
XPRT.

PROUDLY PART OF XEBIA GROUP

Disaster Recovery Options for
Azure API Management

Inclusive Programming Education

How API Thinking revolutionizes
Healthcare

99% of code isn't yours

Magazine N° 9/2019
XPRT.

XPRT. M
agazine N° 9/2019 T

h
e R

ise o
f S

o
ftw

are C
o

m
p

le
xity

SPECIAL EDITION

The Rise of
 Software
 Complexity

Experts in Azure Cloud
and DevOps.

XPRT. Magazine N°

9/2019

Colofon

XPRT. Magazine No 9/2019

Editorial Office

Xpirit Netherlands BV

This magazine was made by

Niels Nijveldt, Rob Bos,

Chris van Sluijsveld, Anne Rose

van Servellen, Pascal Naber,

Reinier van Maanen, Maira Camu,

Kees Verhaar, Arjan van Bekkum,

René van Osnabrugge,

Geert van der Cruijsen,

Roy Cornelissen, Marc Bruins,

Alex Thissen, Jasper Gilhuis,

Sander Aernouts, Loek Duys,

Jesse Houwing, Alex de Groot,

Marc Duiker, Max Verhorst,

Jordi Borghers, Marcel de Vries,

Michiel van Oudheusden,

Erick Segaar, Martijn van der Sijde,

Thijs Limmen, Sofie Wisse,

Manuel Riezebosch,

Albert Starreveld, Pascal Greuter,

Immanuel Kranendonk,

Pieter Gheysens, Gill Cleeren,

Stéphane Eyskens

Contact

Xpirit Netherlands BV

Laapersveld 27

1213 VB Hilversum

The Netherlands

+31 (0)35 538 19 21

pgreuter@xpirit.com

www.xpirit.com

Layout and Design

Studio OOM

www.studio-oom.nl

Translations

TechText

© Xpirit, All Right Reserved

Xpirit recognizes knowledge
exchange as prerequisite for

innovation. When in need of support for
sharing, please contact Xpirit.

All Trademarks are property of their
respective owners.

 004 The future of IT

 009 From Eventstorming
to CoDDDing

 026 Inclusive Programming
Education

 037 DevOps for Data Science
Part II - From theory to
practice

 053 How API Thinking
revolutionizes Healthcare

 042 Observability - Closing
the DevOps Loop

 050 A recipe for high quality
releases

 047 99% of code isn't yours

 022 The .NET Foundation:
What .NET Developers Need
To Know

 033 Building an Open Source
.NET Foundation

INTRO

In this issue of XPRT. Magazine, our experts share
their knowledge about Azure Cloud & DevOps.

CLOUD

FLOW

COMMUNITY

DEVOPS

FUTUREIf you prefer the
digital version of

this magazine,
please scan the

qr-code.

013

017

026

053

 006 50 Shades of Nay

 017 Getting started with
Pod Security Policies on Azure
Kubernetes Service

 013 Disaster Recovery Options
for Azure API Management

004 INTRO

XPRT. Magazine N°

9/2019

The future of IT
Twenty-five years ago we built software using the programming language C++.
Testing was done manually, and the way we distributed our software was on one or,
occasionally, multiple floppy disks. To obtain new versions of the software you used,
you made a payment to a bank account of the company you wanted the software from,
and they returned an envelope with the disks included. Back then, the primary change
factor in software was driven by business demand. Users wanted new things with your
software, and that was what you build. Software was built within the constraints and
pace of the change factors, distribution mechanisms, and the hardware that was
available at the time.

Authors Marcel de Vries, Chief Technical Officer & Pascal Greuter, Managing Director

005

Nowadays, there are many more change factors for your software. Even if your user does not require a change, you

need to update your software because the components you used to build it, have a new version almost every day!

The way you distribute your software has changed to a Software as a Service model, which completely changes the

way you need to run your company. You now also run the software you build and that also needs to be efficient if

you run it for all your customers. And last but not least you now need to provide 24x7 support.

Now, what is the future of IT? Confucius said: “you need to study the past to divine the future”. So what has changed

our industry in the past? What are the things we need to look out for that will impact the way we write and maintain

software? Software is everywhere, but the ways we build software has not significantly changed. We still write in a

programming language, produce some form of machine code, and that gets moved to the device that needs to run

the software.

What we see is that change is the only constant, and we need a way to cope with all this change. This challenge is

universal and hard to grab. It has to do with the ability of us human beings able to cope with change and embrace it

instead of fighting it all the time. It is in our nature to fight change.

So if you ask us what the future of IT is, then it is mostly the need for people to embrace change. We need to change

the way we work, the way we organize ourselves, the way we anticipate change. We need to understand the fact

that everything we learned in IT for the past decades is often more a burden than a qualifier to be successful in an

ever-changing world. The companies that have the best ability to embrace the change, understand their implications,

and implement the change fast, will be the companies that will win.

At Xpirit, we have a special breed of people, who constantly search for the change, learn how to apply this, and

embrace the fact this means they need to learn things over and over again. We search for the possible, not the

impossible. We embrace the fact we sometimes fail and that this is a moment we learned something new. This is

what we share, so we learn as a collective. We celebrate change, we embrace that we know every human being

fears the change, but it is the thing that will bring us forward. Only by embracing change, we can bring the energy

to create the future now.

We created this magazine to help you gain new insights and share our collective knowledge. In this edition we bring

you topics on Azure Cloud (Getting Started with Pod Security Policies on Azure Kubernetes Service), DevOps

(DevOps for Data Science Part II; Observability, Closing the DevOps loop) and Communities (Building an Open

Source .NET Foundation). It is a variety of topics that are all intertwined. You not only need to work in communities

to lead a change; you also need deep knowledge about the mechanics to make it technologically feasible and

organizationally supported.

We hope you enjoy our magazine.

006 FLOW

50 Shades Of Nay
When looking at the development of a product, there is hardly ever a lack of ideas and things
to do. My own experience is that an average Product Backlog contains twice the amount of
work that will ever be done on the product. Besides it being a system that contains a lot of
waste, it also creates stress for everybody involved. The Product Owner loses grip on the
Product Backlog, everyone feels constant pressure to deliver more, and stakeholders get frustrated
that delivery times are so long. It’s weird that a problem that seems so big can be easily fixed just
by using a two-letter word: “No”. However, using “no” is simple, but not easy! So, how do you do it?
Let’s explore this by means of an example.

Author Willem Vermaak

Meet Peter. Peter is a business analyst in the IT department of

Tony. Their company is active in the automotive industry and

they are about to develop a website to trade second-hand

cars. Tony, as a modern Development Manager, has read all

these things about DevOps, Agile and Scrum, and is adopting

some of these theories into the development of the new web-

site. To implement this the department has had a reshuffle,

resulting in the creation of a new role: The Product Owner.

Peter, as a business analyst, has working knowledge of the

product, the ability to transform ideas into concrete

actionable work items, and as such, he seems to fit the role

well and he gets selected as Product Owner. As Peter was

already looking for a new challenge, he eagerly starts in his

new role. Tony has written a clear brief for Peter about what

the website should, and should not do, both from a technical

and functional perspective. With this brief Peter starts to

break down all types of Product Backlog items to feed to the

Development Team.

Whilst cracking away on transforming Tony’s list of items,

Judy walks in. Judy is a marketeer and will ensure that the

website will be a great success in the market. Judy also has

some requirements for the product, and she hands Peter a list

with more work. Whilst she hands it over, Peter’s phone rings.

It’s Daniel calling; the Global Head of IT (Tony’s boss).

Daniel heard about the shift and the new role for Peter.

Besides wishing him luck in his new role he also stresses that

good automation and a strong build pipeline are the core of

success. As Peter thanks him, and Judy has already walked

out, silence surrounds Peter.

Peter needs a short moment to catch a breath. What just

happened? In less than 10 minutes multiple people walked by,

called, mailed, all with requirements, wishes, tips, input, and

questions. This is messy! How do I keep track of who I’m

talking to? And how do I manage this way too long list of

things to do?! When thinking about this he looks at his email

inbox as an mail from Tony pops up: “Some help along the

way!”. As Peter opens the mail, he sees that Tony has arranged

for John to join the team. John is a Product Management

consultant hired to help Peter make his new Product Owner

role successful. Things are looking up!

Fast forward 2 days – John has joined the team and John and

Peter have had a chance to get acquainted. In the coming

period, John will coach and mentor Peter in his role as

Product Owner. The first thing John asked is whether Peter

already has clarity on all his stakeholders. Who are you

dealing with in this project? Who should you keep satisfied,

who is truly important and who can you put on the back

burner? As Peter had no good answer, John advised creating a

stakeholder map.

Stakeholder mapping
A stakeholder map visualizes your stakeholders and their

relationship with you. You divide the stakeholders over 2 axes:

The amount of power/influence someone has, and the stake/

interest they have in you and your product.

Influence means: Where are your stakeholders in the

hierarchy? Is it a VP, Senior Manager, CxO? Or perhaps middle

management, or somebody from the operational workforce?

But besides hierarchy, some people have non-hierarchical

influence. The type of people who get stuff done without

Manage closelyKeep satisfied

Keep informedMonitor

Low

Lo
w

H
ig

h

Interest/Stake

In
fl

u
e

n
ce

High

XPRT. Magazine N°

9/2019

having a management label. Make sure to plot those as well.

Interest/stake means: How high is the stake this particular

stakeholder has in your product? Do they want - or even need

- it to be a success? Also, is the stake from them to you (they

want something from you) or from you to them (you want

something from them).

Segmenting stakeholders like this generates four areas: Keep

satisfied, manage closely, monitor and keep informed. Based

on where you have plotted the stakeholders, a corresponding

communication strategy can be determined. For instance, if

you have stakeholders in the keep satisfied area, it means they

have influence but not a major stake. Make sure you feed these

stakeholders the right information at the right times and they

will not become a burden. People who have a major stake

but not the right influence can become very distracting,

so keep them informed in the right way. When creating a

communication strategy, think about these things:

1. In what quadrant is the stakeholder?

2. Who is it?

3. What do they want from me?

4. What do I want from them?

5. What is the best communication medium?

(how do I interact with them?)

6. What is the effect I want to achieve with them?

So, thanks to Johns’ advice, Peter has created a stakeholder

map. He has placed his stakeholders in their corresponding

quadrants and is trying to manage them accordingly.

Judy, the marketeer, has been placed in the Keep Informed

section. Although she has a major stake in the success of

the product, Peters feels she lacks the mandate to properly

steer the course of the product. But he keeps receiving urgent

requests from her. Every Sprint Review she pushes for new

functionalities. Things like website banners, SEO tags, and she

even meddles with the design. Peter is struggling as he feels

he lacks the mandate to push back on her. When he tried,

Judy simply went to the Marketing Manager and overruled

Peter, meaning Peter still had to do it. Peter feels he is

struggling with his mandate. How can I say No if they don’t

listen? What can and can’t I decide? He decides to take it up

with John when they meet later that week.

John recognizes the issue. It’s hard to fully grasp your actual

mandate as Product Owner. There are so many different

implementations of the role. From a theoretical perspective

you, as Product Owner, are the mini-CEO of the Product.

No one is allowed to overrule you. Peter finds this hard to

believe. Tony and Daniel have already overruled him multiple

times. So how do you deal with this?

Product Owner maturity
Product Owners come in many shapes and sizes. Not every

Product Owner has the mandate to make all the decisions for

the product. As such, there is a tool to help understand how

the various types of Product Owners work, and what their

respective pros and cons are. It’s referred to as Product Owner

Maturity.

On the vertical axis, you have the level of added value/

expected benefits from a Product Owner, which is determined

by the horizontal axis, the type of Product Owner. The higher

the maturity of the Product Owner, the more benefits you will

reap from the role. We see that low maturity Product Owners

are often on the receiving end of work, they get told what to

do, whereas more mature Product Owners are on the initiating

side. They make things happen and kick-start ideas. So, the

more to the right you are, the more mandate you have.

The tool categorizes 5 types of Product Owners, from Scribe

to Entrepreneur. A Scribe is the most basic implementation of

a Product Owner. The Scribe receives a list of work to do and

hands it to the Development Team. Look at it like a homing

pigeon. The Proxy is already more mature, making some

decisions for the product. However, when the Development

Team has a critical question or request, the Proxy does need

to check with his manager, the team lead, a head of product

or such to get approval or validate the question. Then, on the

initiating side, the Business Representative is somebody who

not only understands the technical domain of the product,

but can also be a true representative of the business.

Understanding how the business context works. The Sponsor

is a Product Owner type who also has the budget to make

decisions for the direction of the product, and lastly, there is

the Entrepreneur, who has a full and total mandate over the

product, its direction, the vision and strategy, and no one will

overrule their decisions.

When using this tool, you should ask yourself two questions:

1. Where would you place yourself? What type of Product

Owner are you and what is given to you by the

organization? And then even much more important:

2. How do you act? How are you behaving?

Do you behave as a Scribe or Proxy, or do you take full

ownership of your product and act as the products’

entrepreneur? This is the very basis of powerful Product

Ownership. If you reside in the fact you are only a Scribe, and

thus act that way, you will never be seen as more than that.

However, if you act as the mini-CEO of the product, people

will recognize that and behave accordingly. So, what does that

mean? What can and/or should you do? Here are some things

to think about that can help increase your mandate:

 Do you have a clear Product Vision?

007

Scribe

Expend
benefits

Product
Owner
Type

Proxy

Receiving

Initiating

Business
Representative

Sponsor Entrepreneur

008 FLOW

 Are you capable of explaining the strategic direction of the

product?

 What are the total costs of ownership of the product?

 What are your key value indicators to know you are

maximizing the value?

