
XPRT.
Magazine N° 4/2017

PROUDLY PART OF XEBIA GROUP

Next Gen Cloud

The (r)evolution of Cloud Computing

Building cloud native Xamarin mobile apps

Containerized delivery for .NET
workloads on Windows

The Serverless lifecycle: is it
really that different?

CREATE
BUILD
REINVENT
EXPLORE

Take the high road and come to TechDays 2017 to learn from best-in-class speakers
and industry experts about how to reach new heights of technology which can best
serve your business.

Does your business suffer from that most difficult of tasks; getting everyone on the
same path? Then this must-attend event at the RAI Amsterdam on the 12th & 13th
October 2017 is for you! See how Microsoft technologies can combine with open-
source and other technologies to move your IT professionals, developers, but more
importantly, your entire team to the next level of collaboration.

www.techdays.nl Powered by GP Strategies Netherlands & Microsoft Netherlands

XPRT. Magazine N°

4/2017

003

Colofon

XPRT. Magazine No 4/2017

Editorial Office

Xpirit Netherlands BV

This magazine was made by

Vivian Andringa, Pascal Naber,

René van Osnabrugge,

Martijn van der Sijde, Loek Duys,

Alex Thissen, Kees Verhaar,

Geert van der Cruijsen,

Chris van Sluijsveld, Marco Mansi,

Cornell Knulst, Marcel de Vries,

Pascal Greuter, Alex de Groot,

Roy Cornelissen, Jesse Houwing,

Sander Aernouts, Jasper Gilhuis,

Marc Duiker, Peter Groenewegen

Contact

Xpirit Netherlands BV

Laapersveld 27

1213 VB Hilversum

The Netherlands

+31 (0)35 538 19 21

pgreuter@xpirit.com

www.xpirit.com

Layout and Design

Studio OOM

www.studio-oom.nl

Translations

TechText

© Xpirit, All Right Reserved

Xpirit recognizes knowledge

exchange as prerequisite for

innovation. When in need

of support for sharing,

please contact Xpirit.

All Trademarks are property of

their respective owners.

 010 The (r)evolution of
Cloud Computing

 004 Willing, Able, and Ready
to Change

 014 Technical introduction to
Azure Functions

 019 The Serverless lifecycle:
is it really that different?

 025 Building cloud native
Xamarin mobile apps

 032 Authentication as a
Service with Auth0

 034 Backup And Restore in
Azure Service Fabric

 042 What you should know
about Windows containers
before you start using them

 047 Containerized delivery for
.NET workloads on Windows

 038 Containerization in
Modern IT

SERVERLESS

INTERVIEW

In this issue of XPRT. Magazine our
experts share their knowledge about
Next Gen Cloud

PRACTICAL CLOUD

CONTAINERS

If you prefer the
digital version of

this magazine,
please scan the

qr-code.

014

025

032

038

PARTNER

004 INTERVIEW

XPRT. Magazine N°

4/2017

005

“Willing, Able,
and Ready to

Change”
Working with Today’s Trends.
That’s How We Roll at Xpirit!

We get most of our inspiration from the energy and passion of
the people in our company, from creating new things together.

It’s all about the culture we have nurtured and fostered over
the years. We presented a vision two-and-a-half years ago: we

were going to do things completely differently. Our number-one
priority is our employees: People First! There are few places as

inspiring and dynamic as Xpirit. Our workforce isn’t straitjacketed
by job descriptions or a top-down hierarchy. We all have our

own set of responsibilities, and we’re really in this together.
We take team spirit to a whole new level!

Author Vivian Andringa

006 INTERVIEW

One of our guiding principles is to remain focused on working

with communities and sharing knowledge without expecting

anything in return. That’s why we are proud to present this

fourth issue of Xpirit Magazine, which is about just that!

“Help us transition to the cloud,” is a frequently heard request

from our clients. The first step in this process tends to be

making sure a clearly mapped-out procedure is in place.

Some companies try to take the easy way out and go with the

lift-and-shift approach, where in-house apps are replicated

in the cloud without being redesigned (i.e., a bare-bones IaaS

model). But they end up running into all kinds of architectural

issues, while having little ability to make the required adjust-

ments. This is where the cloud can become something of a

poisoned chalice, doing more harm than good. That’s why

we always advise clients to start at the base and review the

fundamental architecture. They need to think carefully

about any re-architecting required and the integration of

IT Operations. DevOps is fundamental to this process.

You need to make sure your test automation and release

management are in order before migrating to the cloud.

As part of ALM, DevOps is the bedrock of a successful cloud

migration – and it’s crucial to maintaining a solid infrastructure

going forward, with all the various technical steps involved.

Using Azure to smoothly transform IT Operations
into Self-Service
As the ultimate self-service platform, Azure is able to

accelerate DevOps. DevOps involves bringing together

all the various IT disciplines, including development and

IT operations. In order to accelerate the development and

delivery of new solutions, you need a faster IT operations

environment – preferably using a self-service model which

allows developers and IT operations, working together, to

provision the systems they require at that particular time.

The bonus is that it’s set up as a pay-as-you-go/pay-per-use

system, giving you as much computing power as you need.

Is a full Cloud Migration really the smart thing to do?
Is it really more secure to store your data in the cloud than on

a server somewhere? Public opinion on this is shifting from

‘the cloud is scary’ to ‘the cloud is the default.’ Increasingly,

people feel there’s no point having your own data center –

after all, how can you guarantee the level of security public

data centers are able to offer? It’s a fascinating mind shift that’s

taking place. Cloud computing is no longer just something

businesses will opt for on technical grounds: it’s very much

on people’s radars. The cloud is growing in popularity among

many home users. If these individuals feel it is safe, this will

make them more accepting of cloud-based technology

being used by banks, insurance providers and other service

providers. Consequently, we are seeing a shift towards cloud

solutions across the board.

Whether businesses will permanently shut down their data

centers depends on the type of company and type of business

involved. If the data is of a sensitive nature, there will probably

always be room for a hybrid cloud system, where the data is

divided between on-premise and cloud-hosted systems.

Thinking in terms of Disruptive Solutions
There are a number of businesses that regard IT as their main

business driver. Financial service providers are essentially

operating IT companies – as are banks, insurers, and utilities

companies. These companies need to find new revenue

models in the digital sphere, which means that the lines

between their business operations and the IT backend are

becoming increasingly blurred.

Large enterprises need to be aware that competition can

come from unexpected sources. Start-ups and small spin-offs

can land major accounts by luring them in with appealing

propositions. Enterprises need to ask themselves: ‘Are we

flexible and adaptive enough to embrace this and focus on

sharpening our competitive edge?’ You no longer need to

make investments to compete with major corporations: the

combination of a sharp mind and an ingenious idea has the

power to really make an impact. Many of today’s established

enterprises lack the kind of speed required to achieve change.

Businesses have to start thinking more in terms of disruptive

solutions.

IT companies need to learn to take a backseat. Many of

them seem to think they know better than you do how your

business should be run – but it’s important to really work

with the client and take a comprehensive approach. Take our

client Van Lanschot, for example, a Dutch bank dating all the

way back to 1737. Aware that they were losing out to their

twenty-first-century counterparts, they decided they had no

choice but to reinvent themselves as an omni-channel bank.

This transformation incorporates IT, marketing, and business

elements. We mapped out and managed the entire process for

Van Lanschot – a process that requires a completely different

type of IT consultant than 20 years ago.

“The half-life of your
technical expertise is only

going to shrink.”

XPRT. Magazine N°

4/2017

007

Pascal Greuter, Xpirit Managing Director

008 INTERVIEW

The Consultants of the future: Trusted Advisors at
the Board Level
Can you brainstorm with clients at a high level? Are we the

trusted advisors that board members need? How can we

organize your IT operations down to the coding level?

A modern-day software craftsman needs to be able to deliver

a variety of knowhow, skills and techniques.

In addition to being a technical whiz, you need to be a strong

communicator with a genuine vision. As part of our job

assessment process, we test candidates to see if they dare to

get out of their comfort zones. Being geared toward personal

growth is key in this regard: allow yourself to be challenged

and learn new things. Be innovative and persistent, and take on

projects outside of your wheelhouse. Investing in expanding

your skillset is crucial in this context – but to be successful,

you also need to have the right mindset. “Rather than getting

hung up on what you might lose, you should see change as

an opportunity to try something new.”

Innovation is about trying out new things without rushing

back to your comfort zone when the going gets tough.

It requires persistence – and that’s where you’ll often find

that people are stuck in their ways.

“The half-life of your technical expertise is only going to

shrink.” The knowhow you possess now will be largely

obsolete just a few years from now. You need to remain

aware that, while you may be able to call yourself a specialist

today, a couple of years down the line you’ll need to be at-

tuned to, and understand, the trends of that moment.

You need to embrace that constant state of flux, which is

why we make a point of investing so much in knowledge

development. It’s vital that our consultants keep learning all

about the latest and greatest new things, since we know that

in two years’ time what counts as state-of-the-art now will

be old news.

This magazine was developed with this in mind. It aims to

keep you up-to-date on some of the most exciting develop-

ments happening in IT right now. Be sure to pass it on!

“Cloud done right is what
we live and breathe!

The business needs speed,
cloud enables you to

innovate at the speed of
light, when done right!”

XPRT. Magazine N°

4/2017

009

Marcel de Vries, Xpirit CTO

010 SERVERLESS

Summary of Cloud Service Models
Before we discuss the concept of serverless, have a look at the following diagram that presents a short recap of Cloud Service

Models. As you go through each of the diagram’s pillars from left to right, the focus shifts to the activities required to provide

application functionality to end-users.

The (r)evolution of
Cloud Computing

If there is one term that stands out in the current list of technology developments, trends and
buzzwords, it is serverless computing. Serverless computing is the next step in the evolution

of cloud computing (delivery of computing services – servers, storage, databases, networking,
software, analytics, and more – over the Internet). Serverless computing takes away the

necessity for you to think about the computing capacity required for running your software.
And what’s more: it lets you execute and pay for it on-demand. What is serverless computing

exactly and what are the benefits?

Author Martijn van der Sijde

Overview of Cloud Service Models.

Fully
managed
by you

Managed by you Managed by your provider

Fully
managed
by provider

On-premises
Infrastructure

as a service
Platform

as a Service
Software

as a Service

Applications Applications Applications Applications

Data Data Data Data

Runtime Runtime Runtime Runtime

Middleware Middleware Middleware Middleware

Operating System Operating System Operating System Operating System

Virtualization Virtualization Virtualization Virtualization

Servers Servers Servers Servers

Storage Storage Storage Storage

Networking Networking Networking Networking

011

The model that is closest to on-premise

IT is Infrastructure as a Service (IaaS).

This model provides the basic building

blocks for Cloud Computing.

The dedicated or virtualized hardware

(networking, storage and computing

resources) is owned and hosted by the

Cloud Service Provider and is provided

to a company in a virtual manner.

This company can self-provision the

infrastructure on-demand, and does

not have to worry about maintaining

the hardware. IaaS allows the company

to focus on utilizing the infrastructure

and consumption-based payment,

instead of maintaining the infrastructure

and making investments on it.

IaaS allows the
company to focus

on utilizing the
infrastructure and

consumption-based
payment.

The second service model, Platform as

a Service (PaaS), provides the operating

system, middleware and runtime on top

of the infrastructure layer. PaaS allows

companies to focus on managing the

scale of the infrastructure, in addition

to the deployment and management

of their applications. Management of

underlying infrastructure is abstracted

away.

PaaS allows
companies to focus
on the deployment

and management of
their applications.

The last model in the picture is the

Software as a Service (SaaS) model,

in which the application and data

are also managed by the provider.

The software is licensed on a

subscription basis and is hosted

centrally. Well known examples of

these complete software products,

available as SaaS services, are:

Office365, Google Apps, and Sales-

Force. SaaS allows a company to

focus on how to use the functionality

provided by the application, while it

does not have to manage feature

additions, servers, or operating

systems.

Serverless computing
Now that we understand the various

cloud service models, we can look

at the position of the concept of

serverless computing. It should not

come as a surprise that serverless

computing does not mean that there

are no servers involved. The core idea of

serverless computing is that you don’t

have to think about the infrastructure

and computing capacity required for

your logic. Answering questions like

how many instances of your application

are required or how many Virtual

Machines you need become obsolete.

In this sense, the “serverless execution

model” can be positioned between the

pillars PaaS and SaaS.

Serverless computing:
Backend as a Service
The serverless concept can appear in

different forms. One way to look at it is

the use of 3rd party backend services

within your own solution. Let’s take an

example by looking at identity provider

functionality. Functionalities such as

authenticating a user based on

credentials and resetting a user’s

password are provided by products such

as Azure Active Directory B2C, or Auth0.

A functionality is executed on the basis

of incoming events (http service calls).

These products take care of scalability

and let you pay per authentication.

In addition to this, some products

allow you to add custom logic to their

solution to tailor functionality to your

needs. The functionality in itself does

not have any end-user value – it is a

“semi-finished” product that needs to be

integrated in a solution. This appearance

of serverless computing is referred to as

Backend as a Service (BaaS).

Serverless computing:
Function as a Service
Another appearance of serverless

computing is about breaking down

an application or a microservice into

discrete functions. These small bits of

code, that are configured to be

executed on the basis of events, enable

efficient resource utilization. The code

of these functions is deployed and

configured into a cloud environment,

and the cloud provider takes care of

running these pieces of code triggered

by events coming in. This is also

referred to as Function as a Service

(FaaS). FaaS allows a company to focus

on the logic that a piece of software

needs to provide, and to pay for it per

execution. In the case of FaaS, the focus

is on the development and deployment

of small pieces of source code.

Cloud providers have jumped in

the FaaS space with their own offerings:

AWS Lambda (Amazon), Azure Functions

(Microsoft), Google Cloud Functions,

and IBM OpenWhisk.

XPRT. Magazine N°

4/2017

Martijn van der Sijde

As an architect, Martijn helps organizations
translate their business strategy and
challenges into technical solutions in close
collaboration with the people involved.
Martijn leverages his vision and knowledge
on cloud-native architectures, ALM, and
security to design and implement modern
architectures, including the required
changes on people, processes and
technology. He has a passion for learning
and applying a (technical) improvement
or innovation to achieve an increase in
the delivery of customer value.

012 THE (R)EVOLUTION OF CLOUD COMPUTING

FaaS matches perfectly with the

concept of microservices, mobile and

Internet of Things (IoT). It provides

auto-scaling and load balancing

out-of-the-box, saving you from having

to manually configure clusters, load

balancers, etc. The only thing you need

to do is to give the code to your cloud

provider and trigger it through events.

Characteristics of serverless
computing
Giving a single definition for serverless

computing is likely to lead to some

discussion. The best way to define

serverless computing is, therefore, to

state the characteristics it complies to.

