code, we can simply define an en-

vironment for a certain quality gate, for example performance 

test, set up that environment, and execute the required tests. 

As we pass more and more quality gates, we are building up 

the trust required to actually run the application in production. 

In theory the order in which we pass the quality gates before 

production doesn’t really matter. We could even run a few of 

them in parallel. But it is a good idea to consider the time tests 

take to run and what they actually test. For example, there is 

no real need to run relatively slow UI tests if your most basic 

smoke tests already fail. This might be conceptually similar to 

what you would do in your DTAP environments today, but you 

are no longer limited by the number of environments available  

or by the type of test you can run on a particular environment. 

This means you can focus on how to get rapid feedback and 

how to fail fast.

Figure 4 - Stages and quality gates instead of DTAP

Luckily, we found a solution that can help us fill this gap.  

We call it containerized testing. 

The shift to containerized testing
Many of you may already have discovered the power of  

containerization for your applications. Think of benefits such 

as scalability, freedom in hosting, immutable images, etc.  

So why not leverage the same benefits for our testing  

infrastructure. Wouldn’t it be much easier to just set up your 

test infrastructure only when you need it?

What is containerized testing?

If we look at how a testing infrastructure is set up today, you 

will most likely have one or more dedicated, pre-provisioned 

test environments to support the execution of different types 

of automated tests.

Typically each test environment can only run specific types of 

tests. For example, performance tests are often executed on 

an acceptance test environment. Test or acceptance environ-

ments are often also shared across teams, which means that 

you will have to wait for that environment to become available. 

An example environment for running integration tests could 

look like the environment shown in figure 2.

Test environment

Figure 2 – Traditional setup of test infrastructure for a test  

environment

Figure 2 shows a fictitious system that is being tested.  

This system consists of a registration service, an email service, 

and a user service. The test agent is responsible for executing 

the automated tests, replacing an external dependency with  

a stub, and preloading a database used by the user service. 

Depending on the type of test, the database could be  

preloaded with test data to support different scenarios.

With containerized testing we do the same as we do with  

containerization of our applications, i.e. the environment  

becomes part of the test deployment. For every test we  

set up the required containers and configure the required  

environment. This is also known as configuration-as-code  

and infrastructure-as-code. By doing this, test environments 

are no longer a physical thing, but they become blueprints 

containing the various containerized components that we 

need to put together to execute a specific type of test.  

This concept of blueprints is referred to as environment-as-code.

Test agent

Registration Service

Email  
Service

User  
Service

Agent machine

Application Server

Stub

Database Server

User DB

Test agent

Container

Container host

Isolated network

User Service
Registration 

Service
Email Service Stub

ContainerContainer

User DB

Container Container Container

Commit

 Complete

  Statice Code 
Analysis

 United Tests

  Acceptence 
Tests (on code 
units)

Automated  
Acceptance Test

 Smoke Tests

  Component 
Tests

  Acceptance 
Tests (end-to-
end)

User Acceptance 
Test

 Smoke Tests

 Usibility Tests

  Exploratory 
Tests

-llity Test

 Smoke Tests

  Performance 
Tests

 Load Tests

 Stress Tests

 Security Tests

  Other Property 
Tests

Production

 Smoke Tests

 User telemetry

  Usage  
monitiring

  Stakeholder 
feedback

Quality

Feedback

Stages

Quality Gates



034 CLOUD STRATEGY

How to get started?
Before you can use the concept of containerized testing,  

the application you are testing needs to be containerized.  

Actually, not only the application you are testing must be  

containerized, all other components required to run the  

specific test must also be containerized. And you will require 

some sort of test agent or test container that executes the 

tests for you. For UI testing you will need a container that 

runs headless UI tests, and for your test data you will need a 

database inside a container with the test data pre-loaded as 

a snapshot. If you connect to external services, it is a good 

idea to have stubs inside containers that can replace this 

dependency when you run your tests. There are many more 

examples of test components you can come up with, but the 

bottom line is that you will have to make sure that everything 

you require to run your tests is available in your containerized 

test environment.

Now that we have containerized the components of our test 

environment, we need to describe the set-up of the various 

test environments using the concept of environment-as-code. 

For example, we can use Docker Compose to define blueprints 

of the test environments that will be deployed in isolation. 

Docker Compose supports the use of multiple compose files 

that complement or overwrite each other. This means that we 

can have a main Docker-compose.yml file for our application, 

and a Docker-compose.integrationtests.yml file that adds the 

specialized testing container(s) and that (re)configures services 

to connect to the stubs instead of a real external service.  

We then tell Docker Compose to set up an isolated environ-

ment using the combined configuration of these two files. 

Moreover, we can have multiple combinations of compose 

files that configure different types of environments to run 

different types of tests.

Figure 5 - Using multiple compose files to run your tests

Benefits
Partial test environments

One of the major benefits of containerized environments is 

the ability to set up partial environments. A partial environment 

means that you only have to include the services and test 

components required to run a specific type of test instead of 

your entire environment, for example only an API service and  

a back-end service.

Isolation

The containerized testing approach means that you can truly 

test your environment in isolation. There is no need to make 

your services accessible from the outside, because the agent 

running your tests is just another container running in the 

same environment as your services. For most types of tests 

there also is no need for your services to communicate with 

the outside world because your services talk to stubs instead 

of to the actual external services, and these stubs run in the 

same environment as your services. What’s more, you don’t 

have to worry about other running containers interfering with 

your test environment, unless you have explicitly configured it 

that way. Because you run your test agent within a container, 

you need a CI/CD orchestration tool (e.g. VSTS) to start your 

containerized testing environment. If you make use of Docker 

Compose, you can use the Docker compose up command to 

start your containers and the actual test execution.

version: ‘2’

services:
 sensorservice:
   images: sensorservice
   build:
    context: ./SensorService
    dockerfile: Dockerfile
   ports:
    -”80:80”
   links:
    -bus
  bus:
   images: rabbitmq:3.6.10-management
   ports:
     -”5672”
     -”8080:15672”

version: ‘2’

services:
 sensorservice:
   environment: 
    -ASPNETCORE_ENVIRONMENT=Integration
sensorservice.servicetests: 
   image: sensorservice.servicetests
   build:
    context: ./SensorService.ServiceTests
    dockerfile: Dockerfile
   links:
     -bus
     -sensorservice

Container host

Isolated network

“With his dedication  
and perseverance 
Cornell guides every 
client to success.”
Marc Duiker about Cornell Knulst



XPRT. Magazine N°
 
5/2017

035

   Container host

Figure 6 - On-demand and parallel test environments

On-demand parallel test execution

You can create your test environment exactly when you need 

it. You are now able to deploy your isolated environment on 

any container host and run multiple types of test in parallel, 

because you can set up an environment for each of them.  

You can now consider running security tests, performance 

tests and, for example, UI tests all at once. You don’t have to 

wait for environments to become available so the overall  

execution time of your tests will decrease significantly.

Reduced costs

Using the container infrastructure, you can set up as many 

environments as you want. There is no real need for  

dedicated, pre-provisioned testing environments any longer; 

you can create a set of containers on a container host and  

run specific tests against them. Once you are done with 

the tests, you no longer need the environment, so it can be 

destroyed. This means that you don’t have any pre-provisioned 

environments that are idle most of the time. You still do need a 

container host, but you can utilize the available resource more 

efficiently than you ever could with separate pre-provisioned 

test environments.

Conclusion
There are already many practices available that cover different 

aspects of test automation. However, there are only few  

practices available for infrastructure when it comes to auto-

mated testing. Leveraging the same benefits that you get from 

containerizing your application for test automation allows 

you to look at infrastructure for test automation in a whole 

new way. The concept of a test environment changes from a 

pre-provisioned set of servers to an on-demand environment 

that contains everything needed to run just that specific type 

of test. This also changes the way you think about executing 

your automated tests. You don’t have to think about DTAP  

anymore; instead, you can think about which types of test 

(quality gates) you need to run in order to build confidence to 

move to the next stage. Instead of thinking about which test 

has to run in which environment, you can think about which 

tests provide the fastest feedback.