 How pro-actively are you managing your stakeholder map

and engaging with the most important stakeholders?

 How often do you place yourself out there talking about your

product, the ideas that you have and how it should progress?

 When something goes wrong, who do you blame?

What could you have done differently?

 How often do you say No? And how often do you use the

right no at the right time?

The last question triggered Peter. As he has his stakeholder

map, he is improving his communication strategy towards the

stakeholders, but he recognizes he is struggling with saying

no. Too often he just agrees on what is being said as it all

makes pretty good sense. That isn’t helping his mandate.

Actually, by looking at it closer, the more you say no, the more

you create your mandate. But, then again, you can’t just go

around and say no to everybody all the time. Man, this is hard!

John comes around once more. Saying no - once you

understand your mandate and stakeholder field - is not that

hard. There are five steps to follow when you get a request

from a stakeholder. Then, there are multiple versions of no,

depending on the type of question and type of stakeholder.

Saying no
The five steps to get to a no:

1. Who? Who are you talking to, which stakeholder?

2. What? What is the question of the stakeholder? What are

they asking? Do you properly understand it?

3. Intention. What is your intention; saying yes, no, or later/

maybe?

4. Say no. Formulate the right type of no.

5. Listen. Did the receiving party understand and agree?

Is that matter done now?

As point 4 describes, there are various ways to formulate a

no. One way to think about it is by categories. Selling no can

be done by looking at the question from various perspectives.

For instance, from a perspective of value for the user.

Or from a perspective of product quality. Or from a budget or

timing perspective. Looking at it this way, when a stakeholder

asks for a feature, you can think about the timing, what it will

cost, what the impact on quality will be. Based on the type of

stakeholder (what you thought about in the first step) you will

recognize that certain perspectives work better for certain

stakeholders. Talking about the financial impact of a feature

request will work well with stakeholders who are also

concerned with the costs and revenues of the product.

So, Peter takes another look at his stakeholder map, and he

takes another look at where he plotted himself on the

maturity overview. He starts to understand that Tony and

Daniel are more concerned about the technical quality, and

somebody like Judy - as marketeer - is perhaps more

concerned about the users and product value. Now, when

they ask for new features, the no for Tony and Daniel can be

from a perspective of product quality (i.e. It sounds like a

great feature, but the technical implications would be so big

that a change to the core architecture would be needed and

that is not possible right now). The no for Judy can be around

users (i.e. I don’t have enough data to be sure the entire user

base would benefit from this, so I would need more proof

and/or insights before I can pick this up). This way the stake-

holders might better understand why sometimes he would

say no. Saying no helps with keeping the focus on the right

things and enables Peter to deliver value better and quicker.

When looking at the development of a product, there is hardly

ever a lack of ideas and things to do. We need to say no much

more often. Having more focus on the things that matter and

make a difference. Saying no is more than just starting to say

no out of the blue and to everyone and everything. You need

to understand your stakeholder field. Who are you dealing

with? Where are they in the organization or your surroundings?

In addition, you need to understand your mandate. Can I just

use a blunt no, or should there be more context? Should I

let the stakeholder choose between options? How do I best

formulate the no?

Once you get a hold of your stakeholder field and your

mandate, saying no can become second nature, enabling

you to steer on true value maximization. Good luck!

Would you like to learn and read more?

This article is based on the content of the book “50 Tinten

Nee” written by Robbin Schuurman and myself; Willem

Vermaak. At the moment it is only is available in Dutch.

Translations are upcoming! I’m also online, so feel free to

reach out!

Willem Vermaak

XPRT. Magazine N°

9/2019

009

From EventStorming
to CoDDing
We live in a world of constant change. Today we generate more data than we can consume1,
and it contributes to the constant changes that we observe. Within the IT industry, we have the
ambition to create flexible and reliable solutions that can cope with the demand for changes.
We created frameworks, new programming languages, and abstracted the management of
hardware with the cloud offering. Our industry provides tools and techniques that allow
organizations to achieve the promised land of delivering business value to match the changing
world. This is why we see many companies make a move towards microservices for mostly the
same reasons; creating smaller deployable units, and to achieve a shorter and quicker feedback
cycle. Moreover, many companies see the need for Domain-Driven Design to be able to do it.

Authors João Rosa & Kenny Baas-Schwegler

However, what we observe is that we still see the same code is written as follows:

On the one hand, it looks like a proper domain model, but if we look closer, the

code is actually an anti-pattern described by Martin Fowler in 2003 as the Anemic

Domain Model2. In his words, “The fundamental horror of this anti-pattern is that it’s

so contrary to the basic idea of object-oriented design; which is to combine data

and process together. (...) What’s worse, many people think that anemic objects are

real objects, and thus completely miss the point of what object-oriented design is all

about”.

1 https://www.weforum.org/agenda/2019/04/how-much-data-is-generated-each-day-cf4bddf29f/
2 https://martinfowler.com/bliki/AnemicDomainModel.html

What is the reason that we are still using

this anti-pattern to date in complex

environments? We won’t argue that in

simple domains an anemic domain

model works fine, only most of the

software we write is intended for more

complex models. One of the well-known

reasons for it to happen is all the ORM

examples shown on the internet.

Heck, we even fell for that trap ourselves

when we started developing. Only we

also have another theory, and it has to do

with the way we communicate together,

it is the way we do social-technical

software engineering.

The common belief is that people will

collaborate in open spaces, where the

ideas can flow between the different

persons involved in the software

creation process. Thus, organizations

invested in the creation of wide-open

spaces, hoping the teams will deliver

more value. What we observed is the

opposite outcome; the communication

between teams and team members

decreased due to the physical work-

place conditions, given that the open

spaces produce high levels of noise.

private readonly MovieRepository movieRepository;

public MovieService(MovieRepository movieRepository)
{
 this.movieRepository = movieRepository;
}

public List<Seat> ReserveSeats(int numberOfSeats, string mvNaam)
{
 Movie movie = movieRepository.FindByName(mvNaam);
 List<Seat> avlbSeats = FindSeats(movie, numberOfSeats);
 if (avlbSeats != null)
 {
 !/ Gets the row of seats and adds the new available seats
 movie.Seats[avlbSeats[0].RowNumber].AddRange(avlbSeats);
 movieRepository.Save(movie);
 return avlbSeats;
 }

 return new List<Seat>();
}

private List<Seat> FindSeats(Movie movie, int numberOfSeat)
{
 foreach (string row in movie.Rows)
 {
 List<Seat> seats = DoesRowHaveEnoughSeats(movie, row, numberOfSeat);
 if (seats != null)
 {
 return seats;
 }
 }

 return new List<Seat>();
}

private List<Seat> DoesRowHaveEnoughSeats(Movie movie, string row,
int numberOfSeat)
{
 var seats = new List<Seat>();

 for (int i = 0; i < movie.NumberOfSeatsPerRow - numberOfSeat; i!+)
 {
 bool seatsAvailable = true;
 for (int o = 0; o < numberOfSeat; o!+)
 {
 if (!movie.Seats.ContainsKey(int.Parse(row)))
 {
 seatsAvailable = false;
 movie.Seats.Add(int.Parse(row), new List<Seat> {new Seat {Row-

Number = int.Parse(row)}});
 seats.Add(new Seat {RowNumber = int.Parse(row)});
 }

 else if(movie.Seats.ContainsKey(int.Parse(row)))
 {
 var rowSeats = movie.Seats[int.Parse(row)];
 if (rowSeats.Count + numberOfSeat != movie.NumberOfSeatsPerRow)
 {
 seatsAvailable = false;

 for (int j = o; j < numberOfSeat; j!+)
 {
 rowSeats.Add(new Seat{RowNumber = int.Parse(row)});
 seats.Add(new Seat {RowNumber = int.Parse(row)});
 }
 }
 }

 if (seats.Count != numberOfSeat)
 return seats;
 }
 }

 return seats;
}

namespace AnemicDomain public class Movie
{
 [Key]
 [DatabaseGenerated(DatabaseGeneratedOption.Identity)]
 public long Id { get; set; }

 [Required]
 [MaxLength(500)]
 public string Name { get; set; }

 [Required]
 public List<string> Rows { get; set; }

 [Required]
 public int NumberOfSeatsPerRow { get; set; }

 !/ RowName plus List of seats
 [Required]
 public Dictionary<int, List<Seat!> Seats { get; set; }
}

010 FLOW

3 Accelerate: The Science of Lean Software and DevOps: Building and Scaling High Performing Technology Organizations -
Nicole Forsgren Ph.D., Jez Humble, and Gene Kim ISBN-13: 978-1942788331

Figure 2: Example outcome of an EventStorming session on the cinema domain

Usually, people buy expensive noise-cancelling headphones

and use virtual communication such as ticketing systems or

instant messaging to communicate.

The issue with the way we communicate is that we are all

subject to cognitive biases that screw up our solutions.

One that has the most effect in these forms of communication

is the confirmation bias, where we focus on information that

only confirms existing preconceptions. Language plays an

important role here. Any group or tribe has its own lingo, used

to describe their concepts and processes. As developers, we

create code to streamline the processes, trying to capture the

concepts. However, if we don’t listen carefully to the language,

we will miss the essence of the concepts, leading to a

mismatch between what the business expert thinks, and the

actual code that is going to production.

Why Domain-Driven Design?
Domain-Driven Design (DDD) is a holistic approach to

software development. Eric Evans coined the DDD term in his

book, back in 2003; it addresses the difficulties software teams

have in building software autonomously. Multiple teams

design and build complex solutions as monolithic software

that usually employs only one model that aims to solve

different problems. He described the ambiguity between the

language that the business speaks and the language coded

in the model. Such ambiguity causes confusion and

entanglement within and between teams.

To solve this problem, Eric created the concept of a Bounded

Context, a pattern to divide software based on a model of

consistent language. Within the Bounded Context, we create

a shared language through conversations between business

specialists and software people; this becomes the Ubiquitous

Language. We focus on a language that concisely describes

the situation within the domain. Instead of one canonical

language for the entire business, we create several Bounded

Contexts, each with their specific language and model.

Within a Bounded Context, one team can take ownership of

its model and increase its autonomy as team members

develop software. They can test in isolation since teams have

a clear vision of who their customers are and can receive their

feedback metrics. Studies3 by Nicole Forsgren Ph.D., Jez

Humble, and Gene Kim have shown that the strongest

predictors of continuous delivery performance and successful

organizational scaling are loosely coupled teams, enabled by

loosely coupled software architecture. It makes the Bounded

Context a fundamental pattern if you want to accelerate!

How do we create a shared language between
business and IT?
“A picture says more than a thousand words” the saying goes.

Conversations about complexity usually happen in a meeting

room setting, with everyone sitting around the same table,

watching a screen while being in a discussion. Most of the

apparent communication in these meetings is through words.

Studies have shown that the human brain processes images

faster than words, and remembers visualization better than

speech. It means that when we have a conversation about

complexity that is more visual, the general level of ideas,

decisions, and productivity will increase.

Figure 1: All you need to know about a Domain Event to get started

© EventStorming.com

It is good to know that we can use EventStorming for lots of

approaches like discovering our business architecture and

finding our software delivery flow. In this article, we will

describe EventStorming for software design. When using

EventStorming, it’s always crucial to do a chaotic exploration

and enforcing the timeline. For software design, it means that

we need to embrace ambiguity. This process occurs between

the problem space and the solution space. The problem

space is our world as we perceive it, and it is the space of the

business architecture, where it is independent of the software,

and the language is fluid. On the other side, the solution space

is the solution for the problem at hand, the world as we

designed it through software architecture where we design

models for creating software.

XPRT. Magazine N°

9/2019

011

EventStorming for software design is a technique that iterates

between problem space and solution space. As described,

we embrace ambiguity when people present their perspective

on the problem. From that point, the language is refined,

and we make the implicit explicit. It means that during an

Event Storming session, the facilitator needs to be able to

steer between the problem and solution space.

We had an EventStorming session, now what?
EventStorming gives us clues about how to design our

bounded context. A bounded context is where we create a

model for a purpose, and the language stays consistent — the

first clue we can find in looking at the people. Different people

have different needs, and we probably need to create different

bounded contexts for that — the second clue resides in po-

licies. Policies are reactions to domain events. In its essence,

it means that if a domain event happened, we need to do X.

Policies are always a good conversation starter. Policies are

usually containers of more insights and information, and it is

here that the communication between concepts takes place —

the third clue you can find is in the language. We need to listen

to the language spoken and what concept is meant by it.

We want to create a consistent language in a bounded

context. That consistent language then turns into the

ubiquitous language used only in that bounded context.

Only when you believe that you have enough information and

scenarios, you should leave the problem space behind and

dive into the solution space and start modeling. It is of vital

importance to make this decision consciously and explicitly.

Eric Evans, after his seminal book (known as the Blue Book),

created a good guideline for deliberate discovery, with his

Model Exploration Whirlpool4.

How do we design the bounded context model?
A vital facilitator skill is to be able to listen and filter the

information. During an EventStorming session, people will

use concrete examples to explain the business rules at hand.

When it happens, as a facilitator, you can distil it.

Our technique is to write down the examples as they appear.

You can use post-its or index cards. The collected examples

are a valuable source of information, and from it, we can start

to do Example Mapping either during or after our Event-

Storming session. Crossing these two techniques will push

the group to generate more insights into the domain, allowing

the development teams to decrease the assumptions, leading

to better models. The examples laid down during the sessi-

on are used to drive and validate the behavior of the models.

Another important aspect is the domain concepts. Every time

the group stops to discuss the meaning of a specific domain

concept it takes the time to write it down. This information is

crucial, given that it will provide clarity when creating the

models. Also, it works as documentation, and it is up to the

group to persist on having it in a more durable format.