If we look at the descriptions of BaaS

and FaaS as described above, these

characteristics are:

 it is event-driven

 computing is done on-demand

 scaling is done out-of-the-box

Events Execution of backend

functionality or function code is

triggered by an event. The types of

events depend on the ones offered

by the cloud provider. This can range

from a file update on Amazon S3 or

OneDrive, a timer event, a message on

a queue, or an incoming HTTP request.

Containers Containers are used in

the core. Containers wrap a piece of

software in a complete file system that

contains everything that is required to

run this software: code, runtime, system

tools, and system libraries – anything

that can be installed on a server.

This guarantees that the software will

always run in the same way, regardless

of its environment.

With serverless computing, the

application code is taken, placed into

a container, executed, and torn down

without you knowing anything about

this process and its underpinnings.

This provides for execution on-demand

and easy scaling.

The cloud provider takes care of finding

a server for the code to run on, and it

scales up if necessary. The way in which

this is physically implemented, for in-

stance the container architecture, varies

between the cloud providers.

Benefits of serverless computing
Efficiency in IT spend FaaS, BaaS or

other means of serverless computing

can be much cheaper, because you pay

per execution, and you don’t pay for

resources that are idle. What’s more,

no money is lost on managing the

infrastructure and platform required to

do scaling. There’s a variety of pricing

models available, so calculating the

break-even point based on your

demands is advisable.

Value-driven development Value-

driven development lets you focus on

the functionality that is to be delivered,

and maximizes the time you spend on

delivering true added value to your

end-users. Non-value activities such

as managing the infrastructure are

removed from the software develop-

ment process.

This fulfils the goal of Lean software

development: eliminating waste by

removing the non-value added

components from the software

development process, which is more

cost-efficient.

Event-driven architecture As mentioned

earlier: FaaS matches perfectly with

microservices, mobile and IoT, which

are the modern architectures of today.

This is because of the event-driven

nature and level of granularity of FaaS.

This type of architecture with its loose

coupling of components and good

distribution is a real strength, allowing

for architectural agility and high

scalability.

A revolution?
Serverless computing is a logical

evolution of Cloud Service Models.

In its current form I don’t regard it as

a revolution. Revolutionary would be

the possibility of moving beyond virtual

machines and containers. Imagine that

you just upload your cross-platform

application code, in your preferred

programming language, to your favorite

cloud provider. And your code will run

without you knowing anything about

the application container, execution

environment, and the operating system

it will be running on. It auto-scales

out-of-the box and you pay per

execution. That is going to be real

serverless computing.

With FaaS the focus is fully
on the logic that needs to be

provided: the code.

No matter where you are on your professional journey, Xebia

Academy’s customized, world-class training gives you the skills

and knowledge you need to advance and achieve more. Our

collaborative, continuous learning approach and in-depth

curriculum prepare you to take on today’s latest challenges in

Microsoft Application Lifecycle Management, Cloud and more.

Take one of our Microsoft Technology public classes held at

Xebia Academy state-of-the-art training facilities in Amsterdam, or

learn with your colleagues in a customized, in-company training

program, facilitated on-site at your location, anywhere in the world.

Xpirit teams up with Xebia Academy to provide a variety of

professional training sessions tailored to take you further.

Visit Xpirit.com/training or training.xebia.com for more details.

Empower yourself.

training.xebia.com

Xebia Nederland B.V. • Laapersveld 27 • 1213 VB Hilversum • +31 35 538 19 21 • training@xebia.com

Amsterdam O� ce • Wibautstraat 200 • 1091 GS Amsterdam

014 SERVERLESS

Background
In November 2014 Amazon introduced

AWS Lambda. This service made

Amazon into the first major cloud

provider with a serverless offering.

Besides Amazon, there are various

other vendors of serverless offerings.

Google is working on Google Cloud

Functions, which has not been released

yet. IBM offers a serverless platform

within IBM Bluemix, which is called

IBM OpenWhisk. In March 2016,

Microsoft announced Azure Functions

on Build, and Microsoft already

released Azure Functions with General

Availability (GA) as early as November

2016.

In Detail
Despite the term serverless, Azure Functions naturally needs servers to run on.

The term serverless refers to the fact that you don’t need to provision or create

virtual servers yourself to let the code run on. All necessary provisioning is done

by Azure.

When you start with Azure Functions, you create a Functions app in the Azure Portal.

This is the host of multiple functions, while a function app is a special kind of

App Service: the portal provides a user interface to create functions and configures

the triggers for it. It’s also possible to set up Continuous Integration with Azure

Functions.

When you start with Azure
Functions, you create a Functions

app in the Azure Portal.

Technical
introduction

to Azure
Functions

Azure Functions is Microsoft’s event-driven, serverless, cloud platform
for creating lightweight background processes. It is Microsoft’s FaaS (Function as a Service)

answer to Amazon’s AWS Lambda. A function is triggered by an event and many event triggers
are built in the runtime. Azure Functions can be written in multiple programming languages.

Author Pascal Naber

XPRT. Magazine N°

4/2017

015

You pay for the entire service plan with fixed expenses, and you are in control of the

scalability, which can have a fixed or automatic setup.

In addition to paying for Azure functions, you also need to pay for a Storage Account.

All function types except HTTP triggers require a storage account.

Adding a function
After adding an Azure Function in the Azure Portal, the first thing you need to do is

to choose the language you want to create the function in. After that, you choose

how the function will be triggered, based on a predefined template (See all triggers

in the table below). The last step consists of configuring the settings belonging to the

selected trigger. For example, when you choose the Event Hub binding, you have to

configure the access to the Event Hub. After the function has been added, the edito

in the Azure portal offers functionality to develop, run and monitor the function.

Development environment in the Azure Portal.

Azure functions are based on the Azure

WebJobs SDK. The Azure WebJobs SDK

offers triggers, bindings and a runtime.

Triggers are events that trigger your

function. Bindings are declared in met-

adata and connect external resources to

your function as trigger, input or output

parameters. Azure Functions offers a

layer on top of this. This layer is open

source and can be found on github.

(https://xpir.it/mag4-func1)

To create an Azure Function, you can

choose one of the following program-

ming languages: C#, PowerShell, Batch,

Python, Bash, JavaScript, PHP or F#.

When you choose a C# based function,

the function is created in a csx file,

which is a C# script file. When the

function is executed for the first time,

the script is compiled and executed in

memory. You can compare an Azure

Function with a method in a C# class.

When you want to add other classes,

these classes should be coded in the

same csx file. It is not possible to

separate files to put your code in.

A result of this is that you have to think

about what you automate in your

Azure function and the amount of

code that is needed for this.

You should only have the code for the

main process in your Azure Function

to keep it maintainable. If you like,

you can add references or Nuget

packages to make use of Domain

Models or other classes.

Pricing models
When you create an Azure Functions

app, you can choose between two

service plans: Consumption plan and

App Service Plan.

The consumption plan is new and

unique for Azure Functions. You only

pay for the number of requests and

the Gigabytes per second (GB-s).

GB-s stands for the time required for

processing, multiplied by the allocated

memory. The price includes 1 million

executions or 400.000 GB-s.

The consumption plan scales the CPU

and memory automatically up to 1.5 GB.

It’s possible to configure a daily quota

to create a limit on the spending.

The App Service Plan is the same Azure

Resource you use to host your webapps

or webjobs, for example a Standard S2.

Features
Azure Functions can be started on the basis of a trigger (event). Azure Functions can

also integrate with other Azure Services, which is called bindings. The substantial

power of Azure Functions becomes manifest through the integration with other

Azure PaaS resources such as ServiceBus, Storage, and EventHub. The following

table shows which triggers and bindings are supported with Azure Functions:

Binding Trigger Input Output

Function app Schedule Triggers based on a schedule
which is configured with a CRON expression.

Http (REST or Webhook) Invokes a function with an
Http Request, responds to webhooks and allows to
respond to requests. Like a GitHub webhook.

Blob Storage Triggers for new and updated blobs in
the container, read blobs or write blobs.

Event Hub Event Responds to an event send to the
Event Hub or sends a message to the Event Hub.

Storage Queue Monitors a queue for new messages,
responds to them and writes messages to a storage
queue.

Service Bus Queue & Topic Responds to messages
from a queue or topic and creates a queue message.

Table Storage Stores read tables and writes entities

Mobile App Storage Reads from and writes to data
tables.

Document DB Reads or writes a document.

Notification Hub Push notification Sends push
notifications.

Twilio SMS Sends an SMS text message.

016 TECHNICAL INTRODUCTION TO AZURE FUNCTIONS

A trigger can be the event that starts

the Azure Function. Please note that

not all bindings support a trigger

implementation. For example, it is not

possible to start your Azure Function

based on the event of a new document

in DocumentDB. An Azure Function can

only have one trigger and an unlimited

number of inputs and outputs.

Bindings can be configured in the Azure

Portal in a user-friendly user interface.

The bindings are stored in the function.

json file. This file can be edited in the

Azure Portal also.

The binding for a trigger for an Event-

Hub looks like this:
{
 "bindings": [
 {
 "type": "eventHubTrigger",
 "name": "myEventHubMessage",
 "direction": "in",
 "path": "myeventhub",
 "connection": "ehconnection"
 }
],
 "disabled": false
}

Local development
Since December 2016 it has been

possible to develop functions locally

in Visual Studio. To make this possible

in Visual Studio you have to install The

Visual Studio Tools for Azure Functions.

https://xpir.it/mag4-func2

At the time of writing this article, this

functionality is only available for Visual

Studio 2015 update 3 and as yet, there

is no version for Visual Studio 2017.

The tools are a prerelease version and

there are limitations. The most striking

limitation is the limited support for

IntelliSense in csx files. For example,

there is no support from IntelliSense

for input parameters.

The Azure Tools are offering a new

Visual Studio Project template called

Azure functions (prerelease). A project

can contain multiple functions.

The tooling also offers the same

function templates as the Azure portal.

Another major benefit of the tools is

that it is possible to run Azure Functions

locally and debug them.

When you debug a function for the first time, Visual Studio will ask you to download

the Azure Function CLI. This CLI is needed to debug the Azure Function and acts

locally as the host for the function. When an update is available, Visual Studio will ask

you to download the latest version.

Running an Azure function locally with the Azure Function Tools.

Settings
AppSettings and Connectionstrings work in the same way as Web Apps and Web

Jobs. Similarly, the settings are stored in the application service. In the Azure

Function Tools, appsettings and connectionstrings need to be added in the

appsettings.json.

Settings on an Azure Function app.

References
Developing csx files is different from the normal way of developing C# classes.

For example, it is not possible to set assembly references by setting a reference in

the same way as you used to in Visual Studio.

To set dependencies to libraries it is possible to reference .Net 4.6 Nuget packages.

These references are stored in the project.json file.

After that, you add the following line to the csx file:

#r "Microsoft.Azure.WebJobs"

It is also possible to reference your own assemblies. Add the assembly to the bin

directory of the Azure Function and add a reference with the following line:

#r "MyAssemblyName.dll"

XPRT. Magazine N°

4/2017

017

After each commit the entire Azure

function app will be updated. However,

you need to use separate branches if

you want to be in control when a functi-

on app is deployed.

Another possibility is to use a Build and

Release pipeline in VSTS for example.

You can read how to do this in the

blogpost of our colleague Peter

Groenewegen: https://xpir.it/mag4-

func4

Conclusion
From a technical viewpoint, you can

program the same functionality in C#

with an Azure Function as with an

Azure WebJob. One of the reasons why

Azure Functions is interesting is the

dynamic pricing model. You don’t

have to pay any attention to any

infrastructure dependency because you

only pay for what you use and the first

one million calls are free. In addition,

the automatic scaling of pricing model

is a powerful feature, which is another

aspect that saves costs and makes your

life easy. A final advantage of Azure

Functions is that you don’t need to

have an IDE (Visual Studio) to develop

your functions. You only need a web

browser!

Azure Functions force you to create

small, self-contained pieces of

functionality, which are event-driven

and can be updated separately.

These are characteristics of Micro

services also. If you can handle the way

you manage the source code, tests and

updates this could be a neat approach.

My experience is that Azure Functions

already prove their power when using

them to automate small separate

processes like checking resources

based on a timer or a different trigger.

Azure Functions provides you with

more agility because you only have

Proxies
The latest feature at the time of writing

this article is Azure Function Proxies.

Proxies allow you to combine multiple

Azure Functions in one large API.

This large API is a façade, i.e. a single

point of entry for the outside world

and it forwards the calls to other Azure

Functions. It is the light version of

API Management, without throttling,

security, and caching, with the benefit

that it is cheaper.

Testing
With ScriptCS (csx files) it is not possible

to unit test Azure Functions in Visual

Studio. The functions can only be tested

when the function runs in Azure.

Precompiled functions
One solution to make unit testing of

functions easier is to use precompiled

functions. With precompiled functions,

you are actually developing the usual

C# code instead of C# scripting code.

This code is compiled into an assembly

in the way you are used to.

The compiled code can be deployed to

Azure as an Azure Function. To do this,

choose a Class Library project instead

of an Azure Function project. This code

can be tested in the same way you are

used to. To let it behave as an Azure

Function you need to add a couple of

NuGet references, and you need to

add a function.json configuration file.

A disadvantage of the precompiled

function way of working is that you

cannot edit the code in the Azure Portal

anymore, because the file is in a binary

format.

If you want to know more about this,

please read the blogpost of our

colleague Geert van der Cruijsen

https://xpir.it/mag4-func3

Continuous Deployment
By default, the functions in the Azure

Portal are not under source control.

However, there are a number of options

available to create integration with

source control. Azure functions provide

functionality to configure Continuous

Deployment with several source code

providers such as GitHub and VSTS.

After configuration, the Azure Functions

will be read-only in the Azure Portal.

An Azure function becomes read only after configuring source control integration.

to consider business logic and not

infrastructure. The Microsoft Azure

Function team constantly updates the

features for Azure Functions, so new

functionality is on its way.

Pascal Naber
Microsoft Azure MVP &
Professional Scrum Master

Pascal helps companies embrace Microsoft
Azure and build large scale distributed
systems with modern architectures based
on microservices. He is the co-founder of the
Dutch Azure Meetup, for which Microsoft
has awarded him with the Microsoft Azure
MVP award. In his spare time, he enjoys
killing monoliths just for fun.

XPRT. Magazine N°

4/2017

019

Serverless computing
So what is serverless computing?

Of course there is still a server involved

somewhere. It’s just not managed by

you, but by a cloud provider. For a

thorough explanation, please read the

article The (r)evolution of Cloud

Computing in this magazine (see page

010). As far as this article is concerned,

we think that serverless can best be

seen as PaaS++. The following tweet

from Adrian Cockroft describes it very

simply:

When it comes to FaaS, both Amazon

and Microsoft offer cloud-based

solutions. Amazon Web Services (AWS)

offers AWS Lambda and Microsoft’s

Azure offers Azure Functions.

This article primarily focuses on the

Azure stack, but it also applies to AWS.

The Serverless Lifecycle
A serverless application is usually very small, but nevertheless it is still an application.