Containerized testing is a great opportunity for organizations 

that are starting or thinking about containerizing their  

application stack. Containerizing your test infrastructure in 

addition to your application stack, speeds up your feedback 

cycles and accelerates your time to market. 

Isolated network

Isolated network

Isolated network

Isolated network

Marco Mansi about Sander Aernouts

“Quick learner, hard worker,  
food lover, his ALM solutions  
are the best DevOps recipe  
for success!”



036 SERVERLESS

Live! 360: A Unique Conference 
for the IT and Developer Community

 • 6 FULL Days of Training
 • 5 Co-Located Conferences
 • 1 Low Price
 • Create Your Own Agenda from Hundreds of Sessions
 • Expert Education and Training
 • Knowledge Share and Networking

CONNECT WITH LIVE! 360

twitter.com/live360 
@live360

facebook.com
Search "Live 360"

linkedin.com
Join the "Live! 360" group!

The Ultimate Education Destination

NOVEMBER 12-17

�e Ultimate Education D�tination

ROYAL PACIFIC RESORT AT UNIVERSAL ORLANDO

REGISTER NOW

PRODUCED BYEVENT PARTNERS PLATINUM SPONSOR SUPPORTED BY LIVE360EVENTS.COMNOVEMBER 12-17

�e Ultimate Education D�tination

ROYAL PACIFIC RESORT AT UNIVERSAL ORLANDO

REGISTER NOW

5 GREAT CONFERENCES,  
1 GREAT PRICE

Visual Studio Live!: Code in Paradise at 
VSLive!TM, featuring unbiased and  

practical development training on the 
Microsoft Platform.  

SQL Server Live! will leave you with the 
skills needed to drive your data to  
succeed, whether you are a DBA, 

developer, IT Pro, or Analyst. 

TechMentor: This is where IT training meets 
sunshine, with zero marketing speak on 

topics you need training on now, and solid 
coverage on what's around the corner.

Office & SharePoint Live!: Today, 
organizations expect people to work from 
anywhere at any time. Office & SharePoint 

Live! provides leading-edge knowledge 
and training to work through your most 

pressing projects.

Modern Apps Live!: Presented in partnership 
with Magenic, this unique conference 

delivers how to architect, design and build a 
complete Modern App.

REGISTER 
NOW

REGISTER BY  
NOVEMBER 12  
AND SAVE $300!*
Must use discount code LEB01

* Savings based on 5-day packages only.  
See website for details.

NEW: HANDS-ON LABS
Join us for full-day,  
pre-conference hands-on 
labs Sunday, November 12.  

Only $695 through November 12

Check out our other 2017 events  
for Developers and IT Pros:

• Visual Studio Live! - vslive.com
• TechMentor - techmentorevents.com



XPRT. Magazine N°
 
5/2017

037

Live! 360: A Unique Conference 
for the IT and Developer Community

 • 6 FULL Days of Training
 • 5 Co-Located Conferences
 • 1 Low Price
 • Create Your Own Agenda from Hundreds of Sessions
 • Expert Education and Training
 • Knowledge Share and Networking

CONNECT WITH LIVE! 360

twitter.com/live360 
@live360

facebook.com
Search "Live 360"

linkedin.com
Join the "Live! 360" group!

The Ultimate Education Destination

NOVEMBER 12-17

�e Ultimate Education D�tination

ROYAL PACIFIC RESORT AT UNIVERSAL ORLANDO

REGISTER NOW

PRODUCED BYEVENT PARTNERS PLATINUM SPONSOR SUPPORTED BY LIVE360EVENTS.COMNOVEMBER 12-17

�e Ultimate Education D�tination

ROYAL PACIFIC RESORT AT UNIVERSAL ORLANDO

REGISTER NOW

5 GREAT CONFERENCES,  
1 GREAT PRICE

Visual Studio Live!: Code in Paradise at 
VSLive!TM, featuring unbiased and  

practical development training on the 
Microsoft Platform.  

SQL Server Live! will leave you with the 
skills needed to drive your data to  
succeed, whether you are a DBA, 

developer, IT Pro, or Analyst. 

TechMentor: This is where IT training meets 
sunshine, with zero marketing speak on 

topics you need training on now, and solid 
coverage on what's around the corner.

Office & SharePoint Live!: Today, 
organizations expect people to work from 
anywhere at any time. Office & SharePoint 

Live! provides leading-edge knowledge 
and training to work through your most 

pressing projects.

Modern Apps Live!: Presented in partnership 
with Magenic, this unique conference 

delivers how to architect, design and build a 
complete Modern App.

REGISTER 
NOW

REGISTER BY  
NOVEMBER 12  
AND SAVE $300!*
Must use discount code LEB01

* Savings based on 5-day packages only.  
See website for details.

NEW: HANDS-ON LABS
Join us for full-day,  
pre-conference hands-on 
labs Sunday, November 12.  

Only $695 through November 12

Check out our other 2017 events  
for Developers and IT Pros:

• Visual Studio Live! - vslive.com
• TechMentor - techmentorevents.com



Figure 1 shows a flowchart that could help you decide which flavor fits your application. This flow chart focuses on several  

questions that we will elaborate on in the following section. Please consider that it is impossible to take all possible questions  

and scenarios into consideration in this flowchart, so use it as a rule of thumb. The questions described below are some of  

the main considerations you should take into account when choosing your cloud web infrastructure.

038 CLOUD STRATEGY

IaaS, Containers 
or Serverless? 

Choosing the right cloud
solution for your web

applications.
Microsoft Azure offers several options for hosting your web-based applications, and it is difficult  

to choose the best option for your scenario. It might look easy to just take the simplest way  
of moving your infrastructure to Azure in an IaaS way, but this is probably not the best option.  

There is no single silver bullet option that is always best. In this article, we will discuss the  
various options to consider when you choose to move your web workloads to the cloud.  

 
Author Chris van Sluijsveld & Geert van der Cruijsen

Does your application
have to be cloud 

agnostic?

Main Workload of
your application

Azure  
Functions

App
Service

laaS
App Service

Environment
App Service
Containers

Service 
Fabric

Container
Orchestration

Does it contain highly
unpredictable

workloads?

Is it an existing
application

Is it possible to
containerize your 

application?

Is it a single web
application?

Application uses the
actor model?

Does the application
need to interact with on
premise environments

or is it internal only use?

Is it possible to
containerize your

application?

START

NO

YES

YES

NO

NO

UI

YES

YESNO NO YES

NO

YES YES NO

NO

YESAPIS/JOBS



XPRT. Magazine N°
 
5/2017

039

Cloud Agnostic?

Microsoft Azure offers a lot of specific Platform as a Service 

features – for example App Service – that remove the effort 

of managing your infrastructure. When you choose a solution 

that is specific to Azure, it can become more difficult to make 

a switch to other cloud providers in the future. The choice is 

therefore between development speed combined with tighter 

coupling with Azure, or more overhead in managing your 

environments, which gives you more control over where you 

host your application. Typically, you’re fine with just choosing 

one cloud solution provider, but sometimes regulations,  

uptime requirements or a specific application architecture  

require that you use multiple providers to host your  

applications.

Containerizing applications?

Being able to host your applications using container techno-

logy such as Docker gives you a lot of flexibility and options. 

Microsoft is making working with containers better each day 

by adding support for developing applications in both Azure 

and Visual Studio. Containers can run anywhere on any cloud 

platform or on-premise, making it a very viable option for both 

new and existing applications. Tools such as Image2Docker 

(https://xpir.it/xprt-right-cloud1) make it easier to convert 

existing applications to Docker containers, so even legacy 

applications can be hosted using container technology.