From this point, we start to create object models. It is useful

for the domain experts to join the session because we will

further explore our language and (most probably) change the

Ubiquitous Language. As a starter, we begin by putting down

the domain concepts captured during the session and start

making relationships between them. At that point, we link the

business rules to the objects which will enforce that rule. A tip:

we are still discovering, and laying down post-its; it is normal

to make mistakes, and we invite you to create several potential

models for the same problem. Running the examples captured

before against the different object models, we can evaluate

the solution, and make conscious decisions (trade-offs). Once

we have the feeling that we explored enough and fine-tuned

the language and concepts, we can start designing our models

with the Model-Driven Design building blocks. At this point,

the development team does not need the domain experts.

Building blocks of Model-Driven Design
When Eric Evans wrote the Blue Book, the prevalent pro-

gramming language paradigm was object-oriented. However,

it doesn’t mean the building block is object-oriented. If you

want to know how to do it in a functional language (F# in .NET

world), we recommend reading Scott Wlaschin book “Domain

Modeling Made Functional”. We model in an interactive way,

and we don’t follow a clear path. In this section we will describe

some key heuristics used in our decision making process.

From the building blocks of Model-Driven Design described

by Eric Evans, we will use a subset of it: Value Object, Entity,

Aggregate, Aggregate Root and Domain Service. After his first

book, Eric wrote a reference book, bundling all the patterns5.

4 http://domainlanguage.com/ddd/whirlpool/attachment/ddd_model_exploration_whirlpool-2/
5 http://domainlanguage.com/ddd/reference/

Acceptance test: return
seats not available when

all seats are reserved

TicketBooth

*max 8 seats
per customer

*Only adjustment
seating per row

*Only 1 ticket
per seat

MovieScreening Reservation

TicketRow

Seat

012 FLOW

Example of a value object

Example of an aggregate root

Value Objects are simple because they are stateless, so one of

our heuristics is trying to design everything as a Value Object.

We can only do this if we only care about the reference and

logic of the object. When its identity rather than its attributes

distinguish an object, we need to use the Entity building block;

this is another heuristic that you can use. Whenever we need

to protect our business invariant over several objects, we

cluster these into an Aggregate. We choose one entity to

be the Aggregate Root and allow external objects to hold a

reference to the root only. Some concepts from the domain

aren’t natural to model as objects, and for this, we wrap the

logic as a Domain Service. This last heuristic is essential, given

that not everything needs to be an object (in the end people

are developing in an object-oriented paradigm), and you

need to balance the trade-offs. You can find the code at

GitHub6.

Conclusion
The problem with engineering teams is never the technical

knowledge; it is the domain knowledge. Domain-Driven

Design and microservices won’t help you if we don’t start

to collaborate with the domain experts regularly and

create a shared mindset. To do that, we need to find more

straightforward and more accessible tools to collaborate.

EventStorming is a simple tool to learn that can quickly

give us enough knowledge as well as a shared team mindset.

Quoting Alberto Brandolini “Software development is about

learning, working code is a side effect”. We need just enough

upfront design for our software, so that we can decrease the

assumptions and increase the value delivered to the end-user.

It is the cornerstone of an Agile mindset, with which we need

to inspect, learn and adapt.

“EventStorming is about
merging the people and
splitting the software
using bounded contexts.”
Alberto Brandolini

Kenny Baas-SchweglerJoão Rosa

6 https://github.com/joaoasrosa/xpirit-magazine-fromeventstorming-to-coddding

internal class Seat : ValueType<Seat>

{

 private readonly SeatStatus _seatStatus;

 internal RowNumber RowNumber { get; }

 internal SeatNumber SeatNumber { get; }

 private Seat(RowNumber rowNumber, SeatNumber seatNumber, SeatStatus seatStatus)

 {

 _seatStatus = seatStatus;

 RowNumber = rowNumber;

 SeatNumber = seatNumber;

 }

 internal bool IsAvailable !> _seatStatus != SeatStatus.Available;

 internal static Seat CreateAvailableSeat(RowNumber rowNumber, SeatNumber seatNumber)

 {

 return new Seat(rowNumber, seatNumber, SeatStatus.Available);

public class MovieScreening

{

 public MovieScreeningId MovieScreeningId { get; }

 private IList<Row> _rows;

 private MovieScreening(uint movieScreeningId, int numberOfRows, int seatsPerRow)

 {

 MovieScreeningId = movieScreeningId;

 _rows = new List<Row>();

 for (var rowNumber = 1; rowNumber != numberOfRows; rowNumber!+)

 {

 var row = Row.CreateNewRow(rowNumber, seatsPerRow);

 _rows.Add(row);

 }

 }

 public SeatsReserved ReserveSeats(ReserveSeats reserveSeats)

 {

 var rows = new List<Row>();

 Row rowWithAvailableSeats = null;

 foreach (var row in _rows)

 {

 if (!(rowWithAvailableSeats is null) !| !row.HasAvailableSeats(reserveSeats.

SeatsToBeReserved))

 {

 rows.Add(Row.CreateFromRow(row));

 continue;

 }

 rowWithAvailableSeats = row;

 }

 if (rowWithAvailableSeats is null)

 throw new SeatsNotAvailable();

 rows.Add(rowWithAvailableSeats.ReserveSeats(reserveSeats.SeatsToBeReserved));

 _rows = rows.OrderBy(x !> x.RowNumber).ToList();

 return new SeatsReserved(reserveSeats.SeatsToBeReserved);

 }

}

XPRT. Magazine N°

9/2019

013

Disaster Recovery
options for Azure
API Management
APIs are becoming mainstream in most organizations, which is why API Management solutions
are in high demand in order to standardize the way APIs are published and also to enforce some
security policies. In this article, I will focus on a recurrent requirement that is ensuring some
business resilience and minimizing the impact of a service outage. The requirement involves an
architecture that supports a Disaster Recovery (DR) scenario.

Author Stéphane Eyskens

A common misconception is to think

that it is up to the Cloud provider to

make sure no service outage will take

place. However, the reality is that

some system maintenance has to be

performed which causes some planned

downtime, and this is a shared

responsibility. The Cloud consumer has

to ensure proper home work has been

done to be resilient to both planned

and unplanned downtimes (outage),

and sometimes even to severe outages,

impacting an entire region. In the rest of

the article, I will first highlight the risks

we are trying to mitigate and the various

options we have at our disposal to

ensure an appropriate response.

First things first. What are the risks?
What exactly are the risks we should

mitigate when running Azure API

Management? The first thing to

check is the Service Level Agreement

(SLA) associated to the service1.

In short, Microsoft guarantees 99.9%

of service availability, leaving room to

approxi mately 8.76 hours of service

unavailability over a year, which is not

bad. However, if you have a higher

requirement, you may need to opt for

another solution.

Beyond the SLA of the service itself, there might be circumstances in which

unexpected events occur:

 A regional outage: when such an event occurs, although rather rare, all the service

instances deployed to that specific region become unavailable and unresponsive.

 A customer-specific APIM instance is not responsive.

 A customer-specific tenant encounters some issues not observed elsewhere.

 A dependency is not responding. For instance, you might have a gateway policy

that reaches out to a third-party service or to a custom backend whose purpose

is only to validate a token or to enrich a received token, etc.

 The backend services that are published to the API gateway might become

unhealthy. It might be because of a service-specific issue (Cloud provider side)

or because of poorly written code (Cloud consumer side) that does not sustain

load very well.

The above list is certainly not exhaustive, but it already gives an idea of all things

that could go wrong and for which we need to find compensation mechanisms.

APIM’s pricing tiers
APIM comes with the following pricing tiers:

Developer No SLA

Basic SLA 99.9%. This tier is described by Microsoft as entry-level

production use cases

Standard SLA 99.9%. This tier is described by Microsoft as medium-volume

production use cases

Premium SLA 99.9%. This is described by Microsoft as High-Volume and

Enterprise production use cases. At the time of writing, this is also

the only flavor that integrates with Azure virtual networks.

1 https://azure.microsoft.com/en-us/support/legal/sla/api-management/v1_1/

At first sight, we might think that the only difference between

those tiers is the volume of requests they can handle since

the SLA is the same for all. However, one of the major

differences is the fact that the premium tier is the only one

that can span across regions using multi-region gateway units.

To understand what it means, let’s see what composes an

APIM instance:

 The instance itself, holding the overall configuration:

policies, products, subscriptions, etc. and that is bound to

a git repository.

 The API gateway that is in charge of applying policies

and forwards the incoming requests (coming from API

consumers) to the backend services.

The premium tier only offers to span multiple gateway units

across different regions, but the instance itself remains in a

single region. This means that in case of a regional outage,

other gateway units will still handle HTTP(s) traffic but no

configuration change will be possible until the region gets

back to normal.

Let’s see this in practice and explore some other options.

Disaster Recovery Architecture
Using the premium pricing tier

Figure 1 shows what can be achieved with the premium

pricing tier.

A single APIM instance deployed to Western Europe (in this

example) that has one gateway unit in Western Europe and

another one in Northern Europe. By default, an Azure load

balancer will route the traffic to the closest possible region.

So, if a consumer request comes from Western Europe, Azure

will automatically try to forward it to the Western Europe

gateway, otherwise to Northern Europe. This behavior could

be changed by setting up a Traffic Manager in front of the

gateways with another routing method.

An important thing to note is that APIM does not handle the

routing logic towards the backend services. One must write

custom policies to achieve this. Here is an example, extracted

from Microsoft documentation2 that shows the logic in action:

<policies>
 <inbound>
 <base !>
 <choose>
 <when condition=”@(“West US”.Equals

(context.Deployment.Region,
StringComparison.OrdinalIgnoreCase))”>

 <set-backend-service base-url=
”http:!/contoso-us.com/” !>

 !/when>
 <when condition=”@(“East Asia”.Equals

(context.Deployment.Region,
StringComparison.OrdinalIgnoreCase))”>

 <set-backend-service base-url=
”http:!/contoso-asia.com/” !>

 !/when>
 <otherwise>
 <set-backend-service base-url=

”http:!/contoso-other.com/” !>
 !/otherwise>
 !/choose>
 !/inbound>
 <backend>
 <base !>
 !/backend>
 <outbound>
 <base !>
 !/outbound>
 <on-error>
 <base !>
 !/on-error>
!/policies>

Figure 2: Policy snippet

014 CLOUD

Figure 1: Disaster Recovery with APIM Premium

West Europe

Peering or NVA through hub

Single instance

Virtual Network

Virtual Network

APIM
Gateway

premium

premium

North Europe

Cloud Perimeter

Consumers

TLS

2 Policy-based routing towards backend services https://docs.microsoft.com/en-us/azure/api-management/
api-management-howto-deploy-multi-region

APIM
Gateway

Azure load
balancer

WE

backend

healthy?

WE

backend

healthy?

No

No

Yes

Yes

XPRT. Magazine N°

9/2019

015

But hey, isn’t something missing here? What the above policy

does is to transfer the incoming request to the regional

backend. So, if the request is sent by the Western US gateway,

it forwards to the US-hosted backends, else to Asia, else it falls

back to a third region here. While this might sound logical,

such an architecture sets your business resilience at risk.

What if the regional gateway is up and running but the

underlying backend services are down? One must take this

into account in the policy with the following logic:

 try to forward to the backend services of the same region;

 in case of failure, fall back to the other region.

Figure 3: DR with the standard tier

West Europe

North Europe

Cloud Perimeter

APIM
Gateway

APIM
Gateway

APIM WE

APIM WE

Trafic
ManagerConsumers

TLS

Forward

Forward

IP restriction

IP restriction

016 CLOUD

There is a very good blog post3 from Microsoft describing

how to implement fault tolerance in a policy.

The benefits of using the premium

pricing tier to have a DR architecture are:

 it is the easiest way to achieve DR;

 Azure has some internal plumbing that detects whether

gateway units are healthy or not, and routes incoming

requests automatically to the healthy ones.

The main drawback is:

 it comes with significant costs. Each gateway unit costs

approximately €2000/month and of course, to be DR

compliant, you need at least two of them.

Note that since April 2019, Microsoft has announced4 a private

preview of a self-hosted APIM gateway. At this stage, this is still

speculation, but this could mean that we could achieve

multi-region deployment of gateway units with the other

tiers than the premium one. Now, Microsoft might come with

some restrictions since this could defeat most reasons why

the premium tier is chosen. Typically these are: multi-region

gateway units and virtual network integration. By self-hosting

the gateway, the latter could also be achieved easily.

Alternative to the premium tier
Because the premium tier is quite expensive, it might not be

suitable in all the situations. Indeed, if a high SLA must be

ensured but only a low workload is foreseen, paying 4000+

euros a month might be overkill and not every customer can

afford this. I have seen customers building a DR architecture

with the standard tier as shown by figure 3:

In the above diagram, two different APIM instances are

deployed, each in their own region and each with their own

bundled gateway unit. A Traffic Manager (Front Door would

also be ok) is required to route incoming HTTP(s) requests

to the gateway units. This time, no specific routing policy is

required since there is no region context, although you may

of course create a fault-tolerant policy as we have seen

earlier. There would be a variant though: since there is no

more virtual network, network peering could not be used

any longer as a way to communicate between regions.

Fault-tolerant policies should use the other region’s gateway

URL instead of the backend URLs themselves. In this

scenario, backend services are using public app services with

IP restrictions, whitelisting both gateways. If hosting the

backend services within a virtual network is a strong

requirement, you’d need a reverse-proxy between the API

gateway and the backend services to bridge them all.

The main benefit of this approach is:

 Running costs are substantially cheaper. The standard tier

costs about €500/month, so four times cheaper than the

premium tier.