And as already mentioned, every application has a lifecycle and this lifecycle needs

to be managed. The FaaS implementation in Azure, Azure Functions, is fairly new,

and the marketing around Azure Functions focuses a lot on the easy and friction-free

editing experience “in the browser”. Although this is very powerful, it is also very

dangerous and it may even be unwanted when it comes to a production application.

Just like the infamous “Right-click, Publish” experience in Visual Studio, this lets you

publish your application straight to production without following any process at all.

Of course, there are rights and security, but still, imagine what happens when

someone “accidentally” edits a heavily used production function.

The Serverless
lifecycle: is it really
that different?
In today’s world, technological innovation is moving at breakneck speed. It was only 15 years ago
that we were deploying applications on bare metal servers using floppy disks. Since then, we have
moved to virtual machines, Infrastructure as a Service (IaaS), Platform as a Service (PaaS), Software
as a Service (SaaS). And recently we’ve moved into a world where container technology is starting
to become mainstream. The next step is serverless computing. Or, as Martin Fowler1 describes
this in his blog, Functions as a Service (FaaS) and Backend as a Service (BaaS). This is yet another
“*aaS” to keep in mind when selecting your hosting platform. And just like any other application,
a serverless application requires proper lifecycle management. In this article, we’ll discuss this
serverless lifecycle, and see where it differs from “normal” applications that you all know.

Authors René van Osnabrugge and Kees Verhaar

1 https://xpir.it/mag4-slc1

The infamous “Right-click, Publish” experience in Visual Studio, and the Azure Functions

equivalent to editing in the browser.

020 THE SERVERLESS LIFECYCLE: IS IT REALLY THAT DIFFERENT?

It is important to treat a serverless

application in the same way as any other

application. The following diagram

shows a typical application lifecycle.

In the following paragraphs, we will

apply each of the phases from the

diagram to a serverless application.

Requirements Will requirements

change for serverless applications?

Surely it depends on how you define

your requirements, but requirements

should describe the functional and

non-functional part of an application,

while staying away from technical

implementation details. A serverless

architecture deals with the technical

implementation of a requirement.

The process of gathering and refining

requirements itself should not change.

Development The impact on your

development cycle is probably higher.

There are a lot of choices to be made

up-front. Which language are you going

to use? Azure Functions supports many

languages like C#, Python, Node.JS,

Powershell, PHP, etc. And which IDE are

you going to use? The most important

thing is to think ahead and define your

test, build and release strategy to make

a good choice. For example, if you want

unit tests as well as a build and a release

pipeline, editing your code directly in a

web browser is probably not the best

option. Let’s have a look at our develop-

ment strategy and the options you have.

What are we developing? When you

build a serverless app, you can down-

load a project template in Visual Studio

and get started. However, in most cases

this is not enough. Your application

(or should we say function) probably

needs a backend, a data store, Azure

Blob Storage or a MongoDB. You can

create this manually and configure your

function accordingly, but in the modern

DevOps world we should strive to

automate everything. This means that

you should develop the infrastructure

for your application together with

that application itself, using the

infrastructure-as-code paradigm to

enable fully automated deployment.

Whether you’re using an ARM template

on Azure, CloudFormation on AWS,

or Docker containers on a hosted

cluster, in each case you need to

develop both the application code

and the infrastructure code.

How to develop And then there is

the question of how you are going to

develop your code. Focusing on Azure

Functions as a platform with C# as your

language of choice means that you

have four options to develop serverless

applications.

Write code directly in the browser

The fastest way to create an Azure

Function is to write, test and monitor it

directly in the browser. However, ease

of use comes at a cost. You don’t have

a pipeline, unit tests or even a backing

source control repository, so it is

probably not suitable for your enterprise

application, where a higher level of

traceability and control is usually

required.

However, creating and editing directly

in the browser is great for rapid

prototyping, quickly trying out an idea,

or creating a small application that

you’ll use only for yourself.

Connect a repository to Azure

Functions Using Azure Functions, you

can connect an existing repository

to your Azure Function, resolving the

source control issue. You have various

options for the type of repository that

you want to use, for instance a repo-

sitory in VSTS or GitHub, but solutions

like OneDrive and Dropbox are also an

option.

Whenever a change is committed or

saved in the repository, this will be

deployed automatically. In the case of

OneDrive or Dropbox, this happens

whenever somebody changes a file.

In case of a Git repository, deployment

is always connected to a specific

branch (e.g. master). This gives you a

bit more control, since you can use

branch policies2 to control which code

is merged into that branch. But still,

for larger organizations where an appli-

cation typically goes through different

stages of testing and acceptance before

ending up in production, this does not

provide the required level of control.

This mode of development & deploy-

ment is most suited for small teams that

write small applications and don’t need

the additional verification steps provided

by a build and release pipeline.

Using your favorite IDE and its

capabilities If you want to step it up a

notch, you could make use of the power

of your favorite IDE. This means that you

can run your Azure Functions locally,

allowing you to debug them. And if

you develop them like any regular

application, you can use familiar

practices to get things like traceability

and controlled releases in place.

Code is stored in source control and

you can create a build & release pipeline

(see Technical Introduction to Microsoft

Azure Functions) to publish your

functions to Azure.

When you write Azure Functions in C#,

you should be familiar with the Visual

2 https://xpir.it/mag4-slc2

XPRT. Magazine N°

4/2017

021

Studio Tools for Azure Functions. They let you create an Azure Functions project

inside Visual Studio, with some nice boilerplate code already in place. The only

challenge that remains in this scenario is testing. Testing your Azure functions written

as a C# Script File (CSX) is quite limited. The Visual Studio Tools for Azure Functions

will give you the local compile, build & debug experience with things like breakpoints,

watches, etcetera. However, running unit tests on CSX files is not possible.

This means that most of your local testing will be manual, which is not sustainable

in today’s world, where the focus of your testing should be at the unit test level

(The Test Pyramid concept: https://martinfowler.com/bliki/TestPyramid.html).

Because of this limitation, we recommend using the precompiled assembly’s

approach, as described in the following paragraph.

However, Azure Functions supports quite a few other languages (like Node.js and

PHP) for which unit testing is very well possible. If you’re using any of those, then

the Azure Functions CLI3 will let you run and debug your Azure Function locally4.

Using this approach allows you to develop enterprise grade applications using Azure

Functions.

Write CSX files and reference a C# class library When you’re writing C# and want to

stay close to the usual development flow, the best alternative is to use a precompiled

assembly that you can reference in your CSX file, leaving your CSX as nothing more

than a wrapper around a “normal” class library5. When you use the class library, you

can use the default toolset for Unit Testing and all other features you are used to in

Visual Studio, storing things in Source Control, creating builds, releases, and still have

a state-of-the-art serverless function.

The following table summarizes the options for development as outlined before:

Source control Testing Deployment Typical
application

Write code
directly in
the browser

None Manual testing
using e.g.
Postman or curl

Code is
published
directly when
you click “Save”

Rapid
prototyping

Connect a
repository to
Azure Functions

Basic (e.g. One-
Drive) to full (e.g.
Git)

Possible, but no
integration

Straight from
the repository to
production

Small teams
with no need for
build & release
pipeline

Using your
favorite IDE and
its capabilities

Full C#/CSX: No unit
testing, other
languages: full

Full build &
release pipeline

Enterprise scale
applications

Write CSX files
and reference a
C# class library

Full Full Full build &
release pipeline

Enterprise scale
applications

Build
The purpose of a build pipeline is to produce artifacts that can be deployed

throughout multiple environments. For example, when you create a normal web

application, you build an MSDeploy package that you provide with the right values

for its parameters in your release pipeline. Or, when you use containers, your build

pipeline will turn into a “bakery” to produce a container and publish it to a container

repository so it can be used on any hosting platform that supports containers.

When it comes to your serverless application, your build will be the same as what you

are used to. The build produces the binaries and other files for your application, the

artifacts to create the underlying infrastructure, and it will have some configuration

settings that can be modified during the deployment in your release pipeline.

Performing tests that do not require a running application are typically also

something you want to include in your builds. For example, the Unit Tests and the

ARM validation6 for your infrastructure code.

3 https://xpir.it/mag4-slc3
4 https://xpir.it/mag4-slc4
5 https://xpir.it/mag4-slc5

6 https://xpir.it/mag4-slc6 and https://xpir.it/mag4-slc7
7 https://xpir.it/mag4-slc8

Test
The hardest stage of the application

lifecycle (as mentioned before) is the

Test stage. In a continuous delivery

workflow, continuously testing and

getting feedback about the steps you

executed is critical, throughout the

entire lifecycle of your application.

Ideally, the effort you spend on

creating different kinds of tests should

be distributed according to the Test

Pyramid7.

When you create a web service or an

API in the traditional way, you create

unit tests to test the inner workings

of your methods (unit level) and API

tests to validate and ensure the correct

implementation of the interface (service

level). At a later stage, integration tests

are required to test relationships to

other components or services (UI level).

In the end you will need some load tests

to validate whether your service can

perform under load as well.

All these test types are also relevant in

a serverless context. However, when

you create a serverless application, the

question is whether all the tests should

bear the same weight as when you use

a traditional development method for

your application.

At the unit level, you will want to use

some form of manual testing on your

functions. The Azure Functions

documentation describes manual

testing with some http clients like

Postman or Curl . As mentioned before,

this is simple and easy to use, but not

sustainable when you have a large

number of functions that need to be

tested and maintained. For automated

unit testing you will want to use the

capabilities of your IDE, as described in

the previous chapter.

For API and integration testing (at the

service and UI level) your function will

need to be running and be accessible

from the outside. Of course there is the

emulator to run your Azure Function

locally, but at some point you will want

to run your function more “real”.

This involves deploying and running

022 THE SERVERLESS LIFECYCLE: IS IT REALLY THAT DIFFERENT?

your function somewhere, as described

in the Release phase.

When it comes to load testing, it is fairly

easy to run these tests in the normal

manner. But the question that we really

should ask ourselves is: Is this still

required? A serverless application is

defined by the fact that it is small and

that you only focus on the functionality

and not the underlying platform.

Does it make sense to load test your

function? What are you really testing

– the functionality or the underlying

platform?

In some cases load testing does make

sense, for example if you want to test

whether concurrent calls have any

impact on shared data or underlying

data stores. However, scalability and

availability of the application should

be a given when using serverless.

Release
Whereas the build pipeline is probably

not very different for a serverless

application, the release pipeline

certainly is! There are two considera-

tions to bear in mind when thinking

about deploying your application

towards production.

 How do you deal with different

environments for testing

 How do you deal with different

versions of the same application

Different environments or just a

different version? The first thing we

need to decide when answering this

question is whether or not we really

need a separate environment to test

our serverless application. What if we

test “in production” using a new version

of a function and not yet release it to

the public? When it comes to the

serverless application itself, i.e. the

Azure Function, it does not really matter

where you store it. It is the trigger or

backend that introduces the need for a

different environment.

There are two options for serving

different functionality in your function:

using feature toggles or deploying to a

separate environment.

XPRT. Magazine N°

4/2017

023

Using feature toggles Feature toggles are a way to modify system behavior in a

running application9. When you use feature toggles, you need a mechanism to

switch the toggle. A possible way to do this would be to create some Feature Toggle

Functions that can add, update or get a value for a specific toggle from a data store.

Your App Function (which implements the actual functionality) can use the Feature

Toggle Functions to get the value for specific toggles, and determine its own

behavior accordingly. This lets you update (or change) the functionality of your

App Function at runtime.

Deploying to a separate environment If you prefer your functions to always exhibit

the same behavior, a better approach might be to switch towards a different

deployment for every “environment” and version, and use an API Manager to direct

the traffic to the right endpoints. If you consider the fact that each new version is a

new deployment, running on a different URL, you can probably imagine this will be

hard to maintain and communicate with the consumers of your serverless app.

An API manager like Azure API Management10 can help you in routing your traffic to

the right endpoints. The lightweight version of this is Azure Function Proxies11.

application.organization.com/functionA?v2&apikey=test

application.organization.com/functionA?v2&apikey=prod

If a consumer asks for version 2 of a service, API management will redirect him

correctly to the right function implementation, without the user knowing the

original URL. If you expand this concept to different environments (such as a test

environment), you can configure API Management to redirect the user to a specific

environment based on a specific property of the request (such as a header or request

parameter, like an API key). This is completely transparent for end users and easy to

configure. You can even update API Management through its own API, so that you

can automatically expose new functions or versions from your release pipeline.

Of course you need to take care of access control on API Management and make

sure the right environments are called, but the concept is clear and transparent.

The release pipeline still deploys the bits to different environments, and API

Management is just another artifact that can be configured from within the

pipelines.

The idea of using a
serverless platform

is that you don’t need to
worry about availability,

because the platform
takes care of this.

Routing is
the new

versioning.

Toggle Control
Panel

v1

v2

v1

v2

v1

v2

v3

v1

v2

v3

v1

v2

v1

v2

Add

Update

Remove

Get

Feature Toggle
Function

Function A Function A

Function B Function B

Function C Function C

App Function

DB DB

DB DB

Production Test

API Management

9 https://xpir.it/mag4-slc10
10 https://xpir.it/mag4-slc11
11 https://xpir.it/mag4-slc12

René van Osnabrugge
Microsoft Visual Studio and Development
Technologies MVP

René is always looking for improvements
on all fronts. By using modern technology,
implementing Continuous Delivery,
DevOps practices and coaching in the
domain of Scrum and Agile, he helps
companies improve their software delivery
process. René is an active blogger and
speaker at both national and international
conferences where he shares his
knowledge of his passion: Application
Lifecycle Management, for he has been
recognized by Microsoft as MVP in Visual
Studio and Development Technologies.

024 THE SERVERLESS LIFECYCLE: IS IT REALLY THAT DIFFERENT?

Kees Verhaar
Visual Studio ALM Ranger

Kees works as a consultant in the domain of
Application Lifecycle Management at Xpirit.
He assists organizations in transforming
ideas into working code in production.
Kees is passionate about exploring new
technologies and opportunities whenever
he gets the chance. Through his work as a
Visual Studio ALM Ranger, he contributes his
knowledge and real-life working experience
to the developer community.

Creating a serverless application
is not that different from creating

any other application.

Operate and Monitor
The last phase in our Lifecycle is

Operate and Monitor. Monitoring

is required, just like with any other

appli cation. While traditional

operational monitoring on metrics

such as CPU, memory and disk usage

is not needed, you still have some

responsibilities when you release a

serverless function to the world.

At least you need to make sure the

function is still running as intended,

and is not generating any errors. It is

also very valuable to check whether

the function is actually used.

Azure Functions provides a number

of basic monitoring features, which

can be accessed from the Azure Portal

or from the Azure command line.

If you need more advanced monitoring,

you can implement Microsoft

Application Insights, which distinguishes

between four kinds of monitoring.