Highly unpredictable and flexible workloads?

This question focuses on the usage of your jobs or APIs. In 

most scenarios, the workload on your APIs will be distributed 

quite evenly. When your workloads are very unpredictable or 

they tend to increase at certain moments while at other times 

there is no load at all (for example monthly batch calculations), 

specific solutions make a better fit than others. In Serverless 

options such as Azure Functions, you only pay for the actual 

use of the executed code, making it ideal for scenarios like 

this.

Interacting with on-premise / hybrid cloud scenarios?

Some hosting solutions cannot be added to a VNet in Azure, 

making it a lot harder to securely connect these options to 

resources that are not hosted on Azure. This is something to 

consider when building applications that should live in a hybrid 

cloud scenario where you connect a cloud solution to on- 

premise services or databases. Azure has made flavors for 

most of these options that include VNet support. For instance, 

for App Service they have created the “App Service  

Environment” option. However, setting this up is more  

expensive and requires more work compared to the normal 

App Service.

IAAS
Infrastructure as a Service (IaaS) is an instantly available  

computing resource. It is provisioned and managed for you  

by the Cloud vendor. It enables full customizing of the VM 

after the initial provisioning. But because it is only a managed 

VM, you are responsible for keeping the VM healthy, which 

means that patching and security hardening are the user’s 

responsibility.

Pros

  Lift and shift – a way of working you are already  

familiar with

  Easy to move between cloud providers

  Can host any technology, Windows, Linux, any webserver 

technology

  Familiar way of working for most IT departments

  Complete freedom of workload

Cons

  You are still responsible for a lot of management yourself, 

e.g., patching OS and maintaining configuration

  Often not cheaper than non-cloud hosting

  Not very effective usage of hardware

“You can tell Chris  
spends most of his  
time with his head in  
the cloud because  
he’s always smiling.”
Marc Duiker about Chris van Sluijsveld



040 CLOUD STRATEGY

“A real mobile authority,  
on the Xamarin platform  
as well as on some  
pumping dance beats.”
Martijn van der Sijde about Geert van der Cruijsen



041

XPRT. Magazine N°
 
5/2017

Azure App Service
Azure App Service is the Platform- 

as-a-Service offering from Microsoft. 

It allows for rapid deployment of your 

applications in a wide range of  

languages and frameworks. It allows 

for rapid scaling and a fast setup time, 

from local development to Azure Cloud 

production in 10 minutes.

Pros

  Easy to set up and get going.

  Fully managed infrastructure. Only 

focus on the web application itself

  A lot of supported programming  

languages: NET, Java, Node.js, PHP 

and Python.

  Easy to scale up or out

Cons

  No VNet support for secure  

connections to on-premise from 

Azure

  Directly exposed to the internet.  

No direct control over inbound and 

outbound traffic

App Service Environment
The App Service Environment offers a 

completely isolated Platform-as-a- 

Service hosting environment. It allows 

you to host your web workloads in a 

dedicated environment. The most  

important feature from a customer  

perspective is that it allows deployments 

into a customer-defined Virtual  

Network. Because an App Service 

Environment is deployed into a VNet, 

customers have finely grained  

control over both inbound and  

outbound application network traffic, 

as well as connecting to on-premise 

resources using VPN or express-route.

Pros

  Isolated environment

  Deployed in a customer’s virtual  

network

  Fine control over inbound and  

outbound traffic to your apps

  The ILB (Internal Load Balancer) ASE 

offers the option to use your own 

application gateway and firewall to 

expose your applications to the  

outside world

Cons

  ASE adds complexity during the initial 

roll out

  Costly option if you don’t have a lot 

of applications

  High startup costs

Containers in App Service
The Containers in App Service offers the 

option to deploy Linux-based Docker 

containers in the App Service model.  

It offers all the benefits of App Service, 

but with the added benefit that it  

enables you to use the standardized 

Docker format to deploy your application.

Pros

  No management of infrastructure

  Use the familiar Docker format to 

deploy

Cons

  No VNet isolation

  Only Linux-based deployments (PHP, 

NodeJS, ASP.NET Core)

Azure Container Services
Azure Container Services (ACS) enable 

the rapid deployment of a container 

hosting environment using open source 

tools. At the moment these consist of 

Kubernetes, DC/OS and Docker Swarm. 

ACS allows you to deploy your complex 

applications as containers using both 

Windows and Linux as the base OS. 

Because it is a container-based  

solution, it is technology-agnostic as 

well as cloud-agnostic.

Pros

  Lots of different orchestrators to 

choose from

  Multi Cloud solutions are viable

  Technology stack independent

Cons

  You still have to manage infra-

structure with OS / security updates

Service Fabric
Service Fabric is also an orchestrator 

on the Azure platform like ACS. But it 

also offers an SDK that describes how 

applications should be written. There is 

a choice between reliable services and 

an Actor Model. It also allows for guest 

executables to run inside Service fabric. 

Microsoft is also working on bringing 

Docker Container support to Service 

Fabric. Microsoft Service Fabric is not 

Azure only, you can install it on-premise 

as well as in other clouds.

Pros

  Stateful services are provided out of 

the box using the Service Fabric SDK

  Can run anywhere

Cons

  Higher startup costs compared to 

other container orchestrators

Serverless
Serverless technology is the most  

cloud-native option in the list.  

Azure Functions and Logic Apps were 

made to offer you the things you expect 

from the cloud. In Azure Functions, you 

build a piece of code that is a single 

function with some input parameters 

and some outputs. Then this single 

function is uploaded to Azure and it will 

run from there. There are almost no 

operations involved and there are  

several triggers to start your function, 

ranging from HTTP triggers to timer 

triggers, to triggers that act on  

changes in table storage. Azure will 

automatically scale your function so it 

can run in parallel in order to quickly 

execute batch jobs or just single events, 

and the best part is that you only pay  

for each time the function runs.

Pros

  Pay for what you use

  Large set of triggers to start jobs

  No infrastructure to manage

  Easiest operation model

Cons

  Not made for hosting web  

applications, only focused on APIs 

and jobs

  No VNet support

Conclusion
As you can see, there are several 

options to host your web workload 

on Azure. We believe the days of IaaS 

are numbered, because in almost all 

scenarios PaaS or container options are 

superior. Microsoft is heavily investing 

in these areas in comparison with IaaS. 

Please note that the flowchart we  

created for this article is just a general  

rule of thumb. There can be other 

factors that may be important in your 

specific use case when deciding which 

solution fits your application. It is a 

good practice to keep the infrastructure 

in mind when designing your software 

architecture. Modern software  

architectures such as microservices  

are flexible in the way you host them 

and can fit in the cloud infrastructure 

solution you choose to implement.  

This also allows you to start small and 

simple, and adapt while you your  

application or load increases in size. 



042 INFRASTRUCTURE AS CODE

What are Azure Container Instances?
Azure Container Instances (or ACI)  

consist of a PaaS service that was  

recently added to Azure. It offers the  

capability to run both Linux and  

Windows containers. By default, it 

runs single containers, which means 

that individual containers are isolated 

from each other, and cannot interact 

with each other. The isolation between 

individual containers is achieved using 

Hyper-V containers. This gives you 

the same level of protection as using a 

Virtual Machine would, by running your 

container inside a small utility VM.  

You specify the amount of memory in 

gigabytes for each container, as well  

as the count of CPUs to assign.  

Furthermore, containers are billed  

per second. This means you are in  

complete control, and that you don’t 

pay for resources you don’t need. 

By assigning a public IP address to  

your container, you make it accessible 

from the outside world. If you look at 

Figure 1, you can see a container that 

exposes port 80. The port is connected 

to a public IP address that accepts  

traffic at port 80 of the virtual host. 

Note that in ACI, port mappings are 

not available, so the same port number 

must be used by both container and 

container host.