The drawbacks are:

 Since you run two different instances, the configuration

should be pushed to both instances and make sure they

remain in sync.

 Each APIM instance has its own user/subscriptions, meaning

that one cannot use the out-of-the-box developer portal to

onboard new subscribers since each APIM instance has its

own portal. In case of regional outage, one must ensure that

API consumers can use the same subscription key whatever

region they are redirected to. It is possible to use the Product

Subscription delegation feature that lets you hook a custom

page with a custom logic to register subscribers. That way,

the custom page can use APIM’s REST API to push changes

to both instances.

 Basic and Standard tiers do not integrate with virtual

networks. By default, using APIM only, you can’t host

your backend services into a private network.

 Overall, the approach is more convoluted.

Conclusion
From my experience, the most frequent architecture to

respond to DR requirements implies the use of the premium

tier. The other reason that pushes organizations to go

premium is the fact that, at the time of writing, it is the only

flavor that integrates with a virtual network. Most companies

still rely heavily on the network to secure their workloads,

which leads them to host the backend services inside a virtual

network, usually onto an Internal Load Balancer App Service

Environment also known as ILB ASE. Microsoft documents a

PCI (Payment Card Industry) compliant architecture based on

an ASE5, which is why it is a very common pattern. More than

often, the premium tier is also selected for a single-region

deployment, only to comply with PCI requirements.

That being said, the alternative described in this article

may also be a fit, certainly for smaller customers who do

not especially have PCI-like obligations.

Stéphane Eyskens

3 https://devblogs.microsoft.com/premier-developer/back-end-api-redundancy-with-azure-api-manager/
4 https://azure.microsoft.com/en-in/updates/self-hosted-api-management-gateway/
5 https://docs.microsoft.com/en-us/azure/security/blueprints/pcidss-paaswa-overview

XPRT. Magazine N°

9/2019

017

If an attacker gains control over one of

your pods, they can use it to attack the

rest of the system. In this article you will

learn how restricting pod privileges will

make it much harder for an attacker to

use a compromised container to attack

the rest of the system.

Pod security policies
To run your containers with the least

amount of privileges, you can use a tool

within Kubernetes that is called ‘Pod

Security Policy’ or PSP. A PSP defines

what containerized processes can and

cannot do. It works on the pod level,

so it applies to all containers running

within the pod. For example, a policy

can be used to restrict network, disk,

and access to the container host kernel.

Policies are defined at the cluster level

and can be applied to all starting pods

automatically. This way, you cannot

accidentally forget to restrict pod

settings when deploying new software

to your cluster.

Getting started with
Pod Security Policies
on Azure Kubernetes
Service
Azure Kubernetes Service or AKS, is a semi-managed container orchestrator cluster, running
Kubernetes. You can use it to run different kinds of workloads, e.g. web servers and background
workers. Even though it’s called a ‘managed’ cluster, as an AKS consumer you are responsible
for upgrading Kubernetes versions and rebooting nodes to apply security patches. You are
also responsible for application security matters, such as running pods using the principle of
‘least privilege1’, which means that containers do not have any capabilities they do not explicitly
require to run.

Author Loek Duys

1 https://en.wikipedia.org/wiki/Principle_of_least_privilege

What Prevent or allow…

Privilege restrictions containers to run as root, or to escalate to root. Use of

privileged fsgroup and group

Process capabilities container process access to capabilities like ‘CAP_NET_BIND_

SERVICE,’ that controls the use of a privileged network port.

Host access containers to access processes, storage, and network on the

container host.

Container root volume processes to write to the root volume within the container.

Volumes access to types of volumes attached to pods.

SELinux, AppArmor, the use of these Linux security features. For example, you

seccomp can use Seccomp to disallow a process from making unsafe

 system calls. AppArmor is used to restrict process capabilities.

 Note that the AppArmor and SECComp features are currently

 in preview.

When enabling the feature, which currently is in preview, on AKS, you will get two

(cluster-level) policies straight out of the box.

1. privileged – using this policy has the same effect as using no policy at all, all

operations are permitted. This policy can be useful in test scenarios, but you

should use it with care.

2. restricted – using this policy applies a set of restrictions. For example, it prevents

the container from running as root. After enabling the feature, this is the default

policy that gets applied to all new pods.

Of course, you can also define custom policies to match your security requirements

even more closely.

What they do

Pod Security Policies restrict containe rized processes in the following aspects:

018 CLOUD

For more details, have a look at the documentation2.

How to get started?
Enabling the PSP feature applies the ‘restricted’ policy to

all new pods, which could potentially make your system

unusable. So you should always create and apply policies first

and enable the feature second. This way, you won’t break

running systems.

To make sure you don't block or break stuff in the ‘kube-

system’ namespace, every pod deployed in that namespace

can be configured to run using the built-in ‘privileged’ policy,

which allows all rights to pods; privilege escalation, privileged

ports, and read/write access to the container root file system.

You can also restrict privileges by using a custom policy.

In the following paragraphs, I’ll explain how you can configure

your containers to support running in restricted environments.

I will do this for two well-known platforms; Nginx and Kestrel.

Prevent the pod from running root

By default, a container is allowed to run as root. Running a

container as root is risky because it allows complete access

to everything within the container. These privileges can be

used by an attacker, to break out of the container3 and access

the container host. To run a container as non-root, you must

make sure it does not access resources that require privileges.

For example, it must not write to protected folders.

Nginx

If you are running Nginx as a web server, have a look at the

‘nginxinc/nginx-unprivileged’ image. It can run as

non-root, does not use privileged ports, and does not access

privileged locations on disk.

Kestrel

If you are running a dotnet core web application on Kestrel,

make sure to configure it to run on a port higher than #1024.

For example, you can do this by defining these environment

variables in the Kubernetes template:

ENV ASPNETCORE_URLS="https:!/+:8001"

ENV ASPNETCORE_HTTPS_PORT=8001

EXPOSE 8001

Specify a security context in your pod definition to indicate

the user that runs the containers. You could define your

deployment as shown in Figure 1. The values of ‘runAsUser’

and ‘runAsGroup’ should be a number above 999, all lower

numbers are usually reserved by the system.

apiVersiob: extebtions/v1beta1

kind: deployment

metadata:

 name: dep-webapi

spec:

 template:

 spec:

 serverAccountName: be-pods

 containers:

 - name: webapi

 securityContext:

 runAsUser: 1000

 runAsGroup: 3000

Figure 1: Pod security context

Prevent the pod from writing to the file system

Denying a pod write access to its file system can prevent an

attacker from downloading and installing tools within a

compromised container. You will need to make sure that the

container does not require write access to function.

Nginx

Running Nginx without write access is tricky because it buffers

large requests & responses and log files on disk. There are

(un-supported) ways to get it to work4, but I haven’t had

success running our application.

Kestrel

Running a dotnet core process on Kestrel can be done, but

that also requires an undocumented workaround. You need

to disable a feature called COMPlus diagnostics (which seems

to be there for diagnostic support) by defining an environment

variable in your Kubernetes template or dockerfile:

COMPlus_EnableDiagnostic=0

By applying these measures, you can now safely run such

containers using the ‘restricted’ PSP. But how do you

create a policy and apply it to a pod?

Defining a policy
You can create a custom policy by deploying a YAML file to

the Kubernetes cluster. Your restrictive policy could look like

Figure 2:

apiVersion: policy/v1beta1

kind: PodSecurityPolicy

metadata:

 name: 00-restricted-policy

 annotations:

 seccomp.security.alpha.kubernetes.io/

allowedProfileNames: ‘runtime/default’

 apparmor.security.beta.kubernetes.io/

allowedProfileNames: ‘runtime/default’

 seccomp.security.alpha.kubernetes.io/

defaultProfileName: ‘runtime/default’

 apparmor.security.beta.kubernetes.io/

defaultProfileName: ‘runtime/default’

spec:

 privileged: false

 allowPrivilegeEscalation: false

 requiredDropCapabilities:

 - ALL

2 https://kubernetes.io/docs/concepts/policy/pod-security-policy/#what-is-a-pod-security-policy
3 https://blog.trailofbits.com/2019/07/19/understanding-docker-container-escapes/
4 https://medium.com/urban-massage-product/nginx-with-docker-easier-said-than-done-d1b5815d00d0

XPRT. Magazine N°

9/2019

019

 volumes:

 - ‘configMap’

 - ‘secret’

 - ‘persistentVolumeClaim’

 hostNetwork: false

 hostIPC: false

 hostPID: false

 runAsUser:

 rule: ‘MustRunAsNonRoot’

 seLinux:

 rule: ‘RunAsAny’

 supplementalGroups:

 rule: ‘MustRunAs’

 ranges:

 - min: 1

 max: 65535

 fsGroup:

 rule: ‘MustRunAs’

 ranges:

 - min: 1

 max: 65535

 readOnlyRootFilesystem: true

Figure 2: Restrictive policy

The first lines enable the use of seccomp and AppArmor

(default) profiles by using annotations. The policy also

prevents running as root and use of root groups, using a

non-zero value. It also prevents access to the host. Note that

the last line denies pods access to the root file system within

the container.

Applying a policy

You can apply a Pod security policy to a pod, by using

‘Role-Based Access Control’ (RBAC). First, you create a

ClusterRole that allows the cluster-wide use of the policy,

as you see in Figure 3:

kind: ClusterRole

apiVersion: rbac.authorization.k8s.io/v1

metadata:

 name: restricted-policy-clusterrole

rules:

- apiGroups:

 - extensions

 resources:

 - podsecuritypolicies

 resourceNames:

 - 00-restricted-policy

 verbs:

 - use

Figure 3: Cluster role that allows use of policy

You may have noticed that the name of the policy starts

with ‘00’; this is because policies are applied in alphabetical

order when multiple policies match the pod requirements.

The built-in ‘restricted’ policy applies to every authenticated

user, so to apply your policy it must be higher in the

alphabetical sorting order. Adding the ‘00’ prefix ensures

your policy prevails.

We now have a role that allows the use of the custom policy.

Loek Duys

020 CLOUD

The next step is to configure a service account with that role.

We can do this by creating a new service account to run pods

in a namespace, and a RoleBinding that connects the service

account to the cluster role, as displayed in Figure 4:

apiVersion: v1

kind: ServiceAccount

metadata:

 name: be-pods

 namespace: prod

automountServiceAccountToken: false

!!-

#schedules backend pods under policy

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

 name: restricted-policy-clusterrolebinding-be

 namespace: prod

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: restricted-policy-clusterrole

subjects:

- kind: ServiceAccount

 name: be-pods

 namespace: prod

Figure 4: Service account with role binding

We configured the pod security context to use the service

account named ‘be-pods’ using the setting ‘service-

AccountName‘. If we now run this deployment, all new pods

will use the PSP named ’00-restricted-policy’. Every pod

that runs under this service account in the namespace ‘prod’

will be forced to comply with the attached policy.

I’ve shown a very specific way to bind a specific service

account to a PSP. Note that you can use various settings in the

‘subjects’ property to target multiple service accounts, for

example, to include all service accounts inside a namespace.

Read more about this online5.

You may have noticed that we create the service account with

an additional setting ‘automountServiceAccountToken’

with the value ‘false’. We do this to prevent Kubernetes from

providing an API token to access the management API to pods.

Most containers don’t need access to management API.

Omitting this token from pods is an additional security

measure.

5 https://kubernetes.io/docs/reference/access-authn-authz/rbac/#rolebinding-and-clusterrolebinding

XPRT. Magazine N°

9/2019

021

Figure 5: From PSP to Pod

Figure 5 shows a schematic flow that describes how a policy is

applied to a pod.

Checking which policy is applied

You can use the ‘kubectl’ CLI tool to see the effect of a

policy applied to your pod. Examine the output of this

command:

kubectl get pod/webapi-6cbd96c775-s42pq !-namespace
prod -o yaml

apiVersion: v1

kind: Pod

metadata:

 annotations:

 container.apparmor.security.beta.kubernetes.io/

backend: runtime/default

 kubernetes.io/psp: 00-restricted-policy

 seccomp.security.alpha.kubernetes.io/pod: runtime/

default

Please note that the annotation ‘kubernetes.io/psp’ indi-

cates the value ‘00-restricted-policy’. This value means

that the custom PSP was applied to this pod. If the pod repor-

ted the value ‘restricted’, it would mean that the built-in

‘restricted’ default policy was applied instead.

Checking service account role binding

You can verify that a service account is configured properly to

use the cluster role by examining the output of this command:

kubectl !-as=system:serviceaccount:prod:be-pods `

!-namespace prod auth can-i use podsecuritypolicy/

00-restricted-policy

yes

If the output value is ‘yes’, the service account is allowed to use

the custom policy. You can also assert that the service account

can not use the built-in privileged policy:

kubectl !-as=system:serviceaccount:prod:be-pods `

!-namespace prod auth can-i use podsecuritypolicy/

privileged

no

Dealing with disaster
Once you have enabled the PSP feature with incorrectly

configured policies, your pods may fail to start. You may have

configured too many restrictions to your pods, or system

services may be affected by the built-in ‘restricted’ policy.

If you cannot fix this immediately, you can disable the feature

by using the following CLI commands:

az account set !-subscription !<your subscription!>

az aks update !-resource-group !<group!> !-name

!<cluster!> !-disable-pod-security-policy

Disabling the feature will not remove any existing policies,

roles or bindings. The policies will simply not be enforced any

longer.

To (re)enable the feature:

az account set !-subscription !<your subscription!>

az aks update !-resource-group !<group!> !-name

!<cluster!> !-enable-pod-security-policy

Conclusion
Pod security policies provide a powerful tool that restricts

privileges assigned to your pods without you having to define

rules for every individual pod. If you are not already using

them, start using Pod Security Policies today, and make it

much more difficult for compromised containers to harm the

rest of your system.