Availability

Performance

Usage

Diagnostics

The idea of using a serverless platform

is that you don’t need to worry about

availability, because the platform

takes care of this. In that respect,

performance is also taken care of by the

platform, except for specific situations.

In addition, Diagnostics and Usage

are both very relevant. You want to

know whether your function is working

properly, and if not, the cause of the

failure. Usage statistics are valuable

because you can use these metrics

to decide whether you can phase out

a function, or which function is a

candidate for optimization.

Conclusion
Creating a serverless application is not

that different from creating any other

application. The tools allow you, and

sometimes even encourage you, to do

it in a simple way. However, usually it is

advisable to think ahead and to make

some decisions up front. When you

consider putting your application in

production, treat your serverless

application just like any production

application. Utilize powerful tools like

an IDE, think about your test strategies,

create build and release pipelines

and gather metrics. Azure Functions

offers great support for multiple

languages and any language is the right

choice. Managing your application

lifecycle correctly is what makes the

difference!

Visual Studio
ALM Ranger

XPRT. Magazine N°

4/2017

025

Cloud-native Mobile Architecture
The cloud is already a common

platform to host your mobile app

backend. However, the architecture

of these backends is often just the same

as if they were hosted anywhere else.

This doesn’t have to be a bad thing

since this gives you the flexibility of

being able to host them anywhere. In

this article, we’ll look at using cloud-

native features of Azure that can help

you reduce your development effort

and therefore enable you to adapt to

your customer demands faster, and

build innovative solutions.

If you’ve ever built a mobile backend,

you’ve probably built something like the

following example: a set of APIs or web

services that expose all your business

logic to the client through REST or

procedural calls. If you are a .NET

developer, you’ve probably implemented

this using ASP.NET Web API. These APIs

are your central access point to all data

and logic that is stored somewhere

in the backend. As an app developer

you don’t care what happens behind

the API, because you just communicate

with this API and its contract.

Building
cloud-native
Xamarin
mobile
apps

I’ve built numerous apps in my life and the one thing they had in common was that they
all had to retrieve their data from somewhere – typically, a REST-based API. Cloud technology
made it easier to implement these APIs, but our mobile software architecture hasn’t changed
that much. Is cloud-native technology going to change this? In this article, I’ll cover several
options to implement a cloud-native mobile backend using Azure and I’ll explain what impact
this will have on your Xamarin mobile apps.

Author Geert van der Cruijsen

026 BUILDING CLOUD-NATIVE XAMARIN MOBILE APPS

When building a cloud-native mobile

backend this doesn’t have to be

different, but there are several options

that will give you these kinds of APIs for

free, so you can spend time on things

that really matter instead of building

all this plumbing. As an app developer,

you do have to know a bit more about

what happens in the backend because

you’ll be talking to certain components

directly through different channels.

Let’s look at a simple example: we want

to store our products in a DocumentDB

on Azure. We can directly query the

DocumentDB from our client, but

inserts will probably still go through

some form of custom-built APIs

because you want to do validations.

Or there is some other business logic

involved in creating a document that

you don’t want to have executed by

your mobile app. In this simple example,

we can use cloud-native components

that make it super easy to build this, but

the client has to know that there are

two different APIs to be used which are

in different locations instead of doing a

GET or PUT on the same resource like

they did in the past.

In the rest of this article I’ll zoom in on

three different cloud-native solutions

that could make your life as a mobile

backend developer a lot easier: Docu-

mentDB, Azure Mobile Apps and Azure

Functions.

DocumentDB
Storing data in your backend is key to

most applications. DocumentDB is

an Azure cloud-native NoSQL data-

base with automatic scaling features

and possibilities to replicate your data

globally without making any changes

to your app. It’s possible to connect

your app directly to DocumentDB in the

cloud without creating any service layer

on top of it.

Client (App)

Shop API

Shop Database

Client (App)

API GatewayProduct Database

Order API

Order Database

Authentication Service

Search API

XPRT. Magazine N°

4/2017

027

Benefits of a DocumentDB as mobile

backend DocumentDB is a schemaless

JSON database, which means that you

don’t have to design your data model or

set up indexes up front. DocumentDB

will be able to execute rich queries on

top or your JSON objects that may have

different properties without throwing

any exceptions. This allows you to

iterate and release frequently without

having to do a full database schema

upgrade, which can be a real pain if you

want to do it often.

With DocumentDB being a cloud-native

solution it’s set up with cloud scale in

mind. The scale supports up to millions

of requests per second and has native

features to replicate the data over

multiple regions within Azure.

Some features that can be especially

useful for mobile apps are the geo-spa-

tial queries to query things in your

neighborhood, or the use of binary

attachments.

When not to use DocumentDB? While

DocumentDB is flexible and offers great

performance, it is not a relational data-

base. If your data model works best as a

relational model, don’t try to fit it into a

NoSQL database like DocumentDB.

Its design just isn’t made for it and you

will probably kill the performance by

trying to fit your relational model into

the DocumentDB.

Adding a DocumentDB to your app

Adding a DocumentDB to your app

is simple. There is a native SDK you

can add to your portable class library

through a nuget package “Microsoft.

Azure.DocumentDB.Core”. After adding

this nuget package we can add a new

DocumentClient that passes the URL to

our DocumentDB, as well as a resource

token to define permissions.

Now that we’ve set up a connection,

it is possible to add items or to query

your collections in the DocumentDB.

To do a simple query, you can create a

DocumentQuery querying on a specific

Type, and create a query using Linq in

the same way as you would expect any

other Linq Query.

Querying on geospatial properties is

part of the SDK as you can see in the

sample above. On properties that are

Points you can query their distance

without having to use any special code

in your Linq queries.

Inserting items is just as simple. You just

need the DocumentClient and a link

to your collection in the DocumentDB.

With those properties you can insert

any C# object, as long as the object

is serializable as JSON. By adding the

UserId to the object, the permissions

are automatically set up correctly so

that only our user or other users who

have been given permission can find

this item.

DocumentDB does not have any

authentication mechanism built in

and will just require the user-specific

resource token you pass to the client

constructor. Retrieving this token can

be done by adding a separate Azure

App Service app that will do the

authentication for us.

To set this up you have to follow the

following steps.

1. Create a DocumentDB collection

where you define a partition key on

the UserID property.

2. Log into your app using an OAuth

mechanism.

3. Use the OAuth token to authenticate

to the resource token provider API

that is part of Azure App service.

4. Resource token API will request a

DocumentDB resource token with

read/write permissions on the collection.

5. Resource token API returns the

resource token to the app.

6. App passes the resource token to

its queries.

Azure Mobile Apps
The most well-known solution to build

your cloud-native mobile backend in

Azure is to use Azure Mobile Apps.

Azure Mobile Apps are part of Azure

App Service, Microsoft’s solution for

building a PaaS (Platform as a Service)

backend solution. Azure Mobile Apps

offer specific mobile features on top of

Azure App Service.

Benefits of an Azure Mobile Apps

backend Azure Mobile Apps offer

specific mobile features such as

Client SDKs for iOS, Android,

Windows, Xamarin and even Apache

Cordova.

There is out-of-the-box support for

OAuth 2.0 with most social networks to

make authenticating easy and there is

integration with Azure Notification

Hubs to send push notifications to all

platforms using a single backend.

var query = Client.Create DocumentQuery<PointOfInterest>
 (coll nk,
 new FeedOptions{ MaxItemCount = -1,
 PartitionKey = new PartitionKey (this.UserId)})
 .Where (poi => poi.Location.Distance(currentLocation) < 500)
 .AsDocumentQuery ();

var poiList = new List<PointOfInterest> ();
Items = await query.ExecuteNextAsync<PointOfInterest> ();

pointOfInterest.UserId = this.UserId;
var result = await Client.CreateDocumentAsync
(collectionLink, pointOfInterest);
pointOfInterest.Id = result.Resource.Id;

Lo
g

in
 w

it
h

 F
B

 S
D

K

Access user’s data using
resource token

Resource
Token
Broker

Fe
tc

h
 r

e
so

u
rc

e
 t

o
ke

n
 f

o
r

au
th

e
n

ti
c

at
e

d
 u

se
r

Auth
en

tic
at

io
n w

ith
 F

B a
cc

es
s

to
ke

n, g
et

 u
se

r’s
 re

so
urc

e
to

ke
n

X

028 028 BUILDING CLOUD-NATIVE XAMARIN MOBILE APPS

Using Azure Mobile Apps Offline synchronization for a table within Azure Mobile

Apps to your native mobile app can be created in under 50 lines of code. To add

an Azure Mobile App to your app, first create a new Azure mobile app in the Azure

Portal. After that you can start coding your app by adding a nuget package called

“Microsoft.Azure.Mobile.Client. SQLiteStore”. This will give you access to the SDK to

sync data from a local SQLite database to an SQL Azure database.

After adding the nuget package, the SDK has to be initialized by adding the Init

method in the FinishedLaunching method of the AppDelegate class in iOS.

On Android you don’t have to initialize the SQLitePCL; you only need to add the

first line within the OnCreate Method of your MainActivity.

Microsoft.WindowsAzure.Mobile Services.CurrentPlatform.Init();

SQLitePCL.CurrentPlatform.Init();

After initializing the SDK you have to initialize the sync of a table, in this case a table

containing Friend objects which is just a plain old C# object. Create a new class

called AzureMobileService, and this is where you add a method Initialize. In this

method, you’ll first have to create a new MobileServiceClient and pass the url of the

Azure Mobile app you created. On the client, you can define a new table of type

Friend.

After initializing, you need to implement three methods, a sync method that will

synchronize the changes between your local database and the SQL Azure database

and two other methods to add Friends and to retrieve Friends.

This is all the code you need to set up offline sync. On my GitHub page you can find

a fully working sample that runs on all mobile platforms.

public async Task Initialize()
{
 if (Client?.SyncContext?.IsInitialized ?? false)
 return;

 var appUrl = "https://friendsappdemo.azurewebsites.net";
 var path = "friends.db";
 Client = new MobileServiceClient(appUrl);
 path = Path.Combine(MobileServiceClient.DefaultDatabasePath, path);

 var store = new MobileServiceSQLiteStore(path);
 store.DefineTable<Friend>();

 await Client.SyncContext.InitializeAsync(store);
 friendTable= Client.GetSyncTable<Friend>();
}

public async Task SyncFriends()
{
 await friendsTable.PullAsync("allFriends", friendsTable.Create Query());
 await Client.SyncContext.PushAsync();
}

public async Task<IEnumerable<Friend>> GetFriends()
{
 await Initialize();
 await SyncFriends();

 return await friendsTable.OrderBy(c => c.DateUtc).ToEnumerableAsync(); ;
}

public async Task<Friend> AddFriend(Friend friend)
{
 await Initialize();
 await friendsTable.InsertAsync(friend);

 await SyncFriends();
 return friend;
}

For proof of concepts or relatively

simple apps, Azure Mobile Apps

includes Easy Tables. This is a feature

that uses an SQL Azure database behind

the scenes. What makes Easy Tables so

easy is that the columns and tables will

automatically be generated when data is

added to the database.

The most powerful feature of Azure

Mobile Apps is the possibility to create

offline data sync between your backend

and your mobile app. To enable the

offline data sync you’ll have to

implement a local storage using SQLite

or SQLCipher, and set up the out-of-

the-box sync with the data provider

that is part of the Azure Mobile App.

This feature allows you to create the

offline data sync with only a couple

of lines of code, and without having

to think of conflict resolution of sync

errors due to network issues.

Offline synchronization of your data

offers a lot of new business scenarios

in your apps because initially your UI

will save all changes locally in your

SQLite database and sync this data to

the backend asynchronously in the

background. This can make perfor-

mance of the app look great because

you don’t have to wait because of the

communication delay to your backend,

which can be slow depending on the

location and reception your phone has

when using the app. Imagine building

such a synchronization mechanism

yourself. It would be quite hard to

build, especially if it includes conflict

resolution and sync errors fixing.

When not to use Azure Mobile Apps

Azure Mobile Apps can be used for all

kinds of purposes, from small apps to

enterprise apps. Adding custom ASP.

NET Web APIs within Azure Mobile

Apps can handle all kinds of scenarios.

Easy Tables works great for small apps

or POCs, but is limited when building

larger apps with complex data models.

It is wise to use custom APIs within the

Azure Mobile App when building more

complex mobile backends so you have

full control over your business logic on

the server side.

XPRT. Magazine N°

4/2017

029

Conclusion
There are multiple ways of building your

mobile backend in Azure. Hopefully this

article has made you think about the

options you can use instead of just

lifting and shifting a mobile backend

from your on-premises solution.

In the future, we will see more and more

mobile backends use the best tools for

the job that could, for example, be a

single backend composed of several

types of storage, out-of-the-box APIs,

or custom built APIs.

This is why it is important to have know-

ledge of the various techniques you can

use. The best part of these cloud-native

solutions is that they are easy to create

and scale, but also to tear down. This

makes them perfect for proof of con-

cepts or small apps where you have the

possibility to scale up or down, depen-

ding on the success of your application.

If you want to get more technical

details on implementing these Azure

features, check out my GitHub Page

on github.com/geertvdc/cloudnative-

appdemo to find a full working sample

with DocumentDB and an Azure Mobile

App.

Geert van der Cruijsen
Microsoft Visual Studio and Development
Technologies MVP

Geert is a mobile software architect with
years of experience in building cross-
platform applications using Xamarin &
.NET. As a Lead Consultant at Xpirit,
Geert helps customers define and improve
their mobile strategy, vision and technical
implementation regarding mobile
application development and ALM.
Geert is also a Xamarin Certified Trainer,
delivering training to mobile developers.
Geert is an active member of the Xamarin
and Windows UWP community, has spoken
at several conferences, and is co-organizer
of the Dutch Mobile .NET Developer’s
meetup.

Implementing an Azure Function should
focus on a specific task that isn’t covered
by the functionality of DocumentDB APIs
or Azure Mobile App Table Storage in your
Mobile backend.

Azure Functions
We’ve looked at two different ways of

implementing a cloud-native, backend

solution in Azure. With the upcoming

trend of serverless architectures, Azure

Functions could also play a role in

acting as a mobile backend. Azure

Functions deliver nano services that

really take advantage of the cloud with

only paying for what you use and can

be scaled up and down quickly.

The functions are small pieces of code

that can be triggered by HTTP calls, a

timer schedule, or by new items in blobs

or queues. There are several business

scenarios you could image where this

would work for mobile apps. Azure

Functions also have a set of output

bindings to store output on several

different data storage types in Azure.

Some of these are the DocumentDB

and Azure Table storage as part of

Azure Mobile Apps. Another output type

consists of Mobile push notifications

using Azure Notification Hub.

This magazine contains an article by

my colleague Pascal Naber explaining

all the details of creating an Azure

Function, so we won’t go into the

specifics of implementing a Function.

Implementing an Azure Function

should focus on a specific task that

isn’t covered by the functionality of

DocumentDB APIs or Azure Mobile App

Table Storage in your Mobile backend.