Note Container Instances currently  

expect containers that are always  

active. Task-oriented containers are not 

supported, as they will be continuously 

restarted automatically after they exit. 

Simply running cmd or bash on its own 

is not a long running process. Running 

a process such as ASP.NET Core, a 

Windows Service or Linux daemon does 

work.

No more VM management
It is important to know that in ACI you 

don’t need to own a Virtual Machine to 

run your containers. This means that 

you don’t need to worry about creating, 

managing and scaling them. In Figure 1, 

both the network and the Virtual  

Machine - the container host - are 

completely managed for you, and you 

have no control over either of them. 

Figure 1: Azure Container Instances

Note Running one container in ACI for 

a full month, with 1 CPU and 3.5GB of 

memory, costs about 30% more than 

running the same workload on a DS1 

Virtual Machine running Linux. 

Running a container
The quickest way of creating a container 

in ACI is by using the azure command 

line interface (CLI 2.0):

az container create 
--resource-group acidemo  
--name logging 
--image loekd/azurecontainer instances.
logging:4.0

Containers as a 
Service in Azure

You have heard about containers, and you realize the benefits of using them.  
But how do you get started? Sure, you can use Azure Container Services, but  

that has a number of downsides. For example, it deploys Virtual Machines,  
machines that you need to manage yourself. Wouldn’t it be nice if you could  

host your containers in the Cloud, at scale, without having to worry about the  
underlying infrastructure? With Azure Container Instances, you can. 

 
Author Loek Duys



XPRT. Magazine N°
 
5/2017

043

With the ‘create‘ -command, you must 

specify the resource group to deploy 

into, the name of the container, and 

the image to base the container on. 

Optional parameters include credentials 

to your private registry, environment 

variables that can be used to inject 

configuration, the type of IP address to 

assign – public or private – and the port 

to expose.

Other important commands are:

  ‘logs‘ - this is used to show the logs 

(console output) of a running  

container.

  ‘show‘ - this is useful for debugging. 

This command displays the Resource 

Manager configuration container 

group, including a list of ‘events’ that  

contain logging information from 

  ACI. If your container fails during 

deployment, this will show up here. 

  ‘delete‘ - this is used to delete an 

existing deployment.

Note The output of ‘az container show’ 

command also includes configured  

environment variables in plain text.  

If they contain secrets, e.g., connection 

strings, they will be visible here. A safer 

way to inject secrets is by mounting a 

volume that contains the secret.  

The volume storage account key is not 

displayed.

Now, if you open the Azure Portal and 

navigate to the resource group you 

specified, you will see your container 

running inside a container group.

Container Groups
By default, your containers are isolated 

from each other. But what if you need 

to have interaction between containers? 

To support this kind of scenario there 

is the concept of ‘container groups’. 

Containers inside a container group are 

deployed on the same machine, and 

they use the same network. They also 

share their lifecycle: all containers in  

the group are started and stopped 

together. 

Note At this time, container groups  

cannot be updated. To change an 

existing group, you need to delete and 

recreate it. 

Note Containers are always part of a 

container group. Even if you deploy a 

single container, it will be placed into a 

new group automatically. When using 

Windows containers, a group can have 

only one container, this is because 

network namespaces are not available 

on Windows.

In Figure 2, you can see the anatomy  

of a container group. Here, three  

containers are working together to form 

a fully functional application:

1.  The ‘Job Generator’ container runs a 

Web Server at port 80 that receives 

traffic from the outside world and 

queues jobs to an Azure Service Bus 

queue. 

2.  The ‘Job processing’ container reads 

jobs from the queue and processes 

them. This container runs a Web 

Server at port 8000.

3.  Finally, the ‘Logging’ container is used 

by the other containers to persist 

logging information to Azure Files.  

It runs a Web Server at port 8080.

Figure 2: Container groups

Running a container group
A second way to create a container 

group is by using an ARM template. 

Figure 3 shows a simplified version  

of a template. In the array named  

‘containers’, multiple containers can be 

described. You can specify the same 

options you saw earlier when using the 

command line. What is different, is that 

by using this approach, you can define 

multiple containers at once.

State
Any state you might store inside your 

container will be lost as soon as the 

container is removed. If you need to 

keep that state, you must store it out-

side the container. For example, if you 

generate files, you should store them 

on a file share. Fortunately, mounting an 

Azure File Share from ACI is very simple.

Using an Azure File Share in your 

container requires that you declare it 

in the volumes element, as you can 

see in Figure 4. To mount the volume, 

“resources”: [
    {
      “type”: “Microsoft.ContainerInstance/containerGroups”,
      “apiVersion”: “2017-08-01-preview”,
      “properties”: {
        “containers”: [
          {
            “name”: “[parameters(‘loggingContainerName’)]”,
            “properties”: {
              “image”: “[parameters(‘loggingContainerImage’)]”,
              “resources”: {
                “requests”: {
                  “cpu”: 1,
                  “memoryInGb”: 1
                }
              },
              “volumeMounts”: [
                {
                  “name”: “[parameters(‘volumeName’)]”,
                  “mountPath”: “/aci/logs/”
                }
              ],
              “ports”: [
                {
                  “port”: 8080
                }
              ]
            }
          },

Figure 3: ARM Template, part 1



044 INFRASTRUCTURE AS CODE

the container configuration element 

volumeMounts references the volume 

by name. The value mountPath specifies 

the path at which the network share 

should become accessible. You can see 

this in Figure 3.

More about networking
To be accessible by the other two  

containers, the Logging container 

exposes port 8080. This port will be 

accessible within the entire container 

group, but not from the outside world 

and not from other container groups 

either. Containers within a group can 

communicate with each other by using 

‘localhost’ and the exposed container 

port. 

For example, calling the logging service 

API can be done by using the url:  

http://localhost:8080/api/logs.  

The platform will route traffic to the 

container.

Note Containers in a group are not 

discoverable through DNS. They can 

only be accessed through ‘localhost’, in 

combination with their exposed ports.

The Web server container exposes port 

80. This port number matches the port 

specified to expose at the public IP ad-

dress (ipAddress) of the container host. 

You can see this in Figure 4. The result 

of this configuration is that the two 

ports are connected. This makes the 

container accessible both from within 

the container group as well as from the 

outside world.

All containers in a group share one  

public IP address because they run on 

the same host. They also share a  

network namespace, so port mapping 

and port sharing is not possible.  

This means you cannot run multiple 

instances of the same container  

exposing the same port in one group. 

So if you require inter active containers 

to be load-balanced, or if you need to 

support upgrades without downtime, 

you’ll need multiple container groups 

working together. 

Seamless upgrades &  
Load balancing
The ACI platform will monitor both your 

containers and the container host. 

If there is a failure in either, ACI will 

attempt to correct this automatically by 

restarting the containers. At this time, 

ACI does not monitor your Container 

Registry for any image updates.  

This means that you’ll need to upgrade 

deployments yourself. One way to do 

this is by running a container that  

monitors the container registry and 

triggers redeployment whenever a new 

image version is available. 

For uninterrupted availability during 

upgrades and failures, you’ll need to run 

multiple container groups and manage 

the network traffic flowing into them. 

This way you can replace one group, 

while others remain operational.  

You can see an example of this in  

Figure 5. In this example, Azure Traffic 

Manager is used as a router that directs 

incoming traffic to the two container 

groups. 

Figure 5: Using Azure Traffic Manager

To update one group, you would need 

to take the following steps:

1.  Create new container groups that run 

the new version of the product, and 

add them in traffic manager.

2.  Remove the old container groups 

from traffic manager. 

3.  After the DNS TTL has expired, take 

the old container group down. 

Doing this manually, and perhaps even 

multiple times a day, is error-prone and 

frankly, it is a waste of time. 

Container orchestration
If you just need to run a few containers 

without having strict requirements for 

availability, ACI is a great platform.  