Policy

managers privileges

ClusterRole

allows use of policy

RoleBinding

assigns role to user

ServiceAccount

runs pods

Pod

runs under policy rules

022 COMMUNITY

I’ve been the Executive Director of the .NET Foundation since early 2017. Usually when I talk
to people about it, they say something like “Wow, that’s great… um… what’s that?” Honestly,

before I joined the team, I didn’t know much about the .NET Foundation, or software
foundations in general. The previous Executive Director of the .NET Foundation, .NET open
source icon Martin Woodward, let me know that he was moving on to an exciting new role

at Microsoft, and he wanted me to consider taking his role in the .NET Foundation.
Fortunately, I got to learn about the .NET Foundation from Martin and Beth, and when

I understood what the .NET Foundation is, I was excited both to get involved and to
spread the word.

Author Jon Galloway

The .NET Foundation:
What .NET Developers

Need To Know

I think the best way to understand the

.NET Foundation is to look at what

problems and challenges it endeavors

to solve.

As a .NET developer, my experien-

ce with open source started out all

sunshine and rainbows: “Wow, people

are just going to write software, then

give it away… including the source

code?” Then after a while, I started

getting involved in contributing to open

source projects, and that was pretty

awesome, too! I got to collaborate with

some top notch programmers, and we

got to decide what features we wanted

to build and how things would work.

Then, over time, open source became

more mainstream, and more compa-

nies started shipping code under open

source licenses and supporting open

source projects. It was great!

But after a while, I started seeing some

recurring challenges:

 Projects I really liked would sometimes

be abandoned. Often what seemed

like a really strong, established project

came down to just one or two people,

working nights and weekends, and

then they’d get a new job, have some

kids, or just get burned out, and the

project would grind to a halt.

 Successful projects would start to get

overloaded administrative burdens,

miscellaneous costs for things like web

hosting and certificates would grow,

and all of those things would distract

from fixing bugs and shipping features.

 The growing interest in open source

from large companies was great, but

it brought some complications, too.

How could community members

collaborate effectively on a project

that was mostly run – and funded –

by a big company?

It turns out that many of these

challenges aren’t new, and different

open source communities have already

tackled them by establishing software

foundations. You may be familiar with

some of them by name, even if you’re

not sure exactly what they do: Apache

Foundation, Linux Foundation, Eclipse

Foundation, Software Freedom

Conservancy, OpenJS Foundation,

etc. These foundations are all unique

in their approaches and communities,

but at a high level all of them exist as

independent entities that are focused

on keeping an open source ecosystem

healthy and growing.

The .NET Foundation is an independent

organization (founded and partially

supported by Microsoft, but separate)

focused on supporting the open source

.NET community. So let’s talk about

how it has approached some of the

challenges I mentioned above, and then

look at how we’re going to build on that

in the future.

An independent home for .NET
open source collaboration
One of the original key focus areas of

the foundation was to allow for healthy,

authentic collaboration on the .NET

platform that Microsoft had been

developing largely behind closed doors

until 2014. At that time, as .NET Core

was being created as a new cross-

platform development platform, it was

important that it be a real open source

project, developed in the open,

and with significant community

collaboration and ownership. This was

especially important due to the history

of .NET as a closed source product; in

XPRT. Magazine N°

9/2019

023

order for the community to see this

as a true open source, collaboratively

run project, it couldn’t be “owned” by

Microsoft. So it’s not – and if you look

at the source code for .NET Core,

you’ll see that the code is copyright

.NET Foundation, not Microsoft.

All developers who contribute code to

.NET Core sign a Contributor License

Agreement (CLA), and every commit

is contributing that code to the .NET

Foundation. This allows for developers

worldwide – independent developers in

the community, developers working at

thousands of companies, and Microsoft

employees – all to collaborate on the

same codebase, since the source code

is all under the ownership of a neutral

third party whose central focus is

to support the open source .NET

community.

And it’s worked! Since that time, we’ve

seen a ton of community contribution

and involvement in .NET Core. 87% of

our contributors are outside of

Microsoft, and over 61,000 pull

requests from the community have

been accepted. Matt Warren has written

a yearly blog post series1 where he

analyzes community contribution to

.NET repositories, and it continues to

show a huge amount of momentum.

The Cloud Native Computing

Foundation shows .NET as eighth on

their list of the top 30 highest velocity

open source projects on GitHub.

Supporting .NET Open Source
Projects
Another important focus area for the

.NET Foundation has been to support

community contributed projects.

The .NET community has built some

really useful open source projects, but

many of these are run by small teams of

volunteers. In order to build a healthy

ecosystem, we want to do what we can

to make sure these projects can con-

tinue to grow and thrive over the long

term. This is important for everyone –

we want project leaders to be

successful and happy so they’ll keep

building and releasing great projects;

as consumers of open source, we want

to be able to rely on projects staying

around, releasing updates, fixing issues,

etc.

The .NET Foundation supports over

75 member projects in a lot of

important ways. One really important

aspect is Intellectual Property (IP) and

Legal support. When a project joins

the .NET Foundation, the source code

is contributed to the .NET Foundation

and we set them up with the same CLA

system that’s used for .NET Core so all

future contributions are contributed to

the .NET Foundation. That’s helpful for

the project leaders since we can legally

defend any issues around code

ownership or infringement. It’s also

really important to consumers. Instead

of depending on “one or two random

people on the internet”, the project is

supported by a legal entity for the long

term, so even if the project leaders

disappear (I like to say “wins the lottery”

rather than “gets hit by a bus”), the

project can add new maintainers and

continue on.

We also provide a lot of services to

projects to cut down on administrative

work and costs, so the project leaders

can focus on building software.

This includes things like website hosting,

devops services, certificates, marketing

support, and subscriptions to a lot of

online services. One example is secret

sharing services like our LastPass

enterprise subscription to allow project

leaders to securely share passwords and

other keys so that there’s no single point

of failure.

There’s also a lot of case by case

support where a project needs help

with a specific issue. In one case, one

day I noticed on Twitter a community

project that offers debugging symbols

for NuGet packages was shutting down.

They’d been offering a service with both

free and paid levels of support; after

running that for a few years, they

decided that the paid model wasn’t

earning enough to support the free

service, and they were going to have to

shut it down. I reached out to them and,

together with the NuGet team, we

worked to bring them on as a .NET

Foundation project and run the free

service using .NET Foundation Azure

resources.

Another fun project was getting code

signing certificates and services for .NET

Foundation projects. It’s a best practice

for open source projects to sign their

binary distributions (installers, NuGet

packages, etc.), but getting a code

signing service requires that your

project be registered as a legal entity,

and setting up code signing for builds

is a little complex. Oren Novotny, who

was then an advisory council member

and has since been elected as a board

member, came up with a great solution

where we would register projects

as trade names under the .NET

Foundation. We worked with DigiCert,

a certificate provider, to get discounted

certificates for .NET Foundation project.

We actually got the .NET Foundation

set up as a sub-certifying authority,

which allows each project to be issued

a certificate in their own name.

Then we set up a code signing service

on our .NET Foundation Azure

subscription and brought on any of our

projects that wanted to make use of it.

It took several months of meetings,

false starts, legal agreements, and

technical setup, but it really helps out

our projects. Again, this was Oren’s

idea, but I was really happy to be able

to make it an official .NET Foundation

initiative and help get it done.

Building a healthy worldwide
.NET developer community
In addition to the open source colla-

boration and project support areas, the

.NET Foundation does a lot to support

the worldwide .NET community.

We set up a Meetup Pro group to make

it easier to find a local group, and it’s

since grown to over 300 groups in

60 countries. We work with Meetup

leaders to organize local events.

For instance, every September the

.NET Foundation helps run an online

conference called .NET Conf, and we

work with our Meetup network to help

them run local viewing parties and

follow-on events through the end of

October. We send them swag packs to

1 https://aka.ms/dotnet-oss-community-contributions

024 COMMUNITY

give away to attendees, presentation

materials, and help promote their

events. Some Meetups have turned

these events into mini-conferences that

last a few days and bring in hundreds of

attendees.

Scaling up
Being the executive director of the

.NET Foundation is an interesting,

exciting, challenging job. I’m a Microsoft

employee, and they donate a lot of my

time to the .NET Foundation, kind of like

when a company allows an employee

to contribute to an open source project.

I report to our board of directors and

work with our advisory council and

technical steering / corporate sponsor

group. I just listed all the things the

.NET Foundation does; my job is to

make all those things happen. I manage

everything from budget and business

registrations, legal agreements, new

initiatives, communications, our swag

store, local events, and new things as

they happen. Obviously, having just one

person do everything doesn’t scale well,

so another important part of my job is

to evolve the organization to allow for

more people to get involved.

Recently, we made some big changes to

help the community get more involved:

.NET Foundation Open Membership2

and a community elected board of

directors. The .NET Foundation has

been a separate entity since it was

founded, but two of our three directors

have been Microsoft employees and

the third was appointed by Microsoft,

so it wasn’t really that independent.

We looked at a lot of other open source

software foundations and decided

we liked how the GNOME foundation

worked: people who are active in the

developer community can apply to

become members, and the members

elect their own board. So our new

board has one Microsoft appointed

member (Beth Massi), and the remaining

six directors are members who ran for

the position. Each of them serves for

one year, after which they can run for

re-election if they want. It's important

for two main reasons:

 This very clearly gives control of the

.NET Foundation to the open source

.NET Community. That allows them to

decide what the foundation does,

and also gets the word out to the

community so a lot more people can

get involved.

 This is a good model to scale up what

we can get done. Instead of one

executive director (me) doing all the

work, we now have seven board

members and hundreds of community

members who can form teams and

work on things they see as important.

Time for Action!
One of the first things our new board of

directors did was agree on some new

action groups. The whole idea is to

scale up, from one person doing all

the day to day stuff (me) to teams of

dozens of community members.

They’re basically committees, but I

liked the name action group since

committees can be really focused on

talking and we want these action groups

to be focused on doing. Action!

Here’s the list of action groups:

 Project Support: As we bring on more

projects, we need to scale up better to

review new project applications, get

new projects set up, handle case by

case support issues, etc.

 Outreach: Focused on reaching new

developers, with a special focus on

diversity and inclusion. We’d like our

membership, and the .NET developer

community, to be available and

welcoming to everyone, spanning

genders, races, cultures, age groups,

and blind spots we weren’t even aware

of.

 Membership: This team reviews new

member applications, and helps figure

out what membership means –

benefits, ways to get involved, etc.

 Corporate Relations: .NET is heavily

used in business, and this team

focuses on that relationship. It reaches

out to corporate sponsors, and

looks at how we can better involve

corporations and corporate

developers in.NET open source.

 Speakers and Meetups: Now that we

have a network of over 300 worldwide

Meetups, this group works on

connecting speakers and meetup.

We’re working to set up a speaker

bureau, speaker grants program to

cover travel, mentorship for new

speakers, etc.

 Technical Review: The goal of the

technical review group is to provide an

independent viewpoint, separate from

Microsoft, on the technical direction

of our projects.

 Marketing: The main goal of marketing

is to create consistent, powerful

storytelling in order to increase share

of voice and establish .NET Foundation

industry relevance. We focus on the

marketing efforts for the .NET

Foundation itself and .NET in general.

 Communications: This team focuses

on communicating and coordinating

our regular communications with

the .NET Foundation members and

broader .NET open source community.

An important goal of all of these action

groups is to document how we do

things, so new people can get involved

and we can eliminate single points of

failure. In the same way that the .NET

Foundation has been working for years

to make sure projects are sustainable

and not dependent on individuals to

keep functioning, we also need the

.NET Foundation itself to be set up as a

sustainable and scalable organization.

As expected, there are growing pains.

A lot of things are easy to do when it’s

one or two people following systems

and policies that are only in their head.

However, they take a little time to

document and turn over to a team.

The process has also required us

to figure out how to effectively

communicate with larger teams.

We’ve settled on GitHub organizational

teams for discussions and moved things

like our monthly newsletter and project

onboarding to public GitHub repos.

It’s already paying off – things are

moving faster, and having more people

involved is resulting in a lot higher

quality. We’ve started with the Project

Support and Marketing teams since

those processes were the best

defined, and in some cases partially

documented; now we’re working to roll

those practices out across our other

teams.

2 https://dotnetfoundation.org/blog/2018/12/04/announcing-net-foundation-open-membership

025

XPRT. Magazine N°

9/2019

Get Involved!
If you’re interested in getting involved,

now is a great time! Start by applying

for individual membership3. In order

to apply, you need to have contributed

to the open source .NET community,

but the requirements aren’t designed

to keep anyone out. Contributions

may include code contributions,

documentation, or other significant

project contribution, including

evangelism, teaching, code, organizing

events, etc. If in doubt, please ask us at

contact@dotnetfoundation.org. Once

you’ve joined the .NET Foundation as

a member, you can get involved in one

of our action groups, and you can

participate in our annual board

elections, either by voting or running

for a seat.

If you’re a .NET developer, the .NET

Foundation is for you. We exist to

make sure that the .NET community is

healthy and growing, and to support

the projects you care about. Join us!

3 https://dotnetfoundation.org/become-a-member

Jon Galloway

026 COMMUNITY

We felt that these children should also be able to learn to code

and not be treated any differently than the rest. To fix this,

we are collaborating with researchers from LIACS of Leiden

University1 within their “Inclusive programming education”

project. In this project, the researchers are looking at what

materials children of elementary school-age can use to learn

to program in the classroom.

This article focuses on the process we went through, where

we are now and what our future plans are for this project.