This way you can compose your perfect

mobile backend out of cloud-native

components in the same way as I

described this in the first chapter.

XAMARIN UNIVERSITY
CERTIFIED TRAINER

030 SERVERLESS

Live! 360: A Unique Conference
for the IT and Developer Community

 • 6 FULL Days of Training
 • 5 Co-Located Conferences
 • 1 Low Price
 • Create Your Own Agenda from Hundreds of Sessions
 • Expert Education and Training
 • Knowledge Share and Networking

CONNECT WITH LIVE! 360

twitter.com/live360
@live360

facebook.com
Search "Live 360"

linkedin.com
Join the "Live! 360" group!

The Ultimate Education Destination

NOVEMBER 12-17

�e Ultimate Education D�tination

ROYAL PACIFIC RESORT AT UNIVERSAL ORLANDO

REGISTER NOW

PRODUCED BYEVENT PARTNERS PLATINUM SPONSOR SUPPORTED BY LIVE360EVENTS.COMNOVEMBER 12-17

�e Ultimate Education D�tination

ROYAL PACIFIC RESORT AT UNIVERSAL ORLANDO

REGISTER NOW

5 GREAT CONFERENCES,
1 GREAT PRICE

Visual Studio Live!: Code in Paradise at
VSLive!TM, featuring unbiased and

practical development training on the
Microsoft Platform.

SQL Server Live! will leave you with the
skills needed to drive your data to
succeed, whether you are a DBA,

developer, IT Pro, or Analyst.

TechMentor: This is where IT training meets
sunshine, with zero marketing speak on

topics you need training on now, and solid
coverage on what's around the corner.

Office & SharePoint Live!: Today,
organizations expect people to work from
anywhere at any time. Office & SharePoint

Live! provides leading-edge knowledge
and training to work through your most

pressing projects.

Modern Apps Live!: Presented in partnership
with Magenic, this unique conference

delivers how to architect, design and build a
complete Modern App.

REGISTER
NOW

REGISTER BY
AUGUST 11 AND
SAVE $500!*

Use promo code L360MAY2

* Savings based on 5-day packages only.
See website for details.

NEW: HANDS-ON LABS
Join us for full-day,
pre-conference hands-on
labs Sunday, November 12.

Only $595 through August 11

Check out our other 2017 events
for Developers and IT Pros:

• Visual Studio Live! - vslive.com
• TechMentor - techmentorevents.com

XPRT. Magazine N°

4/2017

031

Live! 360: A Unique Conference
for the IT and Developer Community

 • 6 FULL Days of Training
 • 5 Co-Located Conferences
 • 1 Low Price
 • Create Your Own Agenda from Hundreds of Sessions
 • Expert Education and Training
 • Knowledge Share and Networking

CONNECT WITH LIVE! 360

twitter.com/live360
@live360

facebook.com
Search "Live 360"

linkedin.com
Join the "Live! 360" group!

The Ultimate Education Destination

NOVEMBER 12-17

�e Ultimate Education D�tination

ROYAL PACIFIC RESORT AT UNIVERSAL ORLANDO

REGISTER NOW

PRODUCED BYEVENT PARTNERS PLATINUM SPONSOR SUPPORTED BY LIVE360EVENTS.COMNOVEMBER 12-17

�e Ultimate Education D�tination

ROYAL PACIFIC RESORT AT UNIVERSAL ORLANDO

REGISTER NOW

5 GREAT CONFERENCES,
1 GREAT PRICE

Visual Studio Live!: Code in Paradise at
VSLive!TM, featuring unbiased and

practical development training on the
Microsoft Platform.

SQL Server Live! will leave you with the
skills needed to drive your data to
succeed, whether you are a DBA,

developer, IT Pro, or Analyst.

TechMentor: This is where IT training meets
sunshine, with zero marketing speak on

topics you need training on now, and solid
coverage on what's around the corner.

Office & SharePoint Live!: Today,
organizations expect people to work from
anywhere at any time. Office & SharePoint

Live! provides leading-edge knowledge
and training to work through your most

pressing projects.

Modern Apps Live!: Presented in partnership
with Magenic, this unique conference

delivers how to architect, design and build a
complete Modern App.

REGISTER
NOW

REGISTER BY
AUGUST 11 AND
SAVE $500!*

Use promo code L360MAY2

* Savings based on 5-day packages only.
See website for details.

NEW: HANDS-ON LABS
Join us for full-day,
pre-conference hands-on
labs Sunday, November 12.

Only $595 through August 11

Check out our other 2017 events
for Developers and IT Pros:

• Visual Studio Live! - vslive.com
• TechMentor - techmentorevents.com

032 PRACTICAL CLOUD

Auth0
Auth0 is an enterprise-grade platform

for modern identity. It helps you build

authentication for your applications

using a frictionless platform.

Auth0 offers an easy-to-use dashboard

that allows you to start adding authenti-

cation to your applications. From simple

logins using social accounts (Microsoft,

Google and Facebook) to enterprise

logins using Azure Active Directory, for

example. Auth0 provides you with total

control over the functionality without

having to manage and maintain the

platform.

Auth0’s Webtask.io offers a serverless

platform to add customizations and

other features to the authentication

flows.

In this article, I will explain how easy

it is to build WebApps and APIs with

Authorization with Auth0. In this

example, we will use an ASP.NET Core

WebApp, Azure API management, and

ASP.NET Core WebAPI, all connected to

Auth0.

The application flow looks like this.

1. User visits MVC Website.

2. User logs in on Website and is

redirect to Auth0.

3. Uses logs in using a third party

(Google or Microsoft) login provider.

User gets sign-in metadata and a

token for API usage.

4. Website calls WebAPI using the token

retrieved during login.

5. Azure API Management validates

signing key (RS256) using config

endpoint.

6. Azure API Management forwards the

request to WebAPI.

7. WebAPI returns claims information to

Website in JSON message.

First of all we start by creating an

application in the Auth0 dashboard

at https://manage.auth0.com.

After registration, you can get started

without any costs. With up to 7000

active users in the free tier, this should

be enough to get started. After logging

in you start with creating a new client.

Authentication
as a Service
with Auth0

Authentication is an important factor in the success of applications and their architectures.
Serverless architectures are no exception to this. Authentication is an area in which serverless
computing is becoming the new norm. Without any doubt, authentication is one of the most

complex features to implement correctly. When you use a serverless platform for authentication,
you can focus on actual business functionality of the application instead of hosting and running

an authentication platform. One of the leading serverless Authentication as a Service (AaaS)
platforms is Auth0. Others are Azure AD (B2C) and Okta.

Author Chris van Sluijsveld

Figure 1 shows the architecture for this example.

Mvc Website

Auth01

6

3

5

2

4

Third Party

Azure Api Management

WebApi

XPRT. Magazine N°

4/2017

033

We get a Domain, Secret and client ID that we need in our

WebSite, API Management platform, API to configure our

authentication code.

 Make sure that you specify the “Allowed Callback URLs” and

“Allowed Logout URLs” correctly for either development

(local machine) or hosting platform (for example Azure).

Switch “JsonWebToken Signature Algorithm” to RS256 to

make the ASP.NET Core OpenID middleware work correctly.

Website
Configure the OpenIdConnect middle ware using the clientId,

clientSecret, and Authority information from Auth0. ASP.NET

Core offers standard middleware for this purpose. It is located

in the “Microsoft.AspNetCore.Authentication.OpenIdConnect”

package. When you add this package to your project, you have

to configure the middleware of your app. This can be done by

adding the following code:

Azure API Management
Azure API management is the first barrier for successfully

calling the exposed APIs. The Azure API Management

platform is also the first place where you can check and

validate the JWT (JSON Web Token) tokens for authenticated

access to the APIs. Azure API Management is a Platform as

a Service (PaaS) solution inside Azure. API Management helps

organizations publish APIs to developers inside and outside of

app.UseIdentity();
app.UseOpenIdConnectAuthentication(new OpenIdConnectOptions
 {
 ClientId = Configuration["ClientId"],
 ClientSecret = Configuration["ClientSecret"],
 Authority = Configuration["Authority"],
 ResponseType = OpenIdConnectResponseType.Code,
 GetClaimsFromUserInfoEndpoint = true
});

your organization. It provides the core competencies to ensure

a successful API program through developer engagement,

business insights, analytics, security, and protection.

After adding the WebAPI to Azure API management it is

possible to specify policies for each individual operation or

for all operations at once. In this case, we will add an inbound

policy to all operations using the code-view. One could see

these polices as another form of serverless computing, where

you can easily customize the API management platform

without worrying about the hosting or deployment of those

customizations. It just runs in the platform provided.

The following segment of xml has to be added to the inbound

policies for your API. In this case it checks for a valid JWT

that has not yet expired, and uses the OpenID configuration

endpoint of Auth0 to check the signing key of the incoming

JTW token.

When you try the API in the Azure API Management developer

portal, you should see the message “Unauthorized inside API

Management” if no id_token is passed to the ASP.NET Core

WebAPI inside the authorization header of the request.

WebAPI
The ASP.NET Core WebAPI is the last part that wants to check

the incoming token to authenticate the user. In the same way

as with the ASP.NET Core WebApp, there is a standard library

to authenticate the use of JWT tokens. This can be done by

adding the following lines of code to your startup middleware.

All that is left to do now is marking your controller operations

with the [Authenticate] attribute. When you test the

application, you should be able to log in using a social media

account, see your claim information, and call the API to

validate the id_token.

var options = new JwtBearerOptions
{
Audience = Configuration["JWTOptions:clientId"],
Authority = $"https://{Configuration["JWTOptions:domain"]}/"
};
app.UseJwtBearerAuthentication(options);

Without knowing the nitty gritty
details of Auth 2.0 or OpenIdConnect
you can still easily integrate it into
your solution.

034 PRACTICAL CLOUD

What is Azure Service Fabric?
Before we start creating backups, I will first briefly introduce Service Fabric and its

application model. Most companies have many applications to run, usually on

multiple, over-dimensioned servers, sized on peak loads. This means that most of

the time, server resources are not utilized efficiently. Service Fabric creates a

virtual pool of computing resources by joining multiple servers – or nodes –

together into a cluster. Service Fabric then adds mechanisms to optimize the

use of the underlying cluster resources. It automatically takes care of application

placement and upgrades, cluster health monitoring and rebalancing applications,

based on their resource consumption.

Application Model
Service Fabric applications consist of one or more services that work together to

automate business processes. A service is an executable that runs independently

of other services, and is composed of code, configuration and data. Each element

is separately versioned and deployable. In this model, ‘code’ means the service

binaries. Xml files which hold ‘configuration’ have custom service settings, such

as connection strings and security settings. Finally, ‘data’ is any static data your

service uses, e.g. pictures and script files.

Backup and
Restore in

Azure Service
Fabric

Creating and restoring backups of stateful services can be
challenging. In this article you will learn how it works and

what you can do to make this process much easier.

Author Loek Duys

Figure 1 Application Model

Application Service Configuration

Code

Data

Conclusion
Auth0 as an Authentication as a Service

offers a really powerful platform. It is

easy to integrate in your solution with a

simple registration and using the values

provided. I believe this is the enormous

power of a serverless platform.

Without knowing the nitty gritty details

of Auth 2.0 or OpenIdConnect you can

still easily integrate it into your solution.

You just provide your code and it just

works. You can also change functio-

nality on the fly without needing any

redeployment of your code. Meanwhile,

the platform does all the work and is

totally managed for you. The code for

the sample in this article is available on

https://xpir.it/mag4-auth.

Chris van Sluijsveld

As a Lead Consultant at Xpirit, Chris helps
customers with implementing microservice
architectures using Service Fabric,
API Management and API design guidelines.
Chris loves to experiment with new
technology and tweets, and then blogs
about this on the internet. Chris is keen
on adopting new technologies and
investigating how they can deliver more
value for the customer.

XPRT. Magazine N°

4/2017

035

Creating an application instance

requires an Application Type; this is the

template that specifies which service

instances should be created as part of

the application. This concept is similar

to object-oriented programming. The

Application Type is like a class definition,

and the application is a named instance.

Multiple application instances can be

created from one Application Type.

The same concept applies to services.

A Service Type defines the code, data

and configuration for the service, as

well as communication endpoints used

by the service for interaction. Multiple

named service instances can be created

using one Service Type. An application

specifies how many instances of which

Service Types should be created.

Both Application Type and Service Type

are described through XML files. Every

element of the application model is

versioned and deployed independently.

System Services Service Fabric itself

runs as services on the cluster. These

system services manage the cluster

and are used to deploy and monitor the

services you run on the cluster yourself.

One of the system services is the Fault

Analysis Service. This service plays a role

in restoring backups. You’ll learn more

about this service later.

How Stateful Services work
Stateful services keep their data close

by, stored in memory and on a local

disk. To enable large scale projects with

many concurrent users, stateful services

can be distributed across multiple

nodes. Each instance of a stateful

service is called a replica. Each replica

stores its own chunk of the total service

state. This means that your data is

divided across multiple service replicas.

All Replicas are made highly available

through an automated data replication

system, which copies the state

across multiple cluster nodes during

transactions. So if one cluster node fails,

your data will be safe and your service

continues to be available. It also means

that you may need to query multiple

Replicas to get all your data.

And finally, it means that if you want

to create or restore a backup of your

service, you will need to do this

separately for every partition.

Creating a backup of a Replica
The state of your stateful service is

safely stored across multiple nodes.

However, your data can still be lost, due

to the loss of your entire cluster, or to

human error. To protect you from data

loss it is sensible to create regular

backups of your service state.

Backup types There are two types of

backups:

 Full backups - A full backup contains

a complete copy of the state of one

replica. Full backups can become quite

large as your service state grows over

time.

 Incremental backups.

An incremental backup builds on top of

a full backup and any later incremental

backups. It contains only the changes

made since the last full backup. Because

of this, a partial backup is usually smaller

and faster to create than a full backup.

How often you create backups depends

on the acceptable amount of data loss

you can afford for your service. Mission-

critical data and data that constantly

changes, should be backed up more

often than other types of data.

Adding code to create backups

Creating backups of Service Fabric

Services requires you to add some code

to your stateful service. First of all, you

will need to call the existing method

BackupAsync and pass it an instance

of BackupDescription which contains

a callback. This callback – or delegate

– will be executed once the backup is

created to perform additional actions,

if needed.

The callback delegate has the following

signature:

Func<BackupInfo, CancellationToken,

Task<bool>> BackupCallback

The CancellationToken can be used

to cancel the operation. The returned

Boolean indicates the success of the

operation. The provided BackupInfo

class contains useful information, for

instance the backup folder, its type and

the version. To keep your Backup files

safe, you should copy them away from

the cluster to a central store, like Azure

Blob Storage. This way, you can recreate

a lost cluster using the Backup files.