Applications that are more mission- 

critical are likely to have more require-

ments, for example  controlled, auto-

matic, seamless application upgrades. 

This is very difficult to build yourself and 

it probably is not your core business.

Fortunately, there are products that can 

make life a little easier. This brings us 

back to Azure Container Services (or 

ACS). Kubernetes is one of the three 

container orchestration platforms  

offered by ACS. It works by smartly 

combining a group of Virtual Machines  

– called agent nodes – to form one 

virtualized container hosting platform. 

Agent nodes can be added and  

removed on the fly in order to deal with 

varying usage loads. Agents can be 

either Windows-based or Linux-based 

machines. The Kubernetes platform can 

be used to deploy, run, monitor, scale 

and upgrade containerized workloads. 

“osType”: “Linux”,
“ipAddress”: {
  “type”: “Public”,
  “ports”: [
    {
      “protocol”: “tcp”,
      “port”: “80”
    }
  ]
},
“volumes”: [
  {
    “name”: “[parameters(‘volumeName’)]”,
    “azureFile”: {
      “shareName”: “[parameters(‘shareName’)]”,
      “storageAccountName”: “[parameters(‘storageAccountName’)]”,
      “storageAccountKey”: “[parameters(‘storageAccountKey’)]”
    }
  }
]

Figure 4: ARM template, part 2



XPRT. Magazine N°
 
5/2017

045

In Kubernetes, these workloads are called deployments.

Best of both worlds
Kubernetes agents are Virtual Machines that require  

maintenance, and it would be great if you could replace those 

agents with ACI. Well, it turns out you can. You can do this by 

installing the ACI connector for K8S, which is an open source 

initiative on GitHub: https://xpir.it/xprt5-caas1.

After installing this connector on a Linux node in your cluster, 

an additional agent node will appear in your Kubernetes  

cluster. The connector will create and delete container groups 

on the fly. The new agent can run both Windows-based and  

Linux-based containers. When using Linux-based containers, 

you can create deployments using multiple containers; they 

will translate into container groups in ACI.

Figure 6: ACI-connector node running pods

Note At the time of writing this article, the ACI connector is  

still in preview and not yet suitable for production use.  

Do keep an eye on it for the future, and contribute your  

improvements to the product.

“The famous LoekD.  
The go-to guy if you need 
help with containers and  
service fabric.”
Chris van Sluijsveld about Loek Duys

Because Kubernetes performs rolling upgrades for you, 

deployments to ACI become much easier. Using Kubernetes 

to orchestrate your containerized workloads enables your 

team to deploy to production several times a day. Combining 

Kubernetes with Azure Container Instances enables you to run 

Linux-based and Windows-based containers, allowing you to 

choose the best technology stack for each container you use. 

At the moment, this is the closest you can come to running 

Containers-as-a-Service in Azure.

For a complete, working sample implementation of three  

containers running on the ACI platform, please visit my  

GitHub project at: https://xpir.it/xprt5-caas2. 



046 INFRASTRUCTURE AS CODE

Automate deployments to Azure
Azure Resource Manager templates 

(ARM templates) are the preferred 

way of automating the deployment of 

resources to Azure Resource Manager 

(AzureRM). ARM templates are Java-

Script Object Notation (JSON) files.  

The resources that you want to deploy 

are declaratively described within JSON. 

An ARM template is idempotent, which 

means it can be executed as many times 

as you wish, and the result will be the 

same every time. Azure takes care of the 

execution and identifies the changes 

that need to be executed.

When provisioning infrastructure, we 

apply the same best practices as with 

deploying applications. This is also 

known as Infrastructure as Code1. 

Applying CD enables you to develop 

your infrastructure in a repeatable and 

reusable way, and you can reuse your 

ARM templates over multiple teams by 

applying these practices. This allows 

you to use a dashboard to monitor  

the quality of the infrastructure  

provisioning.

To execute ARM templates in a CD  

pipeline, our preferred method uses 

Visual Studio Team Services (VSTS).  

The execution is being done by a  

VSTS task: “Azure Resource Group  

Deployment”. 

Make a VSTS dashboard to monitor all 

your builds and releases, and this will 

give you a quick overview of the state 

of your environments and the quality of 

your templates. It is very useful to show 

your team and other stakeholders what 

you are doing.

Use linked ARM templates
When you create an ARM template for 

multiple resources, for instance for 

a whole project environment, ARM 

templates allow you to declare multiple 

Azure resources in one ARM template 

(Figure 1). For example you can create 

one big ARM template for a Storage  

Account, Azure SQL, Azure Web App 

and an Azure Redis Account. Although 

this is technically possible, we have  

learned from experience that it’s a  

good practice to declare each resource 

in its own separate ARM template.  

In effect, we apply the Single Responsi-

bility Principle for Azure Resources in 

our Infrastructure as Code solution.  

In this sample, we would create one 

ARM template for the creation of a 

Storage Account, one ARM template for 

Azure SQL, one for the Azure Web App, 

and one for the Redis Account. But how 

can you glue the resources together 

so that the result is the whole project 

environment, and deploy it in one step? 

The answer is using Linked ARM  

templates2.

Figure 1: A single ARM template with all re-

sources versus a Linked ARM template linking 

to separate ARM templates per resource type.

Best practices  
using Azure  

Resource Manager 
templates

This article focuses on best practices regarding the automated deployment of resources  
to Azure. We have implemented Continuous Deployment (CD) pipelines including the  

provisioning of Azure resources for many customers, and we would like to share our  
experience so you can benefit from it. These practices will help you create more reliable,  

testable, reusable, and maintainable templates. 

Author Peter Groenewegen & Pascal Naber

MySolution

Storage  
Account

Azure SQL

Azure  
Web App

Azure Redis

MySolution

Storage  
Account

Azure SQL

Azure Web 
App

Azure Redis

1  Infrastructure as Code [https://xpir.it/xprt5-arm5]
2  Resource group linked templates [https://xpir.it/xprt5-arm6]



XPRT. Magazine N°
 
5/2017

047

Linked ARM templates enable you to link from one template to another template. 

Linking templates enables you to decompose your templates into purpose- 

specific reusable parts. These parts are more readable, testable and reusable then 

when you would copy them to other deployment templates. The main template links 

to multiple sub-templates, which can be another composition of sub-templates or 

actual resource templates themselves. The composition of the resources hides the 

implementation details of the underlying resources by only exposing an interface by 

means of the parameters that can be changed in the customer environment. 

An example of a linked template:

The provisioning of a resource group normally has multiple high-level resources  

and their sub-resources (Figure 2). In practice, you’ll get a main template which  

references multiple composed templates. These composed templates reference 

lower level composed templates or the actual resource templates that create  

resources. In most cases, at the leaf level of this tree hierarchy, a template only  

contains one resource. These leaves are easy to test by themselves and they are 

reusable in multiple compositions.

Figure 2: Breakdown of linked ARM templates

Apply T-Shirt sizes 
T-Shirt sizes are named configurations which have proven to be working. The name 

encapsulates the underlying sizing of the Azure Resources. The consumer of the 

ARM template can only choose known working configurations. This will also prevent 

configuration errors and it saves time when creating new templates.

Usage of linked templates
The http or https address in the  

templateLink property has to be  

accessible for the Resource Manager 

service to execute the ARM template. 

When you make use of a publicly  

available web address, this is easy.  

But if you don’t want to make your  

underlying ARM templates available 

for everyone, it’s easy to store the ARM 

templates in a private container in Azure 

Storage and access the ARM templates 

with a SAS token.

VSTS task to create a SAS token  

https://xpir.it/xprt5-arm1 

In case you are provisioning Virtual 

Machines (VM), the ARM templates can 

offer a wide range of possibilities in 

configuration combinations. All input 

parameters of the Virtual Machine (VM) 

template can be exposed. Now you 

could create combinations of resources 

that are not supported by AzureRM.  