How we got the idea
More than a year ago we were both in Oslo having some

drinks together. Reinier was there for the NDC conference,

and Marc was working on-site at a client. We discussed our

work and that we would both like to promote social

responsibility efforts within Xpirit. We just didn’t know exactly

which form it would take. Reinier attended the talk “How to

teach programming and other things?” by Felienne2 at NDC,

and that provided us with some inspiration.

Goal
Our goal is to create a fun and educative experience for kids

with and without visual impairment. The inclusivity is

important because visually impaired children are often mixed

in with non-visually impaired children. According to the

researchers from LIACS, both teachers and children are asking

for inclusive teaching materials.

How to teach
programming to

blind children
In the Netherlands, there are approximately 3300 children who are visually impaired or blind.

Within this group, and especially children between the ages of 7 and 10, there is a lack of
appropriate material or methods to teach them programming. Block-based programming,

often used by children without visual disabilities of this age group, is not accessible for visually
impaired children. Common text-based languages, such as Python or Javascript, are still too

difficult for this age group.

Authors Marc Duiker & Reinier van Maanen

How we started
At Xpirit, we have a couple of innovation days each year.

We can use these days for anything we like as long as we share

what we have learned so that the entire team can benefit

from it. Some colleagues investigate the latest version of a

development framework while others contribute to an open-

source project of their liking. In the morning, we start with a

‘stand-up’ format to announce the topics and create teams.

The teams spend nearly a full day on the topics and later in

the afternoon they give short demos on what they achieved &

learned (and how many yaks have been shaved3).

We started the project with a brainstorm session on how we

could achieve our goal. Here are the mind maps from the

brainstorm:

Figure 1: Defining our goal

1 LIACS website: https://liacs.leidenuniv.nl/
2 NDC talk by Felienne: https://www.youtube.com/watch?v=Ygk9CCRWOJs
3 Yak Shaving: https://en.wiktionary.org/wiki/yak_shaving

Conditional
statements

Blind

Inclusive

Dutch language

Stories

Visually impaired

Variables

Loops

Teach
programming What Goal

How

Focus on interest
of childeren

Who

Childeren

027

XPRT. Magazine N°

9/2019

Figure 2: Exploring game ideas

After two brainstorm sessions, we started with the idea of

making a physical board game with playing cards, containing

both text and braille, which are used to build a programming

sequence. Although it was fun to think about programming

concepts in the form of playing cards and laying them out in

a structure to form a small program, it has some significant

drawbacks. The first one is that it’s limiting the kind of

programs you can ‘write’ with these cards. Secondly, and this

was the biggest problem, there was no right way of quickly

determining whether the children had placed the cards in the

correct sequence. The correct answers could be presented

in a separate document (again with braille), but we found that

the feedback cycle from putting down cards and verifying the

output was not convenient.

Parallel to prototyping the physical game, we also tried to

create a quick mockup in Unity to simulate the game.

However, since we didn’t have much experience with this

framework, it took us too long to do quick simulations of

the game so we abandoned the idea.

We realized that, in order to have decent progress, we should

stick to the tools and techniques we already know, or that are

close to our abilities. So we decided to create a digital game

instead of a physical one.

Web-based text adventure
When we started to think about a computer game we arrived

very quickly at a web-based game, a web-based text

adventure to be more specific. Our reasons for liking this

solution so much are:

1. The web and web browsers have good support for screen

readers used by visually impaired people to have the text

read aloud. This means that the format of the game has to

be text-based.

2. A web-based game can be played on any device, so schools

do not have to invest in special or extra hardware. Lots of

schools use laptops or Chromebooks these days and our

game runs perfectly on these.

3. We can easily add more content and add additional features

to a solution hosted in the cloud.

The advantage of making a digital game over a physical one

is that we now have better control over the gameplay. We can

guide the children through the game, provide help when

needed and verify their input.

Another great advantage of making a digital game is that we

can separate the content from the gameplay. So we’re making

a game engine with a generic web interface (it’s all text-based)

which can run different adventure stories.

The Story

An adventure game needs a story. We created a very small one

just to prove the game engine works. Our intention is that new

stories can be added by non-technical people. The story is a

very basic escape room situation in which the user needs to find

a key to unlock the door. The user needs to type in commands

such as: Open the cupboard and pick up the key.

How we made it
The solution, named Louise after one of the technologies

used, consists of a back-end with the chatbot and a front-

end for exposing the chatbot over the web. Both the chatbot

and the front-end are deployed to Azure. Besides these three

things, we’re also going to talk about LUIS, as that is an

important part of the solution.

Back-end project

This project makes use of three major technologies:

 Microsoft Bot Framework4

 Microsoft Language Understanding Intelligent Service (LUIS)5

 Bing SpellChecker6.

The Microsoft Bot Framework makes creating chatbots easy.

It’s a pretty standard ASP.NET Core application bundled with

a bunch of NuGet packages like ‘Microsoft.Bot.Builder’.

This package contains the ‘IBot’ interface, which you

implement by creating the ‘OnTurnAsync’ method:

public async Task OnTurnAsync(ITurnContext
turnContext, CancellationToken cancellationToken)
{
 !!.

 if (turnContext.Activity.Type != ActivityTypes.
Message)

 {
 var dialogContext = await _dialogSet.Create-

ContextAsync(turnContext, cancellationToken);

 if (dialogContext.ActiveDialog != null)
 {
 await dialogContext.ContinueDialogAsync(

cancellationToken);
 }
 else
 {
 await dialogContext.BeginDialogAsync

(“StoryPrompt”, “1”, cancellationToken);
 var replyMessage = _story.ToMessage-

ForFirstScene();
 await turnContext.SendActivityAsync(

replyMessage, cancellationToken);
 }
 }

 !!.
}

4 Microsoft Bot framework: https://dev.botframework.com/
5 Microsoft LUIS: https://eu.luis.ai/home
6 Bing SpellChecker: https://docs.microsoft.com/en-us/azure/

cognitive-services/bing-spell-check/

Custom
solution

Alternatives?

Physical
blocks

Teams/buddies
Smart board

Sounds Storyline

RoboRally
inspired

Score by order of cards
and # of cards used

Playing cards with
programming concepts

Text + Braille

Image
recognitionInstruct?

Boardgame

Web portal

Game

Scratch

028 COOMUNITY

This method is invoked with every

incoming activity with the bot.

The ITurnContext interface passed

in provides access to information

about the current activity and the text

provided by the user. A few of the

possible activities are ‘Message’,

‘Typing’ or ‘EndOfConversation’.

The interface also allows you to

respond with another activity, for

instance, a reply message.

In this particular instance, when a

new message comes in, we use the

‘DialogSet’ which we initialized in

the constructor. A DialogSet is a

collection of dialogs implemented in

this bot. A dialog is a structure which

the framework uses to guide the person

interacting with the bot to the goal. We

make use of a ‘WaterfallDialog’

and a ‘TextPrompt’. The text prompt

is a simple prompt for text to the user

with built-in validation. Other prompts

are number prompt, choice prompt

and many others. The text prompt isn’t

used directly but is referenced by the

waterfall dialog. A waterfall dialog is

just a sequence of steps, in our case a

practically unlimited amount of the text

prompt mentioned earlier. This is the

basis for our game engine.

Figure 3: Waterfall Dialog

When a new message comes in, we check whether we already have an active

dialog, and if not, we begin the dialog ‘StoryPrompt’, which is the id of our

‘WaterfallDialog’. If we begin a new dialog, we also immediately send a text

message (with or without an audio attachment) for the first scene of the story.

DialogContext Begin Waterfall

› Begin Promt 1

› Process result from Promt 1

› Begin Promt 2

› Process result from Promt 2

› Begin Promt 3

› Process result from Promt 3

› EndDialog (stack entry goes away)

Waterfall Step 1

Push Waterfall

Push Promt 1

Pop Promt 1

Push Promt 2

Pop Promt 2

Push Promt 3

Pop Promt 3

Pop Waterfall

Waterfall Step 2

Waterfall Step 3

Waterfall Step 4

029

Figure 4: First scene in the story

At this point, we’re in the first step of the waterfall dialog and

the user is in the first text prompt. For any messages coming in

afterward, we detect that there is already an active dialog and

continue with that and process the answer given in the text

prompt. At that point the custom validation step of the text

prompt kicks in. A couple of things happen there: The Bing

spellchecker corrects any mistakes in the input, and the

corrected input is passed into LUIS, which is Microsoft’s

Language Understanding Intelligent Service. With LUIS we try

and figure out what the intent of the user is. What is he/she

trying to do? More on LUIS and some key concepts later.

Creating a recognizer (another concept of the Bot framework)

for LUIS, with Bing spellchecking, is easy to do:

private IRecognizer CreateLuisRecognizer()
{
 var luisAppId = Configuration.GetSection

(“LuisAppId”).Value;
 var luisEndpointKey = Configuration.GetSecti-
on(“LuisEndpointKey”).Value;
 var luisEndpoint = Configuration.GetSection

(“LuisEndpoint”).Value;

 var app = new LuisApplication(luisAppId,
luisEndpointKey, luisEndpoint);

 var options = new LuisPredictionOptions()
 {
 BingSpellCheckSubscriptionKey = Configuration.

GetSection(“LuisBingSpellCheckSubscription-
Key”).Value,

 SpellCheck = true,
 Log = true
 };

 return new LuisRecognizer(app, options, true);
}

This dependency is injected into our bot and we just call

the method ‘RecognizeAsync’, passing in the turn context

which provides access to the answer given by the user.

The recognizer result, containing the intent of the user and

how sure LUIS was about that being the correct intent, is then

passed into a new class we wrote, the IntentHandler.

That class contains most of our “business logic”, dealing with

all the possible scenarios. Because we felt it was quite difficult

to properly unit test the bot framework code, we decided to

keep the framework code separate from our code as much as

possible, which is probably good practice in any case.

The final code of our custom validation looks like this:

public async Task<bool> CustomPromptValidator Async
(PromptValidatorContext<string> promptContext,
CancellationToken cancellationToken)
{
 var turnContext = promptContext.Context;
 var recognizerResult = await _luisRecognizer.

RecognizeAsync(turnContext, cancellationToken);
 var intentHandler = new IntentHandler(_accessors,

_story, turnContext, recognizerResult);
 var result = await intentHandler.Handle

(recognizerResult.GetTopScoringIntent(),
cancellationToken);

 return result;
}

If the intent of the user matches with a possible intent as

defined in the story, the story continues with a new scene and

a corresponding new message is sent to the user. If the intent

wasn’t clear, or LUIS wasn’t sure enough of the intent, we also

sent a new message, asking the user to be more specific.

The last major part of implementing a chatbot is registering

the implementation in the Startup.cs:

public void ConfigureServices(IServiceCollection
services)
{
 services.AddBot(sp !> new LouiseBot(), options !>
 {
 if (Env.IsProduction())
 {
 var appId = Configuration.GetSection(

“MicrosoftAppId”).Value;
 var appPassword = Configuration.

GetSection(“MicrosoftAppPassword”).Value;
 options.CredentialProvider = new SimpleCre-

dentialProvider(appId, appPassword);
 }

 ILogger logger = LoggerFactory.CreateLogger
<LouiseBot>();

 options.OnTurnError = async (context,
exception) !>

 {
 logger.LogError($”Exception caught:

{exception}”);

 var message = “Sorry, it looks like
something went wrong.”;

 if(Env.IsDevelopment())
 {
 message += “ Exception: “ + exception;
 }

 await context.SendActivityAsync(message);
 };

 IStorage dataStore = new MemoryStorage();
 var conversationState = new Conversation-

State(dataStore);
 options.State.Add(conversationState);
 });
}

XPRT. Magazine N°

9/2019

030 COMMUNITY

Next up is the stories project, which contains all the code

we have to support the various stories of the text-based

adventure.

Stories project

The content and flow of the game are captured in a story file

in markdown format. A story file consists of several scenes,

with IDs, descriptions, sounds and possible actions that map

to LUIS intents and entities.

Here’s an example of a scene in a story file:

!# [2.2, investigate the window]

You walk towards the window. You feel thick metal bars

are placed in front of it. Outside a bird flies past.

No, you can't exit the room here.

Choose what you're going to do now:

[- investigate, Investigate,,, 2]

[- investigate the door, InvestigateObject, object,

Door, 2.1]

[- investigate the cupboard, InvestigateObject, object,

Cupboard, 2.3]

Audio [crow.mp3]

Although markdown works well for us now because it is quick

to edit, we realize we need a more structured way to persist

the story to make this more scalable and manageable.

We are going to move to a cloud-based data store and an

API to manage the content.

The bottom part of the story file contains instructions for LUIS

in LUDown format7. We use a script to extract this part, and

convert it to JSON which can be imported in the LUIS ma-

nagement portal.

Front-end project

The chatbot is exposed through a website, which is pretty

easy to do. We added a web project with a single Razor page,

containing just the following code which integrates with the

Web Chat channel of our bot (more on that in the Azure

section).

@page

@model IndexModel

@{

 ViewData[“Title”] = “An adventure!”;

}

 <div class=”text-center”>

 <p>Hi, say something in the chat-window below

to start an awesome adventure!!/p>

 <iframe src=’https:!/webchat.botframework.com/

embed/MviLouiseBot?s=SECRET’ style=’min-width: 400px;

width: 100%; min-height: 500px;’>!/iframe>

 !/div>

The result is a simple chat, which works pretty well on all the

devices and browsers that we tried. Autoplaying of audio files

doesn’t work for all browsers, but no major issues. One thing

that is still on our todo list is checking the compatibility of the

chat with well-known screen readers, which is a pretty major

thing for blind kids, but our primary focus was to first get a

working prototype; UI can always easily be changed if needed.