Type

Instance

Application Type

Application instance(s)

Service Type

Service instance(s)

Replica Three

Replica Two

Replica One

Full backup

Incremental
backup 2

Incremental
backup 1

Full backup 1

Figure 4 Types of backups

Figure 2 Types versus Instances

Figure 3 Replicas of a stateful service

036 BACKUP AND RESTORE IN AZURE SERVICE FABRIC

Remember that this code needs to be executed for each replica of your service.

To make this process reliable and repeatable, you could for instance create a new

Service Fabric service that periodically backs up other services in the cluster.

Restoring a backup of a Replica
Figure 5 shows the process of manually restoring a replica. The restore process is

more complicated than creating a backup. It requires the help of one of the Service

Fabric system services we discussed earlier; the Fault Analysis Service.

Figure 5 Restoring a Replica using triggered data loss

Triggering ‘data loss’ To begin the process of restoring a backup, Service Fabric

must invoke the method OnDataLossAsync on your stateful service replica. This can

happen in the following situations:

 The call to OnDataLossAsync can happen because Service Fabric detected data

loss itself. This will happen if there is a problem with the cluster node that hosts the

service. For instance, if there is a disk failure.

 It can also be triggered by using code:

FabricClient.TestManager.StartPartitionDataLossAsync([..]);

 And finally, it can be triggered by using PowerShell

Start-ServiceFabricPartitionDataLoss:

Cleaning existing data The last two options are triggered by the program code; the

Fault Analysis Service is called from “under the hood”, and it ensures that the restore

operation is performed for the targeted service replica. The amount of data that

will be lost by these operations depends on the value of dataLossMode. It has two

options:

1. PartialDataLoss – This option indicates that only pending replications will be lost.

2. FullDataLoss – This option indicates that all data is lost.

Trigger data loss

 By PowerShell

 By Code

 By Fault Analysis
Service

 On Stateful
Service

 Copy Backup
to Node

 On Restore-
Content

 Using local
copy

Data is cleaned OnDataLossAsync RestoreAsync

Invoking OnDataLossAsync
After the data has been removed,

OnDataLossAsync is invoked on the

replica, so it can begin to restore its

state. It is invoked with a parameter

RestoreContext which contains an

operation called RestoreAsync.

Before you can call this method to

restore a backup, you will need to

download the backup files from your

central storage back to a temporary

folder on the cluster node. Then you

must let Service Fabric know where to

find the Backup files. For this, you can

use the RestoreDescription struct.

The RestoreDescription that is

passed to RestoreAsync is used to

inform Service Fabric where you have

placed the Backup files locally. When

restoring a full backup, only the one

folder that contains it needs to be

downloaded.

When restoring an incremental backup,

all previous incremental backups and

the latest full backup need to be down-

loaded. (As explained in Figure 4.)

And now we wait… After doing all this,

Service Fabric will restore your Replica.

Depending on the size of the backup to

restore, this can take quite some time.

You can monitor progress by using the

Service Fabric Explorer. It will start out

with reporting errors, and show your

stateful service with status ‘In build’.

This can be seen in Figure 6.

XPRT. Magazine N°

4/2017

037

After a while your service will become

healthy again. Remember that this code

needs to be executed for every replica

of your service, just like the creation of

the backup. It’s important to note that

all replicas that are not currently

restoring a backup remain healthy and

will continue to operate normally.

Help!
The process of creating and restoring

backups and keeping them safe is quite

complicated. Fortunately, there are

some open source initiatives that can

help you. For instance, there is an

Azure Quick Start example project

that shows how to use Azure Blob

Storage as a central backup store in

InventoryService.cs: https://xpir.it/

mag4-sf1

Another option is to use my open

source library “ServiceFabric.

BackupRestore”, available on GitHub1

and Nuget2. This library provides a

class called BackupRestoreService

that is derived from StatefulService.

By using this class instead, you are

provided with three new methods:

1. BeginCreateBackup – this method

calls BackupAsync on the service

and uses an injected helper class

to copy the Backup files away from

the cluster.

2. ListBackups – this method lists

information about all Backups

that were created earlier using

BeginCreateBackup.

3. BeginRestoreBackup – this method

is called with the information listed

by ListBackups and triggers data loss,

copies the Backup files from the

central store to the cluster node,

and invokes RestoreAsync with the

proper information.

By using this library, you can create and

restore backups with just a few simple

lines of code. You can use the readme

document and demo application to help

you get started.

Loek Duys
Microsoft Azure MVP

Loek is a cloud software architect, public
speaker and Microsoft Azure MVP who
focuses on creating secure, scalable, and
maintainable systems. He is always looking
for ways to leverage the latest additions to
Microsoft Azure, to help companies make
the transition into the Cloud. As an active
member of open source projects, he likes
to share knowledge with other community
members.

1 https://xpir.it/mag4-sf2
2 https://xpir.it/mag4-sf3

Figure 6 Service Fabric Explorer

Creating and
restoring backups
is complicated.

Conclusion
In this article, you have learned how

to create and restore Backups for your

stateful reliable services in Azure

Service Fabric. By creating backups and

storing them away from the cluster,

you can deal with disasters caused by

full cluster failure and human errors,

for instance accidental deletes.

Creating and restoring backups is

complicated. However, using existing

code and libraries can make life

simpler.

038 PRACTICAL CLOUD

8 compelling reasons to use
container technology:

1. Higher degree of hardware
abstraction
Using containers to run your software

means that you are utilizing host

machines at a level where the indivi-

dual machine doesn’t matter anymore.

Instead of caring about single machines

with well-known names and main-

taining and patching these, the

operations team can focus on a cluster

of host machines. This cluster is a fabric

of the host machines, woven together

by cluster software to form a conti-

guous set of resources for computing,

memory, and storage. Each machine

is built with commodity hardware and is

expendable. The cluster can grow and

shrink whenever new hosts are added

or defective hosts are taken out of

commission. The containers will be

running on the accumulation of

resources managed by the cluster

software, without knowing or caring

about the individual machines.

It is an important trend in the exploi-

tation of cloud applications to try and

pay only for the resources actually con-

sumed. Containers enable more optimal

use of the resources in the cluster.

The cluster software will allocate and

assign the running containers based

on the requirements that the container

images and application registration

indicate. These requirements might

include a particular operating system,

memory constraints, and the required

CPU resources.

It can decide what to run and where,

while taking into account the con-

straints that were given. The cluster

might also shift containers around

whenever it sees fit for a better

utilization of the available resources.

At the end of the day it is possible to

achieve much higher density of running

containers and hence applications on

the cluster, when compared to running

applications on dedicated machines.

Fewer machines are needed to run the

same workload, which results in lower

costs of operations.

2. Scalable
The cluster offers a pool of resources

that the containers can request for

operations. Whenever the need arises

for more resources and bigger scale,

the cluster can spin up additional

container instances from the images

and allocate more resources per

container, if necessary. As long as there

is a surplus of resources it is easy to

scale up, and down afterwards.

When resources start running out,

good capacity planning will make sure

more hosts are added to the cluster for

provisioning containers. Smarter cluster

software can manage scale better.

Because containers are very fast to spin

up, the scaling process itself is a matter

of seconds instead of minutes or hours.

3. Freedom in hosting
Ideally, the cluster software is installed

on virtual machines to easily provision

a new cluster when necessary, or to

add new hosts without having to care

about the actual hardware. These virtual

machines may reside in the cloud at any

cloud provider such as Amazon AWS,

Google Cloud or Microsoft Azure, but

they can also be located on-premises

at your own organization. There is no

restriction to run the cluster anywhere

specific, although in some situations

there is a benefit in choosing for a

Containerization
in modern IT

Modern application development uses container technology more and more, whether this is
for running backend or frontend services, or even for developer tooling. Many organizations

such as system integrators, independent software vendors, and cloud solution specialists are
adopting containerization to keep up with the demands of large scale, distribution, and modern
development and operations practices. Many others are jumping on the container bandwagon

because everyone seems to be doing it. Instead of blindly following along, it is good to
investigate and answer a number of essential questions. What are compelling reasons to use

containers or container technology, and what does it mean to use it as a foundation for
your application development?

Author Alex Thissen

Modern application
development uses
container technology
more and more,
whether this is for
running backend or
frontend services,
or even for developer
tooling.

039

XPRT. Magazine N°

4/2017

040 CONTAINERIZATION IN MODERN IT

particular cloud provider. For example,

Microsoft offers Azure Container

Service which provides automatic

provisioning of Kubernetes, Docker

Swarm or DC/OS clusters. The various

cluster software offerings run on

different operating systems, both

Linux-based and various Windows

Server editions.

4. Container images are code and
configuration
Container images combine the binaries

built from code and the configuration

of the machine into a single entity.

This inseparable set offers better

control, stability and predictability than

before.

In traditional deployment scenarios,

the code is deployed to target machines

separate from the configuration.

This led to the rise of Desired State

Configuration, where script or a

declarative language of some form

would describe the configuration for

the application code and its require-

ments at a host level. The code and

resulting binaries were usually

handled by the development team.

That team also describes the required

configuration in documentation.

The operations team would then get

scripts from the development team

to prepare the host machines and to

do final configuration of the software

components. This turned out to be

error-prone, but also required multiple

environments to separate the various

stages in an application’s lifecycle, such

as testing, acceptance and production.

Containers ensure that our applications

will always run in exactly the same

context over different container hosts.

5. Immutable deployment artefacts
The DevOps team builds new applica-

tion components by writing and testing

code, and compiling it into binaries. In a

container world, they will also prepare

the container images that have all of the

prerequisites for the components, and

deploy the new components onto them.

The container image is configured to

run correctly and then deployed to a

central image repository. From that

repository, the host can download and

run the images. Once the DevOps team

releases the container image to the

repository it cannot be changed any-

more. The images are immutable and

can be guaranteed to arrive at the hosts

without any changes. Any changes

that occur are in the state of a running

container, but never the image.

The DevOps team has full control over

what will be running in the containers,

and does not depend on human inter-

vention of configuration. Moreover, it is

no longer necessary to wonder whether

a container image can still run correctly

at a later time. Whenever a compatible

cluster with the correct operating

system and kernel version is available,

container images are guaranteed to

run, since it is a frozen set of code and

configuration with no alterations since

creation. Rolling back deployments

and maintaining a running application

suddenly becomes a lot easier.

6. Stages instead of environments
Having Development, Testing, Accep-

tance and Production environments

(DTAP for short) might be a thing of the

past when containers and clusters come

into the picture. Traditionally there are

separate environments to indicate the

level of quality and trust in your appli-

cation and its components. Now you

can think of the various environment

stages that an application goes through

as being reflected by the versions of

your container images. You could run

the versions for DTAP in a single cluster,

at different endpoints managed by

the cluster software. If necessary, one

can still separate a production from a

non-production cluster, but this will

mostly be from a security perspective,

rather than for reasons of stability

and availability of the stages in the

application’s lifecycle.

The entire environment can even be

described as code by composition files

describing the various elements and

containers. For example, the tool

Docker Compose uses YML files to

describe the various parts in an

environment for one or more

applications. Transitioning from one

environment to the next, say staging

to production, can be accomplished

by promoting these files.

7. Fit and alignment with
distributed architectures
Transitioning to container-based

applications fits well with modern ar-

chitecture styles such as micro services.

Large scale and heavily distributed

applications benefit from such an

architecture, and consequently the use

of container technology.

In the aforementioned architectures,

individual containers usually contain

single processes, such as a service for

Web API, website hosting or background

processing. This requires one to rethink

the design of the application in small,

isolated and manageable pieces.

Typically, each of the container

images will be running multiple times

for failover, robustness and scalability.

In addition, there will be many separate

container images that together form

the complete application. Each of the

running container instances is network-

separated to build an intrinsically

distributed application. The application

architecture must take this into account.

You should carefully consider the fact

that other components use the net-

work for communication. This comes

at a price and a risk. The call to another

component is not cheap in terms of

time, when made over HTTP or TCP

compared to an in-process or single-

machine call. Also, there is a chance

that the process in another container

might not be available or reachable.

Countermeasures to deal with outages

need to be built into the application.

Implementation patterns such as

Circuit Breaker and Retry become part

of the developer’s portfolio. It is likely

that such an architecture has its effect

on the way the teams and company

are organized. The benefits of this

new architecture type are a very nice

alignment with the container approach

and with the DevOps teams that build

and run the applications. This alignment

comes from the isolation of multiple

smaller parts in the system, which is

designed to deal with potentially short

lifetimes or unavailability of the services.

The cost of such an architecture and

different implementation patterns lies in

their complexity and learning curve.

041

XPRT. Magazine N°

4/2017

8. Support in application
frameworks and tooling
There is an abundance of frameworks

to facilitate developing code for

components and services to run in

containers. The architecture and

development model allow a freedom

of technology choice for each of the

containers, as these are loosely coupled

and have no binary or technical

dependencies on one another.

There is no specific vendor lock-in

when choosing the framework for

development. However, a fit-for-

purpose selection is highly recom-

mended.

As far as tooling is concerned, the world

of containers has converged on Docker

as the de facto standard for interacting

with container instances, images and

hosts. With the standardization around

Docker as the container interaction

protocol and Docker as a company

to deliver the low-level tooling, other

companies and software have chosen

to align. Development environments

offer tooling and integration with the

Docker ecosystem. Docker images are

used as the image format for container

clusters to deploy new components

into the cluster. To an increasing extent,

web application services are being

deployed from Docker images, instead

of doing installer or file copy based

deployments.

3 Reasons to not use containers
The above-mentioned reasons might

be convincing to start with containers

tomorrow. As almost always, there

is another side to take into account.

Containers might not be what is best

for you, your applications, or your

organization.

1. Container technology is not a
silver bullet
Even though containers are popu-

lar, especially among developers and

operations, it is not the solution for all

problems in application delivery and

architectures. Switching to containers

as a basis for your application will

not necessarily solve or prevent

performance, stability or scaling issues.

Containers do not fit every part of an

application or the bigger landscape

that it is part of. Careful consideration

is required to decide when using

containers makes sense and when it

doesn’t.

2. The benefits of containers
come at a price
Creating an application that utilizes

containers requires learning the

technology, investing time to change

the architecture and the deployment

strategies. Various design patterns

need to be implemented by the

developers in order to make a resilient,

robust distributed application.

The build and release pipelines have

to be changed for the creation and

deployment of container images.

This is more complicated than a

traditional monolithic application and

its lifecycle. The new way of combining

development and operations into

DevOps involves changing the teams,

and aligning the organization with the

business domains.

So, while the benefits that an applica-

tion and the landscape will have from

using containers, they do not come free

of charge. It means investing before the

benefits can be reaped, and there is no

guarantee that in the end, the benefits

outweigh the costs, particularly for

simpler and smaller applications.

3. The application paradigm is
moving further
Containers are fairly new and many

are still getting their heads around

applying them in application develop-

ment. The world of modern application

development is moving on in a rapid

pace and other, newer ways of creating

distributed applications are emerging.