For example, a DS VM with Standard 

storage is not allowed. 

A good way to manage different sizes 

of resources, which also minimizes the 

various configuration types, is using 

known configurations, also called 

T-Shirt sizing3. For example, a T-Shirt 

size is an abstraction, like a Small,  

Medium or Large version of a VM4.  

The sizing hides the underlying real 

sizes of the created resources.  

For example, a Small T-Shirt size  

would deploy a combination of small 

resources of the underlying templates. 

You can test the various T-Shirt sizes, 

which prevents creating combinations 

that are not working. This also takes 

away the complexity of the underlying 

resource combination from the  

consumer of the template.

Test every template and  
automate it
Testing your templates helps you to 

maintain your quality. Testing the  

ARM template is done by executing  

the ARM template. This is the smallest 

possible unit that can be provisioned.  

It also provides samples for the  

consumers of your templates.  

Create at least one test deployment  

for each ARM template you have.  

“resources”: [ 
  { 
      “apiVersion”: “2017-05-10”, 
      “name”: “linkedTemplate”, 
      “type”: “Microsoft.Resources/deployments”, 
      “properties”: { 
        “mode”: “incremental”, 
        “templateLink”: {
          “uri”: “https://www.contoso.com/AzureTemplates/myLinkedTemplate.json”,
          “contentVersion”: “1.0.0.0”
        }, 
        “parameters”: { 
          “myparameter”:{“value”: “myparametervalue”} 
        } 
      } 
  }
]

Resource  
Templates

Resource  
Templates

Resource  
Templates

Composed  
Templates

Main Template

Parameters

environment
username

parameter1
parameters2

Composed  
Templates

3  World Class ARM templates - Considerations and Proven Practices, June 30 2015,  

Marc Mercuri, Principal Program Manager | Ulrich Homann, Distinguished Architect |  

George Moore, Principal Program Manager Lead [https://xpir.it/xprt5-arm7]
4  T-shirt sizing arm templates [https://xpir.it/xprt5-arm8 ]



TECHORAMA.NL
@TechoramaNL

A new conference experience is 
coming to the Netherlands

AUTUMN 2018

048 INFRASTRUCTURE AS CODE



XPRT. Magazine N°
 
5/2017

049

Run the tests on each new version to see whether the ARM templates are working. 

The smaller the tests, the more specific and faster it is to nail a specific issue, e.g. 

typos and misconfigurations. This will save you time in the long run. 

Use output parameters
When you want to use the connection string of the Azure SQL database in the Azure 

Web App, you need to use an output parameter in the ARM template of the Azure 

SQL resource. This output parameter contains the connection string, which is an 

input parameter in the Azure Web App. The Linked ARM template glues the output of 

the Azure SQL template together with the input of the Azure Web App.

This will make the templates less prone to errors. When you change something in the 

Azure SQL Template, all depending templates will get the new value because they 

reference the output parameters of the first template.

Another benefit is that the order of execution is automatically recognized by  

AzureRM, based on these output parameters. Templates which are set up like this 

don’t need a dependsOn property to specify dependencies. This way you don’t have 

to interpret the sequence of execution of ARM templates yourself. We consider the 

usage of dependsOn an anti-pattern in a linked ARM template.

Output parameter:

Usage of output parameter:

Make a naming convention template
The first discussion that always comes up during a workshop on applying CD to  

Azure resources is the naming convention for these resources. After finding out  

how you want to name resources, you have multiple possibilities. When you pass  

…
“outputs”: {
    “myResourceName” : {
        “type” : “string”,
        “value”: “[reference(resourceTemplate).name)]”
    }
}

{
   “$schema”: “http://schema.management.azure.com/schemas/2015-01-01/ 
deploymentTemplate.json#”,

  “contentVersion”: “1.0.0.0”,
  “parameters”:{
    “shortDescription”:{
        “type”:”string”,
        “maxLength”:2
    },
    “shortEnviroment”:{
        “type”:”string”,
        “maxLength”:1
    },
    “location”:{
        “type”:”string”,
        “maxLength”:2
    }
  },
   “variables”:{
  “nameconvention”:”[concat(‘myname’,parameters(‘shortDescription’), 

parameters(‘shortEnviroment’),parameters(‘location’))]”
  },
  “resources”:[
    ],
    “outputs”:{
      “name” : {
        “type” : “string”,
        “value”: “[variables(‘nameconvention’)]”
      }
    }
 }

“parameters”: { 
    “myparameter”:{“value”: “reference(‘myResourceWithOutput’).outputs. 

myResourceName.value”} 
}

the whole name of the resource that 

needs to be created using a parameter 

file, you’ll find yourself creating  

duplicate code because the largest part 

of the name is defined by a standard 

pattern. Another way is to apply a 

naming convention, in which case you 

only need to pass parts of the name.  

For example, the ARM template of Azure 

SQL generates the resource name based 

on the input parameters and pattern.  

But each resource has a slightly different 

name, which means that each ARM  

resource contains this pattern. It often 

happens that the naming convention 

changes. In both cases you must  

change either all your ARM templates  

or all your ARM parameter templates.

To apply the Single Responsibility  

pattern and to prevent duplicate code, 

we apply a naming convention  

template. We make use of the fact 

that ARM templates don’t always have 

to create resources, but can do other 

things as well. In the naming convention 

template, no resources are declared.  

It does make use of input parameters 

and the name of the resource is  

returned as an output parameter.

Figure 3, Using a named template in a  

composed template

Minimize the number of  
parameters
When using linked templates, make  

the number of parameters the  

smallest set possible. Do this by only 

parameterizing the variables that are  

different over your environments.  

This way you keep the input of your 

templates small and changes that can 

cause misconfigu ration become less 

likely. 

Composed 
Template

Composed 
Template

Composed 
Template

Naming  
Template

Resource 
Templates

Resource 
Templates



050 INFRASTRUCTURE AS CODE

Don’t misuse the default value  
for parameters
Don’t set default values for required  

input parameters or parameters that 

need to differ over environments.  

We often see the misuse of default  

values. The default value is chosen for  

a single deployment to a single  

environment without thinking about 

future deployments. If you want to pass 

a value, you must use a parameter file. 

One deployment per resource 
group
Another question that comes up very 

often is how to apply a logical division  

of resources over resource groups. 

Technically it is possible to deploy all 

resources to a single resource group.  

In practice, it is handy to provision  

resources with the same lifecycle  

grouped into the same resource group. 

Many side services of your application  

have a different lifecycle from the 

application itself, for example the data, 

logging, authentication, networking, 

etcetera. When you remove your  

application from Azure, these side  

services will still exist. 

An ARM template is executed on a single 

resource group by default and this is 

also considered a best practice.  

An application can be deployed to 

multiple resource groups. Each resource 

group has its own ARM template with 

resources. Manage your resource group 

based on the lifecycle of the resources 

in that resource group. 

Keep secrets out of your  
deployment parameters
There are multiple ways to keep your 

secrets out of your deployment para-

meters so developers do not have to 

know or see the secrets. If you are using 

parameters for secrets that can be 

provided by Azure resources, then use 

output parameters to ‘stream’ the secret 

directly to the resource that needs it. 

For example, if you are using an Azure 

SQL connection string as a parameter in 

your current deployment, you can get 

the connection string directly from the 

Azure SQL Database by using an output 

parameter. If you have other secrets, 

such as ssh keys, disk encryption keys, 

passwords, etcetera, you have the 

possibility of using variables in VSTS and 

mark them as secret. For Azure WebApp 

web settings, you can use a VSTS task 

Azure Web App Configuration to apply 

(secret) variables to your WebApp5, or 

for other resources provide the secrets  

by using the Azure Key Vault.  

The person who is responsible for 

creating the templates does not have 

to know secrets in the provisioned 

environment, for example by putting the 

sensitive data into the Key Vault. If you 

grant your deployment pipeline access 

to the Key Vault, the developers don’t 

have to know the secrets in the Key 

Vault. Read how you can apply the Key 

Vault to your deployments here:6.