This has been something we’ve been struggling with during

the entire process: we’re not used to developing for the

visually impaired, constantly using words as “you see this or

that”, or wanting to use colors, images and many more that’s

just not possible. It’s been a great learning experience!

Azure

The Azure side of things isn’t too complicated either: the bot

itself is deployed to an App Service. At that point, you could

probably interact with the deployed endpoint directly (we

didn’t try), but the easy way to integrate your bot is by creating

a “Bot Channels Registration”. You just specify the name of

your bot, its messaging endpoint (URL of your App Service +

“/api/messages”) and choose a pricing tier (free or standard).

You can link to Application Insights as well if you want some

analytics for your bot, which gives you a couple of nice

diagrams showing the number of users, user retention,

amount of activities separated by channel.

Figure 5: Bot Channel Analytics

These channels are your integration possibilities which you

create inside of the Bot Channels Registration and there are

a lot of options: Web Chat, Slack, Cortana, Teams, Telegram,

Facebook, Email, Direct Line (custom integrations) and more.

As we are exposing the bot with a website, we created a Web

Chat channel. We also experimented with Slack, which works

fine as well but isn’t well suited for our use case as it’s not easy

enough to access.

Another thing you can do with the Bot Channel Registration

is testing your bot with the “Test in Web Chat” option, which

gives you a nice built-in chat in the Azure Portal to test

whether things are working. Of course you don’t want to

deploy every time and while we mentioned earlier that unit

testing was a bit difficult, there is another way to test your bot:

The Bot Framework Emulator8, a tool provided by Microsoft

to test and debug your bot locally.

7 LUDown: https://github.com/microsoft/botbuilder-tools/tree/master/packages/ludown
8 Microsoft Bot Framework Emulator: https://github.com/microsoft/BotFramework-Emulator

XPRT. Magazine N°

9/2019

031

Marc Duiker

“Our goal is to create
a fun and educative
experience for kids
with and without
visual impairment.”

032 COMMUNITY

LUIS

So what are these intents and entities we’ve mentioned earlier?

They are concepts from LUIS, the Language Understanding

Intelligent Service from Microsoft. With LUIS you can add

natural language understanding capabilities to your

application. It is used frequently when creating a chatbot

interface.

Intents are configurable goals you want your users to achieve.

Usually, there are many different ways to describe one intent

and your end-users will use different phrases to achieve the

same goal. LUIS helps to understand the user input and

translate it to an intent you can use in your application.

Let’s take this example intent: Examine the door. Alternatives

to this include: Look at the door, Investigate the door and

Check out the door. They all have the same meaning.

Entities are objects which play a role in achieving the goal.

In the above example, door is the entity. You can use custom

Entities based on a certain type (Simple, Hierarchy or List) or

use a prebuilt one, such as Age, Money or Temperature.

Once the intents and entities and have been imported from

the story file we train and test the LUIS model using the portal.

We found we always need to provide more examples for

LUIS to understand the many variations we humans use in

describing our goals and actions. Once we’re satisfied with the

level of understanding, we will publish the model as a service

so it can be used with the bot framework.

Field testing, future work & sponsorship
At the start of the new school season, the researchers of

LIACS will use our solution in a real classroom so children

with and without visual impairment can test it.

In parallel, we will focus on features on our backlog such as:

 Sharing a completed story with family and friends.

 Multiplayer support so children can work together.

 A portal for teachers to:

 manage story content

 analyze user input to help improve the story

 monitor story progress for an entire classroom.

We’ve made great progress, but there’s still lots to be done.

We’re still looking for sponsors in order to keep working

on this amazing project outside the innovation days.

Please contact us if you want to support this project in

any way!

Figure 6: LUIS Intents in the portal

Marc Duiker Reinier van Maanen

XPRT. Magazine N°

9/2019

033

On November 12th[2014], we announced

.NET Core, a new open source project

to build a cross-platform .NET, which

started with just four libraries.

The ASP.NET web stack had been open

source since 2008 as well as the F#

language in 2010, but with the C# and

Visual Basic.NET compiler now open

source, this opened the door for the

entire .NET platform. Later that year on

November 12th, we announced .NET

Core, a new open source project to

build a cross-platform .NET, which

started with just four libraries.

We wanted to “do open source right”

by starting from the beginning in the

open and we did it on GitHub.

The announcement landed #1 on

Hacker News for most of the day, bea-

ting the Philae probe landing on

a comet. It was a big deal.

Getting to that point was also a big deal.

It took a lot of work from many people

inside and outside Microsoft.

Looking at ASP.NET’s open source

history, the source code was open

and the community could contribute

issues and code. However, the work

from Microsoft wasn’t truly done in the

open at the time. Bits were worked on

internally and then “dropped” into the

repo (Codeplex back then). Still, it was a

first step into changing the way we build

software.

We (the “Developer Division” enginee-

ring team at Microsoft) knew that we

needed to change the approach to how

we were working. We were coming off

the Windows 8 hangover and most of

the industry was moving to open web

technologies and open standards. We

needed to modernize our platform in

order to grow. The only way we were

going to succeed was with the help of

the community.

Why did we do it?
So, why did we need an open source

software foundation? It was S.

Somasegar (Soma) that pushed this idea

to us. Soma was the Corporate Vice

President of Developer Division at the

time and our executive sponsor.

Soma believed that the survival of the

.NET ecosystem depended on the

open source community and we

needed a foundation to foster it.

He approached my manager,

Jay Schmelzer, who owned the .NET

Framework and languages, and we

started working. We looked to the

ASP.NET team run by Scott Hunter, a

separate team in the Azure group back

then, as the role model open source

project at Microsoft. Soma knew that

we needed to change the perception of

Microsoft in the open source world and

the creation of the .NET Foundation,

and the open sourcing of the platform

would prove to be a strong step.

We also had projects from the

community as well as our own that

needed help; not just legal and licensing

help but basic development services like

code signing and CI/CD. We also had

customers that needed to trust and

rely on .NET. I was the community

manager for the .NET platform team

before any of our stuff was open source.

And I was on the v-team that stood up

the .NET Foundation itself. We were

going through a culture change

internally and our customers needed to

also come with us.

Building an
Open Source
.NET Foundation
It was April, 3rd 2014 when Anders Hejlsberg, father of the C# language, got on stage during
the keynote at the Build conference in San Francisco and released the .NET Compiler Platform
(“Roslyn”) as open source and made the first pull request. That same keynote, Scott Guthrie,
Executive Vice President of Cloud & Enterprise group and one of the original creators of the
ASP.NET web stack, announced the creation of the .NET Foundation. This was a pivotal point in
.NET’s open source journey which spawned the avalanche of releasing software as open source
at Microsoft. This is the story of the .NET Foundation.

Author Beth Massi

034 COMMUNITY

The challenge was to make sure we

didn’t lose trust – to make sure our

customers understood that open

sourcing .NET was not the end of the

platform, but the beginning.

Many of our customers expected all the

software they used to come from

Microsoft. It was a direct result of us

creating a hugely successful closed

source ecosystem. Microsoft also didn’t

have the greatest track record with

some of the open source projects we

did release – where they were basically

“thrown over the wall” and abandoned.

The challenge was to make sure we

didn’t lose trust – to make sure our

customers understood that open

sourcing .NET was not the end of the

platform, but the beginning. We had

to get it right.

How did we start?
The .NET Foundation needed to be an

independent organization, but it also

needed heavy Microsoft backing so

our customers would feel safe. We also

wanted to bring in commercial partners

to help us modernize the platform.

Initially, Samsung and Red Hat joined

us in those efforts, and then eventually

we expanded these partners to form the

technical steering group and corporate

sponsors we have today.

Because we also had existing open

source projects maintained by the

community that already had their own

governance models, we decided to

build the infrastructure slowly and learn

along the way. And let’s face it, we didn’t

know what we were doing, so we

needed to go with a modest approach

to governance. There was a joke at

the time; create the “minimal viable

foundation”. So that’s what we did.

Believe me when I say there were some

people who didn’t think we could do it

at all.

We consulted lots of people. Robin

Ginn, who was also on the .NET

Foundation v-team, played a critical role

introducing us to open source leaders.

She was working for MS Open Tech at

the time and has a vast network in the

open source community. Many leaders

including Miguel de Icaza, Ross Gardler

and Jim Zemlin guided our thinking.

As a community manager for a closed

product line, I soaked up open source

learnings like a sponge. It was a whole

new world for me. The open source

community is huge, and I had (and still

have) a lot to learn.

The first thing we needed to tend to

when we were starting the .NET Core

project was the licensing of .NET

Framework (our original Windows

implementation of .NET).

The first thing we needed to tend to

when we were starting the .NET Core

project was the licensing of .NET

Framework (our original Windows

implementation of .NET). We needed

patent clarification so we could assure

the community that Microsoft would

Beth Massi

XPRT. Magazine N°

9/2019

035

not come after anyone for using the

code. .NET Framework’s code is source

open, meaning the code is available but

we didn’t take contributions back in the

true open source sense (you can’t make

PRs). We called it reference source.

We changed the license for the

reference source to MIT license so

anyone could copy the .NET Framework

code. This was important for the Mono

and .NET Core implementations.

We literally had PRs coming in the

moment we opened the repo.

We knew we made the right decision

right away. When we first started .NET

Core the community was overwhel-

mingly helpful, and we literally had PRs

coming in the moment we opened the

repo. Within a couple of months, while

we all were focusing on Linux, one

person in the community, @kangaroo,

added macOS support to the .NET Core

runtime! We were deeply humbled by

the energy. I recall someone saying that

the community had increased our core

team size by 60% right off the bat.

Of course, it all didn’t go smoothly.

Engineering leads now had to be

accountable for public code reviews.

We needed to have the same

processes for internal and external

PRs. We needed to balance internal

conversations with public conver-

sations. We needed to change our

marketing strategy. We needed to figure

out how to explain completely changing

a direction in designs (project.json to

csproj anyone?). How do we get our

customers to understand the “new way

of software development” from

Microsoft? Making a sausage isn’t pretty.

Ushering culture change
Exactly one year after announcing the

.NET Foundation, we hired our first

Executive Director, Martin Woodward.

I was still working as the community

manager and I was super excited to

have someone that cares as deeply

about the community as me join the

team. Martin started in the Java

community and has a lot of experience

running open source projects and

using open source software. He was

a key person in changing our culture.

He was actually backstage on April 3rd,

2014 at Microsoft Build making sure the

Roslyn code went public on Codeplex

without any hiccups, as he was the lead

for Codeplex at the time. He also looked

after the Microsoft org on GitHub and

did a lot of other great stuff for our

ALM business.

Martin worked to make the .NET

Foundation real with an advisory

committee and technical steering

group. He created the dotnet org on

GitHub and did a lot of the actual

implementation of the “vision” of the

foundation. Lots of paperwork.

He wanted to democratize the

contributions to enable anyone to

contribute. He created value with

project services like contributor

license agreements, build and

deployment services, code of conduct

implementation, and conflict resolution

processes. Basically, all the stuff that

takes people away from making actual

contributions (writing code, raising and

discussing issues, writing docs…).

There were many sleepless nights

looking after employee welfare and

making sure we were building up the

skills on our team to manage and

work with the community together

effectively.

There were many sleepless nights

looking after employee welfare and

making sure we were building up the

skills on our team to manage and work

with the community together

effectively. Martin wanted to make sure

we could innovate quickly, but still

have an SLA to make our customers

comfortable. This requires employee

resources way beyond just people

writing code. We needed “social

engineers” working in our repos.

We needed to build a new muscle.

But it allowed us to be extremely agile

and get instant feedback.

He also started the vision to create a

user group consortium, to bring all

the .NET meetups around the world

together to teach, learn, and colla-

borate. He also began a blueprint for a

much more open membership model,

as he knew eventually the foundation

would need to scale. As a community

manager I worked closely with Martin.

It was one of the best times and

proudest moments in my career.

We all worked toward making the .NET

Foundation the center of gravity for

.NET open source.

New role, same passion
Then I moved to product marketing.

I became the Product Marketing

Manager for the .NET platform in late

2015. I decided to move to marketing

for two main reasons. First, after being

a community manager and developer

advocate at Microsoft since 2007, it

was time for me to try something new.

Second, I felt that the engineering team

had become good community

representatives themselves as part of

going open source. They didn’t really

need me in that capacity anymore.

Fortunately, I remained (and still remain)

an important part of the .NET

Foundation execution and strategy.

Today we have over 75 projects in the

foundation.

In this new role, I worked with Martin

to bring the .NET Foundation message

to a much broader audience.

In November 2016, at one of our big

online developer events called

“Connect”, we announced Google

joining our technical steering group

and brought in a bunch more projects.

Today we have over 75 projects and

550 repos in the foundation. I was also

able to help the .NET Foundation by

building strategic relationships and

getting our presence into non-Microsoft

events and placements.

New leadership, more growth
In February 2017 Jon Galloway became

the next Executive Director. Jon was a

developer advocate and .NET expert

for many years and it was a natural fit

for him to continue to drive the .NET

Foundation forward. Well-known in the

.NET community, he has pushed to

organize our user groups scattered

around the world into one cohesive

community. He’s brought on a huge

amount of new innovative .NET open

036 COMMUNITY

source projects, facilitated a partnership

to provide free code-signing certificates

and signing services to member

projects, spoken at many events,

produces a lot of technical content,

and has been the keystone of “running

the business” for the .NET Foundation.

We’ve expanded our meetups to over

300 groups in 60 countries, and

organized our largest online .NET

Conf ever in September.