Serverless computing is a nascent form

of computing that allows near-infinite

scaling and a cost-model that charges

by the millisecond consumed. It intro-

duces an even higher level of hardware

abstraction, because it does not even

require hosts like a cluster would need.

Additionally, the way serverless

computing is implemented focuses

on the actual logic instead of much

of the plumbing that container

implementations still need. This implies

that the costs of building and running

applications may be lower when

choosing a serverless model.

Final thoughts
Container technology is taking a

prominent place in today’s approach

to application development and

hosting. There is a lot to be said and

considered for switching to containers

as technology for modern cloud-scale

applications.

Choose wisely and modernize your

IT with containers, … if it makes

sense.

Alex Thissen
Microsoft Visual Studio and Development
Technologies MVP

Alex helps companies build web applications
and back-end solutions using Microsoft
technologies and frameworks. He helps
migrate existing architectures to modern
standards and designs, and cloud solutions
running on platforms such as Azure.
Alex cares about security and informs
organizations and development teams
about secure coding and best practices.

042 CONTAINERS

Containers as the next step in
application delivery
Containerized delivery can be seen as

the next step in application delivery for

many organizations. If we look at the

way in which we have been delivering

our software during the past 10 years,

we see a shift from manually installing

our applications towards an auto mated

way of pushing the applications into

production. Driven by the mindset that

the reliability, speed and efficiency

of delivering our applications to our

customers could be improved, various

tools and frameworks have been intro-

duced over time, e.g. WiX, PowerShell,

PowerShell DSC, Chocolatey, Chef, and

Puppet. Figure 1 Deployment maturity anno 2017

What you should
know about

Windows containers
before you start

using them
A lot of articles and blogs have already been written about the benefits of using containers for

your application delivery1, also called containerized delivery. While the serverless trend is
considered the containers’ successor in application delivery, it still is not the best fit for all
situations. For example, containerized delivery is a perfect fit for organizations that do not

want to move to the cloud (for now) or that have to deal with their existing application landscape.
In this article, we’ll look at the most important things you as an architect/lead developer have to

know about Windows containers before you start using them. If you are interested in more
practical manuals about configuring a containerized pipeline, setting up a container registry and

other tips and tricks, please have a look at our blog posts2.

Author Cornell Knulst

Serverless

Containerized

Desired state

Scripted

Installation wizard

Manual

1 http://xpir.it/mag4-wincon1, http://xpir.it/mag4-wincon2
2 https://xpirit.com/blogs

XPRT. Magazine N°

4/2017

043

In the earlier years, we baked an MSI

by using WiX and the installation of our

applications was performed manually

by one of our colleagues. Because this

way of working was error-prone and

it took us a lot of time to find and fix

mistakes, we decided to make use of

new scripting languages like PowerShell

to fully automate the installation of our

applications. Although this scripted way

of installing our applications brought

us more reliability and speed, still some

deployments went wrong over diffe-

rent environments (DTAP) because of

missing libraries, configurations and tool

versions.

So, we decided to make use of Desired

State technologies like PowerShell DSC,

Chocolatey, Chef, and Puppet to ensure

that our environments will end up in the

correct state. We succeeded in creating

an automated and reliable way of

delivering our applications to produc-

tion, however we still have to reboot

machines after de-installations to

ensure that all registry keys, caches

and file system files are really clea-

red. Moreover, we experience a lot of

waiting- and downtimes caused by (de-)

installations and are often not able to

run multiple versions of a given appli-

cation on the same host. That’s a pity

because we see a lot of VM resources

not being consumed by our various

applications. Sounds familiar? Deploying

your applications in containers can help

to solve these issues.

The origin and benefits of
containers
Containers are the resulting artifacts of

a new level of virtualization that is

implemented on Windows. Looking at

the history of virtualization, it started

with concepts like virtual memory and

virtual machines. Containers are the

next level of this virtualization trend.

Where VMs are a result of hardware

virtualization, containers are the result

of OS virtualization. Where hardware

virtualization lets the VM believe that

its hardware resources are dedicated to

that instance, OS virtualization lets the

container believe that the OS instance is

dedicated to that container, although it

shares the OS with other containers.

The host machine on which different

containers can run is called a container

host.

Working with containers for your

application delivery will give you some

benefits as mentioned in the article

of Alex Thissen. Instead of installing

the application during deployment,

containerized delivery will install the

application during build and will create

a container image out of it. Once you

ship your containers to new environ-

ments you’ll get instant startup times.

The image format that is used does not

only contain the running application,

but also contains a snapshot of the

context around the application such

as the file system, registry and running

processes. This mechanism ensures

that our application will run in the same

way in different environments. Another

benefit is that the container technology

helps us to utilize more of the machine

resources because it makes it possible

to run multiple versions of the same

application/conflicting applications on a

single host.

How container isolation works
While containers are not VMs, both

artifacts support resource governance

and an isolated environment3. Similar

to VMs, each container has an isolated

view on its running processes, environ-

ment variables, registry and file system.

This means that it is possible to change

a file within one container while this

change is not detected by another

container. This isolation characteristic

is important to notice. By default, it is

not possible to share any files between

different containers. Even the container

host cannot see the file system changes

that are made within the container.

The same goes for the registry and

environment variables isolation.

The process isolation part is slightly

different. While Windows Server

Containers cannot see each other’s

running processes, it is possible to

see the running processes of a given

Windows Server Containers from the

container host. While this is also the

case for Linux containers, this is not an

appropriate option for multi-tenancy

situations where the container host or

different containers are not in the same

trust boundary. Because of this security

implication, Microsoft decided to intro-

duce an extra container type called the

Hyper-V container4. While it is possible

to see the running processes from

within the container host for Windows

Server Containers, Hyper-V containers

run a normal Windows Server Container

within a minimalized (utility) Hyper-V

“VM”. Because of this extra Hyper-V

virtualization layer around the normal

Windows Server Container it is not

possible to see any content of this

container type from the container

host. Actually, the Hyper-V container

is a hybrid model between a VM and a

container.

How this impacts the way we share
data between our applications
By default, containers are not designed

to share any resources. To be able to

share data across your containerized

applications, you need to store data in

remote data storage solutions such

as Redis or SQL. However, in some

scenarios these solutions are not

appropriate because of an existing

application architecture you have to

deal with. For example, when you have

a windows service generating PDFs

from files on a given file system location

and a website that is putting those files

onto this location. How to deal with

this inter-container data sharing? We

can certainly extend our applications

to communicate over HTTP/TCP to

exchange important information, but

luckily there are also other options

available.

Data Volumes One option is that you

make use of Data Volumes. Data

Volumes are artifacts that differ from

containers. They have their own

lifecycle and you have to manage them

with separate commands. For example,

when you delete a container, the Data

Volume will still exist. Once you have

made a Data Volume, you can map it

as a directory on your containers.

3 http://xpir.it/mag4-wincon3
4 https://xpir.it/mag4-wincon4

044 WHAT YOU SHOULD KNOW ABOUT WINDOWS CONTAINERS BEFORE YOU START USING THEM

Within the container these mapped

directories will bypass the normal Union

File System implementation and by

doing so, all changes in this directory

are always persisted on the file system

of the container host. Moreover, chan-

ges that are made within this volume are

directly available for other containers

that consume the same Data Volume.

An example script of consuming Data

Volumes in your containers can be

found below.

Create the DataVolume and give it a name

docker volume create --name loggingvol

Map the DataVolume with name loggingvol

to directory c:/logging within the container

of Consumer1 and c:/otherlogginglocation

within the container of Consumer2.

docker run -v loggingvol:C:/logging --name

Consumer1 microsoft/windowsservercore

docker run -v loggingvol:C:/otherlogging-

location --name Customer2 microsoft/

windowsservercore

Figure 3 Data Volume concept and example

script

Data Volume Containers Another

option is that you make use of Data

Volume containers. Sometimes you

need to map multiple Data Volumes

for most of the containers you run (for

example a logging and data directory).

For this purpose, you can make use of

Data Volume Containers.

Data Volumes Containers are just

containers that you’ve created and

mapped on different Data Volumes.

Where normally you must specify the

separate volume mappings for each

container you run, in the case of Data

Volume Containers you just have to

add the “--volumes-from” switch to the

Docker run command. For each Data

Volume that is mapped within the Data

Volume Container, Docker will create a

new volume mapping on the same file

system directories within your consu-

ming containers. While you may expect

that deletion of the Volume Container

will result in deletion of the Volumes,

this is not the case. It just works as

normal Data Volumes, except that we

have an extra option to easily manage

consistency of multiple Volume

mappings over different containers.

Volume Plugins By default, Data

Volumes are stored on a single

container host. But what if I’m running

my containers on different container

hosts in a cluster and still want to share

the data from my Data Volumes on

different container hosts? Or what

happens with my volume data when

my single container host crashes?

It’s exactly for this reason that Volume

Plugins5 were introduced. Volume

Plugins enable you to make Data

Volumes hosts independent by

integrating their storage with external

storage systems such as Amazon EBS.

For each Data Volume you can specify

whether it should use a different Volume

Plugin implementation by specifying the

“--driver” switch on volume creation.

Learn about the concepts: images
and image layers
When you start building your own

containers, you must define what

your container will look like. You can

achieve this by specifying the various

instructions6 that have to be executed

during the build process to define/bake

your container. One instruction could

be that you copy some files from the

build machine to a given location within

the container. When using Docker, this

file is called a Dockerfile.

During the Docker build process each

individual instruction is executed and

its resulting file system changes are

persisted in an image layer as shown

in Figure 2 - Image layers, Images and

Containers. This image layer will be

stored locally on the build server.

The reason for this is that we can have

multiple containers that share the

same base set of stacked image layers.

Instead of rebuilding all these layers

again, the Docker build process will look

for existing image layers in this local

store before it starts building a new

layer.

The order in which you specify the

instructions makes sense for the image

layers that are generated, for example,

the Dockerfiles below will create diffe-

rent image layers while they have the

same set of instructions. The concept

of having a stack of image layers where

each image layer represents a set of file

system changes is also called a Union

File System7.

FROM xpirit/websitecore

MAINTAINER Xpirit <info@xpirit.com>

COPY ./WebDeploy ./WebDeploy

COPY ./CreateIISWebsite.ps1 ./CreateIIS-

Website.ps1

FROM xpirit/websitecore

MAINTAINER Xpirit <info@xpirit.com>

COPY ./CreateIISWebsite.ps1 ./CreateIIS

Website.ps1

COPY ./WebDeploy ./WebDeploy

Figure 2 - Image layers, Images and

Containers (source: https://docs.docker.com/

engine/userguide/storagedriver/imagesand-

containers/)

A container image is delivered at the

end of the Docker build process.

This image consists of a stacked set of

image layers and is the blueprint for all

containers you will run on the basis of

this image. The difference between a

container image and image layers, is

that a container image “tags” a given

image layer with a user-friendly name.

All image layers that are under this

tagged layer will be part of the

container image. A container image is

not a living thing and does not have a

state. It is no more than a sealed artifact

from which we can create multiple

runtime instances: the containers.

Container A

Data volume

Container B

5 https://xpir.it/mag4-wincon5
6 https://xpir.it/mag4-wincon6
7 https://xpir.it/mag4-wincon7

XPRT. Magazine N°

4/2017

045

To keep track of changes that are made

within the container from the moment

it was created, each container gets

an extra Read/Write layer on top of the

stacked image layers of the original

container image. Where we might

expect a totally different implementa-

tion between containers and container

images, the only real difference

between both objects is just this extra

thin R/W layer for each container

instance! During the lifecycle of the

container, the changes that have been

made within the container (actually this

R/W layer) are stored temporarily on

the container host. Once you delete

the container, all those changes are lost.

You can prevent this by using the

Docker commit command to persist the

changes that are part of this thin R/W

layer into a separate image layer in the

local store. From that moment on you

can tag a new image based on this

newly created image layer and you can

initiate multiple containers based on

this image.

Dealing with sensitive information –

short peek Containerized delivery

will force you to deal with sensitive

information in a different way.

Once you create a container image out

of a running container or from scratch,

others can see all of its content just by

running a container from that image

locally. They can even make use of

docker history to see the commands

that have run on the container or they

can look at the content of the versioned

Dockerfile. Hence it is important to be

sure that no sensitive information is

stored within the container image or

Dockerfile. But how to ensure this?

One way of working is that you make

use of the Docker Secrets Manager8 to

manage all secrets. Follow our blogs to

see how to make this work and what

other options are available here.

How these new concepts change
the way you’ll look at maintaining
your applications
Containers are designed as stateless

artifacts. You should avoid storing data

in your container as much as possible.

As mentioned earlier, containers make

use of a Read/Write layer to keep track

of any changes since the initialization

of the container. Once a container is

deleted, these changes are lost.

The objective of this implementation

is to force users to persist all important

changes in container images. By doing

this, we can always reproduce a given

state and are always able to selectively

scale different parts of our system.

Another important characteristic of

containers is that they are intended to

be immutable. Thanks to the isolation

part of containers we don’t need to

upgrade running applications because

we can run different versions of the

same container side by side on a single

container host. Moreover, because

containers also contain the context

around the applications, we can be sure

that initializing a container on different

container hosts will ensure that our

application will run in exactly the same

way on those different container hosts.

Once we accept the stateless character

of containers and create container

images for all different versions of our

applications, there is no longer any

need for in-place upgrades. Instead of

treating our applications as pets, we can

now treat our applications as a flock of

applications. If one container gets ill

we will not nurse it back to health, but

we will remove it and just initiate a

new container based on the same

genealogical register (the container

image).

8 https://xpir.it/mag4-wincon8
9 https://xpir.it/mag4-wincon9
10 https://xpir.it/mag4-wincon10
11 https://xpir.it/mag4-wincon11

Containerized
delivery will force
you to deal with
sensitive information
in a different way.

046 WHAT YOU SHOULD KNOW ABOUT WINDOWS CONTAINERS BEFORE YOU START USING THEM

Reaching Nirvana:
Environment-as-Code
Many of us know about Infrastructure-

as-Code9. The concept of scripting the

creation of the infrastructure you need.

Containerization will add a layer on top

of this Infrastructure-as-Code layer,

and this is called Environment-as-Code.

Once we have created the necessary

container infrastructure like the

Container Registry, a cluster of

Container Hosts and the VSTS pipeline,

it is time to deliver our applications via,

and on top of, this infrastructure.

Normally we would perform a deploy-

ment of our applications individually,

and this is still possible within containe-

rized delivery. However, wouldn’t it be

better from an immutability and quality

(repeatability) perspective to always

deliver the entire application stack as

one? To think about complete environ-

ments as deployable items instead of

single applications?

Figure 6 Environment-as-code

This is what we call Environment-as-

Code. Not only are your containers

immutable and stateless, your complete

environment (except your data) should

be immutable and stateless as well.

And in the same way as we version

individual container images, we should

also version environment templates.