Use a complete deployment mode 
as much as possible
When deploying resources to a resource 

group, complete deployments will 

guarantee that your resources in the 

resource group are the same as in your 

source control.

When you manage your resources in 

AzureRM with ARM templates, you have 

three options for execution:

1. Validate

2. Incremental (default)

3. Complete (advised)

Validate means that the AzureRM  

validates the template. This can be  

useful to see whether a change in a 

template or variable passes the basic 

validation. The template is compiled, 

but not applied on Azure. This can be 

done as a first step in a provisioning 

pipeline. After validation, you know that 

the syntax is correct, simply because 

it compiles. It can still fail when you 

execute the template, however you have 

checked the schema and syntax before 

execution of the template. 

Incremental is the default mode. It only 

deploys the new resources in the ARM 

template. No resources are removed. 

So, if you have renamed an SQL Server 

database, the database you created  

earlier will still exist after applying the 

ARM template with the new database.

Tips and tricks

Assign tags

Tagging your resource will help you 

with organizing your resources.  

A tag adds a custom property to a  

resource that can be queried later. 

Some samples of tags that can help 

you:

  Billing (Cost Center tag)

  Which department

  Environment

Use tags to organize your  

Azure resources  

https://xpir.it/xprt5-arm2

Prevent accidental deletion of  

resources

Locks help you prevent users or  

templates deleting resources by  

accident. If you have crucial resources 

in your deployment that should not be 

deleted, a lock prevents accidental  

deleting. A lock can only be removed 

from the portal or PowerShell. 

Lock azure resource to prevent  

accidental deletion  

https://xpir.it/xprt5-arm4

Assign policies

Policies can help you with establishing 

conventions for resource deployments. 

A resource deployment that does not 

follow the conventions will be rejected. 

Some building policies are:

  Allowed locations

  Allowed resource types

  Allowed storage account SKUs

  Allowed virtual machine SKUs

  Apply tag and default value

  Enforce tag and value

  Resource types that are not allowed

  Require SQL Server version 12.0

  Require storage account encryption

What are resource policies  

https://xpir.it/xprt5-arm3

5  Web app settings configuration https://xpir.it/xprt5-arm9 
6  Keep your deployment secrets in the key vault [https://xpir.it/xprt5-arm10]



XPRT. Magazine N°
 
5/2017

051

“Pascal will kill  
your Monolith  
and unleash the 
power of Azure.”
Peter Groenewegen about Pascal Naber



052 INFRASTRUCTURE AS CODE



XPRT. Magazine N°
 
5/2017

053

Idempotent
The execution of an ARM template is an 

idempotent operation. The execution  

of the same template should result in 

the same result each time. Only the  

required changes are applied to  

AzureRM. When building and executing 

ARM templates this property should be 

used in your advantage.

Complete executes the template and 

applies the template idempotently. 

When finished, only resources that 

are defined in the template are in the 

resource group. This way your  

Azure RM resources are managed from 

your template alone. If you remove a  

resource from the template, it will also 

remove that resource from AzureRM. 

For example, when removing Network 

Security Groups or Firewall rules from  

a template, the resources will be  

removed when you execute the  

template. All resource management  

is done from the ARM templates  

(Infrastructure as Code). The best  

practice is to deploy your ARM  

templates in Complete mode.

All ARM templates should be able to  

be executed idempotently, but  

unfortunately, not all ARM templates  

can be executed idempotently. This is  

considered a bug. You can check 

whether there is a newer version of  

the API in which this has been fixed.  

If the ARM template is not idempotent 

and you configure your deployment  

as Complete, the provisioning can fail. 

In this case, mark the deployment  

as Incremental and isolate the  

incremental part.

Conclusion
When you have embraced Azure for 

your applications, you should have a 

CD pipeline to take full advantage of 

the cloud. This CD pipeline should also 

contain the provisioning of the Azure  

resources you are using. Microsoft 

makes it possible to provision resources 

with ARM templates, but you have  

to spend time to create these ARM  

templates. Provisioning AzureRM  

with ARM templates will result in a  

more maintainable and reusable  

way of managing the resources. 

The best practices in this article have a 

learning curve, however, in the end you 

will be able to manage your resources 

more reliably and in less time. Setting up 

deployment pipelines for the resources, 

also known as Infrastructure as Code, 

is an investment you will benefit from 

in the long run. The result is that you’ll 

never have to access the Azure portal to 

add or change resources anymore and 

you are fully in control over what is  

deployed in your Azure Resource  

Manager environment from source  

control. For sample ARM templates,  

see the Enterprise Application Template 

gallery on Github7. 

7  https://xpir.it/xprt5-arm11



BIG DATA SURVEY 2017. 
HOW EUROPEAN ORGANIZATIONS IMPROVE
WITH SMART DATA APPLICATIONS.

FREE REPORT 
BIG DATA SURVEY
Over 800 European organizations 
participated and shared their insights 
and experience about how they leverage 
data to increase their competitive edge.

Download the in-depth Big Data Survey 
report now on www.bigdatasurvey.nl

GoDataDriven applies cutting-edge technology to accelerate your 
organisation along its data-driven path. Combined, our team has 
decades of experience with amazing technologies like AI, deep 
learning, big data, cloud and scalable architectures. We can help 
you kickstart or scale up your data-driven business, just as we 
have done at customers like:

60% of all participants indicate 
that their organization has a lot 
of potential with data. For 42%, 
data is part of their overall strategy.

More than 54% of all participants 
see improving data quality as the 
biggest challenge of setting-up 
data infrastructure.

The European data 
protection regulation GDPR 

takes effect on May 25, 2018. 
Only 1 in every 2 retailers say: 

"We're GDPR-ready!".

Only 9% of all 
websites use real-time 
personalization.

46% of all organizations 
use no cloud technology 
at all.

WWW.BIGDATASURVEY.NL

24%

46%

Biggest challenge of becoming 
data driven?
1. Building up knowledge of 
 data science & big data (47%)
2. Making time available for 
 experiments (45%)
3. Support from the management (33%)

On average, organizations 
rate their current level of 
knowledge at 6 on a 
scale of 1-10. 6-

45%

60%

54%

DOWNLOAD THE
FULL REPORT WITH

IN -DEPTH ANALYSIS
AND INSIGHTS IN
HOW TO RECRUIT

DATA PROFESSIONALS,
CLOUD SECURITY,

RUNNING EXPERIMENTS,
THE MOST POPULAR 
TECHNOLOGIES AND

MUCH MORE.



055

XPRT. Magazine N°
 
4/2017

Definition of Infrastructure as Code
Infrastructure as Code is the process of managing and provisi-

oning computing infrastructure and its configuration through 

machine-processable definition files. It treats the infrastructure 

as a software system, applying software engineering practices 

to manage changes to the system in a structured, safe way.

https://xpir.it/xprt5-iac

Deployment pipelines  
for versioned Azure  
Resource Manager 

template deployments
Azure Resource Manager templates offer you a declarative way of provisioning resources  

in the Azure cloud. Resource Manager templates define how resources should be provisioned. 
When provisioning resources on Azure with Azure Resource Manager, you want to be in  

control of which resources are deployed and you want to control their life span. To achieve  
this control, you need to standardize the templates and deploy then in a repeatable way.  

This can be done by managing your resource creation as Infrastructure as Code. 
 

Author Peter Groenewegen



056 INFRASTRUCTURE AS CODE

The characteristics of Infrastructure as 

Code are:

  Declarative

  Single source of truth

  Increase repeatability and testability

  Decrease provisioning time

  Rely less on availability of persons to 

perform tasks

  Use proven software development 

practices for deploying infrastructure

  Idempotent provisioning and  

configuration.

In this article, I will explain how to create 

Azure infrastructure with versioned 

Azure Resource Manager templates 

(ARM templates). For the deployments, 

the VSTS Build and Release pipelines 

were used. The code or ARM templates 

are managed from a Git repository. 

Code in the Git repository can use the 

same practices as any other develop-

ment project. By updating your code or 

templates, you can deploy, upgrade or 

remove your infrastructure at any time. 

The Azure portal will no longer be used 

to deploy your infrastructure because 

all ARM templates are deployed by de-

ployments pipelines. This will give you 

full traceability and control over what is 

deployed into your Azure environment.

Deployment pipelines for  
deploying versioned ARM  
templates
If you have a large number of infra-

structure resources, it is good to know 

what the exact footprint is. If you know 

this, you can easily redeploy and create 

test environments without the constant  

question: to what extent is this infra-

structure the same as production?  

In order to obtain adequate control 

over your infrastructure, you can apply 

versioning to the deployments and their 

content. In this case, ARM templates in 

combination with VSTS can help you. 

When applying Infrastructure as Code 

this way, you can test an actual infra-

structure deployment and develop new 

templates at the same time. To do this 

you need two deployment pipelines:

  Deployment of the reusable ARM 

templates (see the article on Best 

Practices Azure Resource Manager 

templates)

  Pipeline for deploying the resource 

base on the reusable ARM templates.

The templates used in the second pipeline are deployed in the first pipeline.  

These are called linked ARM templates. A linked ARM template allows you to  

decompose the code that deploys your resources. The decomposed templates  

provide you with the benefit of testing, reusing and readability. You can link to a  

single linked template or to a composed one that deploys many resources like a VM, 

or a complete set of PAAS resources.

Deployment pipeline for reusable linked ARM templates
The goal of this pipeline is to deploy a set of tested linked templates (a version) to  

a storage account from where they can be used. Each time you perform an update  

to the templates (pull request), a deployment pipeline is triggered (continuous  

integration), and once all tests are successful, a new version is deployed and ready  

to use. The new deployments exist side by side with the earlier deployment. In this 

way the actual resource deployments can use a specific version. The following  

figure provides an overview of the pipeline:

Build

The deployment starts with a pull 

request to the master branch of the Git 

repository. Then a new build is trigged. 

In this build pipeline, the sources are 

copied to a build artifact to be used in 

a release. In addition, a build number is 

generated that can be used as version 

number of the released templates.

Release

The release has several release steps 

to ensure that the ARM templates 

are tested before they are published. 

Templates are tested by deploying the 

resources. In the sample, all steps are 

an automatic process. When the tests 

succeed, the release continues with  

the deployment of the templates to  

the storage account where they can  

be used for the real infrastructure  

deployments. 

Deploy test
The first step is to deploy to a test  

location on the storage account.  

This test location will be used to test 

the ARM templates. When you deploy 

the templates, this can also help you in 

debugging errors by running a test  

deployment from your local machine. 

The only task in the environment is to 

do an Azure Blob File Copy. All the  

linked templates (the artifact) are  

deployed to the Azure storage account.

 

Test ARM templates
During the second step the ARM  

templates can be tested. First you get a 

SAS token (link: https://xpir.it/xprt5-iac1)  

to access the storage account. The next 

step consists of deploying the ARM 

templates. This runs a test ARM  

template that covers the parameters. 

When the deployment fails, the  

pipeline is stopped (asserted). The last 

step consists of removing the resource 

group where you have deployed your 

Build  
artifact

Release test
Test the  

deployment
Release  
version

Azure storage account

Release/220
Release/221
Release/229



057

XPRT. Magazine N°
 
4/2017

Build  
artifact

Release test
Test the  

deployment
Release  
version

Build  
artifact

Release test
Test the  

deployment
Release  
version

Build  
artifact

Release test
Test the  

deployment
Release  
version

Build  
artifact

Release test
Test the  

deployment
Release  
version

Azure storage account

Release/220
Release/221
Release/229

test resources. If all steps succeed, the 

templates are approved for release.  

You can perform these steps multiple 

times for different types of resources 

and resource combination. When you 

perform this step N times, you can run 

them in parallel. If you split this into 

multiple templates, it is also clear  

where you have a problem if the step 

fails.

Deploy the production version
The last step will deploy the templates 

to a location where the build number  

is used in the naming convention.  

The task Azure Blob File Copy is the 

same as in the first step, only the  

location where the files are copied to  

is variable, depending on the build  

number. In this way the templates  

can be referenced by using the build 

number in the URL. 

Pipeline for deploying the  
resource base on the reusable  
ARM templates
When all linked templates are deployed, 

they can be used to perform the  

deployments of your Azure infra-

structure. In the sample pipelines,  

I have only one test environment, but 

the number of test environments can be 

different for each pipeline. One pipeline 

will deploy the resources of one Azure 

Resource group.

Build

The goal of the build is to produce 

an artifact of the templates that can 

be used in the release pipeline. The 

deployment starts with a pull request to 

the master branch of the Git repository. 

Then a new build is trigged. In this build 

pipeline, the sources are copied to a 

build artifact to be used in a release.

Release

The release pipeline will validate, test 

and then deploy the resource to the 

production environment. The templates 

in each environment are the same; the 

only difference is the parameter files. 

The parameter file can parameterize the 

sizes of the resources deployed in the 

different environments. The sizes must 

be chosen wisely in order to represent 

the production environment, but keep 

in mind the costs of running a test 

environment. In the main template, you 

keep a variable build, which you use 

to point to a specific release from the 

previous pipeline. In this way you can 

control the deployed version of your 

shared linked templates.

Validate templates
The first step consists of validating  

the templates for all environments.  

This is done by running a deployment in 

Validation Mode. Here, the template is 

compiled, it is checked to see whether 

it is syntactically correct and will be 

accepted by Azure Resource Manager. 

You have to do this for all environments 

to check whether the parameter files are 

correct. When the step succeeds, the 

deployment to test will start.

Release test
The goal of this step is to deploy and 

test the resource. If there is a need for 

a gatekeeper, approvals can be added 

at the beginning of this step. If not, the 

deployment of your test environment 

starts automatically. If possible, use the 

Deployment Mode option “Complete”. 

This ensures that the resources in the 

Azure Resource Group are the same as 

those defined in the ARM template.  

Resources

Resources

Resources

Resources



058 INFRASTRUCTURE AS CODE

The action consists of 2 tasks.  

First create a SAS token for access to the 

Azure Storage. The next step performs 

the actual deployment. If everything 

succeeds, you can optionally do some 

manual testing on the resource itself, or 

even add a script that does this. 

Release production
The production release starts with 

a gatekeeper (approval). When you 

are satisfied with the previous (test) 

resources, an approver can start the 

production deployment. All resources in 

the production resource group will be 

updated according to the ARM template. 

Try to run your deployment in Complete 

mode, because then you know that all 

resources in the resource group are  

the same as you defined in your  

Git repository. You are running an  

infrastructure as Code scenario. 

Final thoughts
Setting up deployment pipelines for 

your ARM templates is an up-front 

investment aimed at giving you control 

over the resources that are deployed 

in your Azure environment. When the 

pipelines are running, changes to your 

Azure environment are fully controlled  

from the code, and all changes are 

traceable from VSTS. When you have 

two staged pipelines, you have an  

Infrastructure as Code scenario in  

which you are in full control over what  

is deployed into Azure. 

If he runs as fast  
as he writes C#  
code, he would  
beat Usain Bolt!
Marco Mansi about 

Peter Groenewegen



XPRT. Magazine N°
 
5/2017

059

PROUDLY PART OF XEBIA GROUP

Cloud transformation  
done right!

We are Xpirit
Experts in new Microsoft Technology

www.xpirit.com/cloud



Think ahead.
Act now.

www.xpirit.com

If you prefer the digital 
version of this magazine, 
please scan the qr-code.