Luckily this is possible with containe-

rized delivery by making use of

Docker Compose10. Within the compose

file you specify the containers

(services section), volumes and

network related details that are part

of your environment. By running the

docker-compose up command on

your docker-compose.yml file, with

some environment specific variables

specified in an environment11 file, the

Docker engine will eventually create the

elements that you have specified in your

Docker compose file (including Docker

networking).

version: ‘2’
services:
 data:
 image: xpirit/data:1.0.0
 volumes:
 - ‘logging:C:/Xpirit/Logging’
 - ‘export:C:/Xpirit/Export’

 website:
 image: xpirit/website:1.0.3
 build:
 context: ./Xpirit-website
 dockerfile: Dockerfile
 depends_on:
 - data
 volumes_from:
 - data
 ports:
 - “80:80”
 service:
 image: xpirit/service:2.0.2
 build:
 context: ./Xpirit-agentservice
 dockerfile: Dockerfile
 depends_on:
 - data
 volumes_from:
 - data

volumes:
 logging:
 driver: “local”
 export:
 driver: “local”

networks:
 default:
 external:
 name: nat

Figure 7 - Example compose file

Applying Environment-as-Code in

practice means that you have to adapt

your delivery pipeline based on this

concept. All applications/containers

will still have a separate commit stage

in which compilation, unit testing and

acceptance testing on code units takes

place. After this commit stage and after

running the necessary acceptance tests

on our individual containers, you will

change the version of the container you

just built in the Docker-compose file.

Instead of just having a single delivery

pipeline for each container, you are also

able to deliver the complete environ-

ment via a combined delivery pipeline

to production.

Figure 8 - Combined delivery pipeline

Where to find more information
We have just looked at a number of

important concepts and principles that

you need to know about before you

start performing containerized delivery

on the Microsoft stack. There is a lot

more to be told about containers and

containerized delivery, so please follow

our blog posts on https://xpirit.com/

blogs or on my personal blog on

http://www.solidalm.com to remain

up-to-date about working with

containers on Windows. A good starting

point to learn the necessary commands

and tools of working with Docker can

be found on https://docs.docker.com/

engine/getstarted/. Brighten your life,

and start working with containers

today!

Cornell Knulst

Cornell is a cloud software architect and
ALM consultant at Xpirit. He enables
companies to deliver software faster,
cheaper and better by supplying guidance
on adopting DevOps practices and migrating
to modern, cloud-native architectures.
He is passionate about new technologies
and is continuously diving into the latest
technologies. He actively maintains a
personal blog, speaks regularly at industry
events and communities, and regularly
publishes articles in national trade
magazines.

AppA

Docker-
compose

AppB

AppC

Environment as Code
(Docker compose)

Infrastructure as Code
(ARM, PowerShell, Chocolatey)

047

XPRT. Magazine N°

4/2017

How can you leverage container inno-

vations, that are already available in

the open source and Linux ecosystem?

Innovations that enable you to simplify

on-demand scaling, fault tolerance and

zero downtime deployments of new

features. In this article, I will give you a

glimpse how you can deploy existing

Windows based .NET workloads with

Visual Studio Team Services to Azure

Container Services, using Kubernetes

as the cluster orchestrator.

Why Containers?
Isolation Containers are an isolated,

resource controlled, and portable

operating environment. They provide

a place where an application can run

without affecting the rest of the system

and without the system affecting the

application. If you were inside a

container, it looks very much like you

are inside a freshly installed physical

computer or a virtual machine.

When you create a container, its

external dependencies are packed

within the container image.

Containers have a layer of protection

between host and container and

between containerized processes.

Containers share the kernel of the host

OS. A container relies on the host OS

for virtualized access to CPU, memory,

network, registry.

Immutability Containers provide the

capability of immutability. When you

start a container based on a container

image, you can make changes to the

running environment, but the moment

you stop the container and start a

new instance of the container, then all

changes have been discarded. If you

want to capture the state change, then

you can after you stopped a container,

save the state to a new container image.

When you create a new container

instance based on the new image

only then you will see the changed

state.

Less Resource Intensive Running a

container compared to running a virtual

machine requires very few resources.

This is caused by the fact that the

operating system is shared. When you

start a Virtual Machine, then you boot

a whole new operating system on top

of the running operating system

and you only share the hardware.

With containers you share the memory,

the disk and the CPU. this means the

overhead of starting a container is

very low, while it also provides great

isolation.

Fast Start-up Time Since running a

container requires only few extra

resources of the operating system, the

startup-time of a container is very fast.

The speed of starting a container is

comparable to starting a new process.

Containerized
delivery for
.NET workloads
on Windows
At the moment one of the big trends in Continuous Delivery is to use containers to speed up
value delivery. Containers enable you to run your application in an isolated environment that
can be moved between different machines with guaranteed same behavior. Containers can
therefore significantly speed up your delivery pipeline, enabling you to deliver features faster to
your end users. Now that containers have become part of the Windows Operating System,
how can we leverage this to run our existing Windows based .NET workloads like ASP.NET
without too many modifications?

Author Marcel de Vries

048 CONTAINERIZED DELIVERY FOR .NET WORKLOADS ON WINDOWS

The only extra things the OS needs to

setup is the isolation of the process so it

thinks it runs on its own on the

machine. This isolation is done at the

kernel level and is very fast.

Improve Server Density When you own

hardware, then you want to utilize this

hardware as good as possible. With

virtual machines we made a first step in

this direction, by sharing the hardware

between multiple virtual machines.

Containers take this one step further

and enable us to utilize even better the

memory, disk and CPU of the hardware

available. Since we only consume the

memory and CPU we need, we make

better use of these resources.

This means less idle running servers

hence better utilization of the compute

we have. Especially for cloud providers

this is very important. The higher server

density (the number of things you can

do with the hardware you have) the

more cost efficient the data-center

runs. So it is not strange that Containers

are now getting a lot of attention and

a lot of new tooling is built around

managing and maintaining Containe-

rized solutions.

Why using Container Clusters?
When you want to run your application

in production, you want to ensure

your customers can keep using your

services with as few outages as possible.

Therefore, you need to build out an

infrastructure that supports concepts

like:

 Automatic recovery after an

application crash

 Fault tolerance

 Zero downtime deployments

 Resource management cross

machines

 Failover

Besides this you want to manage this

all in a simple way. This is where

container clusters come in to play.

The mainstream clusters that are

available today are Docker Swarm,

DC/OS and Kubernetes. In this article,

I will show how to use Kubernetes.

Docker Swarm is not really a production

grade solution and it seems that

Docker is more focused on their

Docker data center solution. DC/OS

and Kubernetes are the most used clusters in production and Kubernetes already

supports windows agents. DC/OS will follow as well soon.

How to Create a cluster in Azure
The simplest way to create a container cluster is by using any of the public cloud

providers. They all offer clusters that enable you to run your application at scale with

a few clicks. Google Cloud Engine provides primarily a cluster based on Kubernetes.

Amazon uses as default DC/OS. On Azure you can select which cluster orchestration

solution you want to use when you create a cluster. We will have a closer look how

we can use Azure.

Portal, Command-line or ACS engine In the portal, you can search for Azure

Container Services (ACS) and you will find the option to create a cluster. You have

to define the number of Master Nodes and Agents and the Agent Operating system

you want to use. Azure supports on Docker Swarm and Kubernetes based clusters,

Windows agent nodes. This enables us to deploy our ASP.NET MVC application on

Windows containers in a cluster.

From a Continuous delivery perspective, we always prefer to enable the creation of

the infrastructure as part of our delivery pipeline So creating it via the command line

is the preferred way of doing this, since it provides us the ability to repeat the steps

we have taken and check it in as a provisioning script for future use to set up a new

environment.

Azure has a new command-line inter face 2.0 that supports the creation of

ACS clusters. The following command can be used to create a cluster:

az acs create --orchestrator-type=kubernetes --resource-group

myresourcegroup --name= my-acs-cluster-name --dns-prefix=

some-unique-value

The moment we create a cluster we will have a setup that looks as follows:

Master nodes When we look at the cluster that will be created for us, you will

find that the Master Nodes are Linux based virtual machines. The masters are

responsible for managing the cluster and scheduling the containers based on the

resource constraints we give to the deployment definitions. When you define a

deployment you send commands to the master, which in its turn will schedule the

containers to be run on the on the agents. The way we communicate with the

master is through a command line tool called kubectl. This command line tool

issues the commands against the API server running on the master nodes.

The master nodes run a set of containers that support the cluster like e.g. the

cluster DNS service and the scheduler engine.

XPRT. Magazine N°

4/2017

049

Agent nodes The agents run the kubelet

containers, that manages the agent

communication and interactions with

the master. The way the master

communicates to the agents is via the

local network that is not exposed

outside the cluster. If we want to expose

a service (one or more containers) to

the outside world, we can do this with

a simple kubectl command, kubectl

expose deployment <name of

deployment> --port=port# which in

its turn will expose the deployment via

the Azure load balancer to the outside

world. The cluster will manage the

configuration and creation of the

required load-balancer(s), the allocation

of public IP addresses and configuring

the load-balancing rules.

Deployments , Pods and Services

In a deployment, you describe a

combination of Docker images you

want to run in your cluster. This combi-

nation of images, including the shared

storage options and run options, defines

a Pod. A pod is the implicitly defined

logical unit of container instance

management. When container instances

are created for the images in a pod, they

will always run together on the same

node. Let’s say you have an application

that consists of two parts: a web API

and a local cache, that are only

effective when running on the same

node. To accomplish this, you can

define a deployment template that

includes the two images from the

command-line or in a yaml file.

The deployment also specifies how

many instances of pods will be started.

By default, this is a single instance of a

pod. For fault tolerance and scaling

it is possible to increase the so-called

replica count of your deployment to

start multiple copies of the pods.

The moment you start the deployment,

the cluster is responsible for deploying

the pods to the various nodes and

balancing the resources in the cluster.

Every container instance created in a

pod will request an IP address from

the DHCP Server in the local cluster

network. Additionally, each pod will get

an internal DNS record based on the

deployment name. The master node

acts as both DHCP and DNS Server.

Container instances become reachable

from anywhere in the cluster, based

on their DNS name and exposed ports.

When you expose a deployment, the

cluster will connect the container

instances in pods to the external

load-balancer, so they are reachable

from outside the cluster as well.

Kubernetes uses the notion of a Service

as the abstraction that defines the

logical set of Pods and the policies to

expose the endpoints we need. This is

sometimes referred to as the micro-

service. You can list which endpoints in

your cluster are exposed to the outside

world by running the command:

Kubectl get services

This then shows the list of services

and the endpoint details like ip address

and port on which the workloads are

reachable.

Zero downtime replacement of
deployments
When running applications at internet

scale, you want to be able to deploy

new features to the end users without

any downtime of the application.

Using a Kubernetes cluster makes this

possible with the concept of a rolling

update. Rolling updates enable you to

update your container images in your

container registry and then give a

command to update the container

images of the running container in-

stances. This can be done with a single

command-line:

kubectl set image deployment

<nameofdeployment> <nameofimage>=

<reponame/newimagename>

In this command, you can precisely

specify which image you want to

change, since a deployment can

contain multiple images.

The steps taken are the following:

 Spin up new pods on the various

nodes.

 Drain traffic to the old pods

 Gate traffic to the new pods

In these steps the cluster ensures we

always keep the minimum set of pods

up and running so we can guarantee

we can keep handling traffic while the

deployment is in transit. The minimum

set of replicas that always need to be

up, can be specified in the deployment

when created.

Deployments using Visual Studio
Team Services (VSTS)
To ensure a robust, repeatable and

reliable way of deploying your

application to the cluster, you can use

the build and release capabilities of

VSTS. When you deploy a new feature

to your application in the cluster, you

will go through two primary phases.

Phase 1, build, test and publish the

container image. Phase 2, run the new

image in the various test environments

and finally deploy it to the cluster,

using the zero-downtime deployment

capability.

Phase 1, build the container image

In phase 1 we use the VSTS build infra-

structure. For this we simply build our

container based on a docker file we

check into source control. In the build

you define a step where we build the

image using the docker file that picks

up the build artifacts from your

application. (dll’s, configuration, web

content, etc) You can see an example

here in the screenshot:

050 CONTAINERIZED DELIVERY FOR .NET WORKLOADS ON WINDOWS

Conclusion
Containerized delivery is now also

possible for your existing workloads on

Windows like ASP.NET. You can utilize

Azure ACS clusters with a cluster

orchestrator like Kubernetes to manage

your workloads at scale with much

more ease of deployment than in the

past. With containerized delivery we

simplify the build, test and deployment

pipelines and we significantly improve

our delivery cycle time.

Phase 2, test and deploy to production In this phase we use the Release manage-

ment part of VSTS, that uses the same agent infrastructure as the build. You can

define a set of environments where you first validate the new feature(s). The moment

you have gathered enough evidence and confidence the new application runs

as expected you can then move to the deployment environment and deploy to

production. In VSTS you can specify tasks that need to be run in each environment.

Below you can see the series of steps you can use to test the image you just created

in the first phase, by running Docker tasks that start the container. Next, you see a

task for testing the running container and the final step is to stop the container.

Deploying to production is done in the production environment with a set of tasks.

These tasks execute the previous described command-line tool kubectl. For this to

work you do need to install the kubectl binaries on the agent machine and add

location to the %path% system environment variable. From that moment on, you

can issue any kubectl command to the cluster to create or update deployments.

The flow for the deploy to production is shown in the next screenshot:

Improve speed of value delivery
In this article I introduced you to the concept of containerized delivery using

containers and Azure ACS. It is now possible to run your existing ASP.NET

applications in containers because Microsoft added containers and Docker

support to their operating system Windows Server 2016 and Windows 10.

The open source cluster orchestrators like Kubernetes, DC/OS and Docker

Swarm also enabled support for Windows containers, unlocking containerized

delivery now also in the Windows ecosystem. Because containers provide a

mechanism to very easily move them around in different environments,

guaranteeing exact same behavior, it now becomes much simpler and faster to

deploy to both your test and production environment. When you add to this the

flexibility of scaling, fault tolerance and zero downtime deployments with clusters,

then you can really improve the speed of feature delivery to your customers.

Marcel de Vries
Microsoft Regional Director, Microsoft Visual
Studio and Development Technologies MVP,
Xamarin MVP

Marcel is the co-founder and CTO of Xpirit.
Marcel spends most of his time learning
and teaching new emerging technologies,
a shift in mindset, and a new way of working
to help organizations produce value faster.
Helping people and organizations
transform to become more innovative and
productive is his passion. You can find him
speaking regularly at industry events and
communities around the world, e.g. Visual
Studio Live, Tech Days, Dev Intersection,
and Techorama.

PROUDLY PART OF XEBIA GROUP

Cloud transformation
done right!

We are Xpirit
Experts in new Microsoft Technology

www.xpirit.com/cloud

Think ahead.
Act now.

www.xpirit.com

If you prefer the digital
version of this magazine,
please scan the qr-code.