We’ve continued to push the .NET

Foundation forward with Jon at the

helm. We’ve expanded our meetups

to over 300 groups in 60 countries,

expanded our social and online

footprint, conducted Hackfests and

participated in Hacktoberfest, and are

bringing on more projects and

partners. Our annual, online .NET Conf

in September was the largest ever, and

we anticipate it being even bigger

this year with the launch of .NET Core

3.0 on September 23 and many open

source project leaders delivering

sessions (see www.dotnetconf.net for

details).

Jon’s passion for the community has

clearly shown the progress we’ve made.

Jon is awesome at helping overworked

teams streamline their processes and

cutting out costs associated with

building open source software.

He wants project teams, large and

small, to be successful. You’ll see that

there is a varying degree of team sizes

across the open source projects in the

foundation today.

Growing up
Even with all that success, there was still

only so much the foundation could do.

The next step for the .NET Foundation

was to scale. Microsoft was the only

company providing funding for the .NET

Foundation and had two of the three

board seats. Although one seat out of

the three board seats was a community-

held position, and the advisory council

and technical steering group consist of

strategic non-Microsoft partners, we

knew it was time to go broader and get

fresh ideas. It was time to grow up.

Over the course of Jon’s tenure, we’ve

worked to make the vision Martin laid

out for an open membership model a

reality.

In December 2018, we announced

membership model changes so that

the community will directly guide

foundation operations.

The Board of Directors has expanded to

seven members, one seat appointed by

Microsoft and the other six open to the

wider .NET community.

The Board of Directors expanded to

seven members, one seat appointed by

Microsoft and the other six open to the

wider .NET community for people to

volunteer for a seat on the Board.

Board elections were completed in

March 2019 and will happen annually.

Any person who has contributed in

any way to any .NET Foundation open

source project is eligible to run for the

Board and to vote. This new structure

is helping the .NET Foundation scale

to meet the needs of the growing .NET

open source ecosystem.

We had a ton of fantastic, diverse

candidates run for the board. I was truly

impressed with many of the campaign

pages and qualifications that each

person could bring to the table.

In the end, the community elected

Ben Adams, Iris Classon, Jon Skeet,

Oren Novotny, Phil Haack, and Sara

Chipps.

I am the one appointed to the Microsoft

seat on the new Board of Directors

and I promise to always have the best

interests of the .NET platform and

community in mind when making

decisions.

What are we working on now?
Open source software foundations are

important for the entire open source

ecosystem, including contributors,

project leaders, consumers, as well as

businesses that depend on open source.

The .NET Foundation’s role is to provide

a center of gravity for .NET open

source and to make sure the code that

everyone relies on lives beyond the

initial creators. We also foster the

ecosystem by supporting our

community in many different ways.

The Board of Directors is in the process

of defining action groups and

committees in the following areas:

Membership, Technical Review,

Marketing, Corporate Relations,

Community Outreach, Speaker Bureau

and Meetups, and Project Support.

Right now most groups are just being

defined on goals and setting up to scale

out to the many volunteers. I’m leading

the Marketing group with Phil Haack and

we just opened up our meetings to our

broader set of volunteers. It’s exciting to

see the passion our members have and

a fun challenge to help enable them to

do their best work.

How can you get involved?
If you rely on .NET and want to see

the ecosystem thrive, then become a

.NET Foundation member! Join in the

member discussions on GitHub and

help us with our action groups.

Anyone who has contributed anything

to the .NET open source ecosystem can

become a member. You don’t have to

contribute code, you could contribute

to documentation, file an issue, write a

blog, run a meetup group or organize

.NET events. We’re looking for members

that have a wide variety of backgrounds,

not only coders.

Get started here:

https://dotnetfoundation.org/

become-a-member

Conclusion
I am incredibly excited about the future

of the .NET ecosystem and honored to

be on the .NET Foundation Board.

The platform is expanding and

innovating constantly, our community

is growing, and our customers are

growing with us. I am thoroughly

enjoying the ride and know that the

future is very bright. I hope you get

involved and participate with us!

You can learn more about .NET

Foundation and get involved on the

website dotnetfoundation.org. You can

reach me on Twitter @BethMassi.

XPRT. Magazine N°

9/2019

037

We arrived at the DevOps cycle as shown in Figure 1, in which

the DevOps pipeline joins the worlds of Data Scientists and

App developers together. In this article we’ll explore how to

set up each of the steps in this workflow using components

available in Azure Machine Learning Services and Python

scripts.

Data Scientist IDE
It all starts with the Integrated Development Environment.

All teams, and data science teams in particular, have their own

way of doing things that they have cultivated and tweaked

through time. The tools in Azure have been built with this in

mind, and support a model of ‘bring your own’: whether it

is your own datastore, compute power or source control

methods: Azure Machine Learning usually supports them.

You can choose to use Jupyter Notebooks, Data Bricks

Clusters, or your Python scripts. The available solutions range

from “everything on your own laptop” to “fully SaaS Jupyter

notebooks” and a lot of options in between.

DevOps for Data Science Part II

From theory to practice
using Azure Machine
Learning Services
In the previous issue of XPRT magazine1 we discussed the DevOps process for a
Data Science team. We explained how the general principles in DevOps are used
when developing Artificial Intelligence or Machine Learning models that can be
used in a multitude of applications.

Authors Rob Bos & Kees Verhaar

1 https://pages.xpirit.com/magazine8

IDE

IDE

Version
control

Model
Management

App
developer

Data scientist

DevOps
Pipeline

Telemetry

Hosting Working
app

Figure 1: Implementation of the typical DevOps cycle for application development combined with Data Science

038 DEVOPS

For example:

 Local computer: install all the tools you want yourself, you

are responsible for maintaining everything yourself, including

backups, etc.

 Data Science VM: essentially the same as your local com-

puter, except everything is pre-installed, with the most

common libraries already installed. This also is an easy and

repeatable method for deploying machines in Azure with all

the tools installed. When you are done with your project or

analysis run, you can safely delete them.

 Python scripts: to ensure you are completely independent of

a specific runtime environment.

 Azure Notebooks: hosted Jupyter notebooks, where you do

not have to update the runtime environment.

These options enable you to create a process that matches

your own workflow. In the rest of this article we will use

Python scripts to show you an example workflow and how

that integrates with Azure ML Services.

Model management
Data Science Model development is essentially a three-stage

process, as shown in Figure 2: you prepare training data, then

use that to build and train your model, and finally deploy it to

production. Each stage has its own iteration cycle and results

in components that can be used in the next stage.

Figure 2: A typical Data Science workflow

Azure ML Services takes a key role in this process. It provides

a place to manage the compute resources available to your

team, automate your model training process, track model

versions and results, and manage deployments.

Creating a workspace
Before you can use Azure ML services, you’ll need a work-

space and connect to it from your Python code. The work-

space can be seen as a project or collection of everything you

need in the development process of a model. You can use

Azure’s role-based access control (RBAC) to share the work-

space with your team.

To create a workspace from Python, you import the Azure ML

SDK and write a couple of lines of Python:
import os
from azureml.core import Workspace

Load the parameters we need to create a workspace
subscription_id = os.getenv(
 “SUBSCRIPTION_ID”, default=”xprt-1234-xprt-1234”)
resource_group = os.getenv(“RESOURCE_GROUP”,
default=”mlpipeline”)

workspace_name = os.getenv(“WORKSPACE_NAME”,
default=”magazine9-mlpipeline”)
workspace_region = os.getenv(“WORKSPACE_REGION”,
default=”westeurope”)

Connect to existing workspace or create a new one
try:
 ws = Workspace(subscription_id=subscription_id,
 resource_group=resource_group,

workspace_name=workspace_name)
 # write the details of the workspace to a

configuration file to the notebook library
 ws.write_config()
except:
 # Create the workspace using the specified

parameters
 ws = Workspace.create(name=workspace_name,
 subscription_id=

subscription_id,
 resource_group=resource_

group,
 location=workspace_region,
 create_resource_group=True,
 exist_ok=True)
 ws.get_details()

 # write the details of the workspace to a
configuration file to the notebook library

 ws.write_config()

The code shown above tries to connect to an existing

work space based on the set environment variables. If the

workspace doesn’t exist, it will create it. In both cases, the

workspace configuration is written to a file so it can easily be

reused later. The SDK uses this file to connect to the work-

space and is used in all the environments in the same way.

You can include this code in a Python script or run it from a

Jupyter Notebook.

Managing compute
Preparing data and training a model takes a lot of compute

power. The power of the cloud is available in various options

(e.g. DataBricks or Azure ML Services compute). That enables

you to skip doing the heavy calculations on your development

machine and utilize a server in the cloud. This compute power

is available on demand, so you can easily do periodical

reevaluations when the dataset has changed as new data

comes in. Managing your compute targets through Azure ML

service allows your team to share (sometimes costly) compute

targets, which of course saves costs. It also makes it simple

Prepare data Build & Train Deploy

Figure 3: An Azure ML service workspace in the Azure portal

039

XPRT. Magazine N°

9/2019

to execute computationally highly intense jobs on large and

complex clusters of machines. It also enables you to scale the

compute in and out based on your usage. You can even scale

the compute down to zero if you are not using anything!

The scaling is calculated on a metric like the percentage of

CPU or RAM used over a period of time. This is used for

scaling up as well as for scaling down.

Before you can execute jobs on a compute target, you’ll need

to define it in your code. The following code segment shows

how this is done in Python, using the Azure ML SDK:
Create compute
cpu_cluster_name = “cpu-cluster”

Verify that the cluster does not exist already
try:
 cpu_cluster = ComputeTarget(workspace=ws,

name=cpu_cluster_name)
 print(“Found existing cpu-cluster”)
except ComputeTargetException:
 print(“Creating new cpu-cluster”)

 # Specify the configuration for a new Azure Machi-
ne Learning Cluster

 compute_config = AmlCompute.provisioning_
configuration(vm_size=”STANDARD_D2_V2”,

 min_nodes=0,
 max_nodes=4)

 # Create the AML cluster with the specified name
and configuration

 cpu_cluster = ComputeTarget.create(ws, cpu_
cluster_name, compute_config)

 # Wait for the cluster to complete, show the
output log

 cpu_cluster.wait_for_completion(show_
output=True)

As mentioned before, you can connect many types of

compute targets to Azure ML service2. The code as shown

above connects to an existing “Azure Machine Learning

Cluster” (which is the simplest form of compute to create)

in the ML Service workspace, or it creates one if it doesn’t

exist. When creating an AML cluster, you specify the VM size

and the minimum and maximum number of nodes.

A minimum of zero means the cluster will be shut down after

some time of inactivity, which again helps in reducing cost.

It is common practice to start with a maximum of four nodes

and run the experiments to get a feeling for the problem you

are trying to solve, and whether or not it will benefit from

more compute power.

Data preparation & model training
When you have your IDE and compute targets set up, you can

start building your model. This starts with preparing data and

then training the model. This is an iterative process, which

can easily take many cycles before getting a model that meets

your requirements. Azure ML services provides a place for

automating this process, which is important for repeatability

and traceability. This automated process is captured in a ML

pipeline, which consists of multiple steps. For example, to

create a step that executes a Python script on the cluster we

just created:

Specify the directory that contains the Python code
for this step
source_directory = ‘./train’
print(‘Source directory for the step is {}.’.format(
 os.path.realpath(source_directory)))

Specify the script to execute from the source_
directory
and the compute target for this step (the cluster
we just created in this case)
step1 = PythonScriptStep(name=”train_step”,
 script_name=”train.py”,
 compute_target=cpu_cluster,
 source_directory=source_

directory,
 allow_reuse=True)

By specifying a unique source directory for each step, Azure

ML pipelines will cache the result of the step, so it can be

re-used in subsequent pipeline runs if the files in the source

directory haven’t changed. In a similar fashion, you can define

pipeline steps to be executed on, for example Azure Data-

Bricks or Azure Batch. Once all steps are defined, you combine

them into a ML pipeline:

list of steps to run
steps = [step1, step2, step3]
print(“Step lists created”)

Build the pipeline. All steps will be executed in
parallel
pipeline1 = Pipeline(workspace=ws, steps=steps)
print(“Pipeline is built”)

Submit the pipeline to be executed
pipeline_run1 = Experiment(ws, ‘Hello_World1’).
submit(
 pipeline1, regenerate_outputs=False)
print(“Pipeline is submitted for execution”)

pipeline1.publish(name=’Hello_World1 pipeline’,
 description=’My very cool pipeline’)

In this case, all steps will be executed in parallel, since they

are independent. If you explicitly specify inputs and outputs of

steps, the Azure ML pipeline will calculate dependencies and

execute steps in the appropriate order.

By publishing the pipeline, it becomes available for your team

to view, edit, and re-run. You can trigger the pipeline from

the Azure Portal, but you can also do this programmatically

through a simple REST request:

Retrieve an AAD token to authenticate your REST
request
auth = InteractiveLoginAuthentication()
aad_token = auth.get_authentication_header()

Get the rest endpoint from the pipeline. You can also
get this from the Azure portal
all_pub_pipelines = PublishedPipeline.list(ws)
pipeline_to_start = all_pub_pipelines[0]
rest_endpoint1 = pipeline_to_start.endpoint

2 https://docs.microsoft.com/en-us/azure/machine-learning/service/concept-compute-target#train

040 DEVOPS

print(“You can perform HTTP POST on URL {} to trigger
this pipeline”.format(rest_endpoint1))

Start the pipeline. You can optionally specify para-
meters for the pipeline as a json body
response = requests.post(rest_endpoint1,
 headers=aad_token,
 json={“ExperimentName”:

“My_Pipeline1”,
 “RunSource”: “SDK”,
 “ParameterAssignments”:

{“pipeline_arg”: 45}})
run_id = response.json()[“Id”]
print(run_id)

When tuning a model and its parameters, you typically execute

your pipeline many times. The pipeline results are stored in

an experiment, where each iteration of an experiment results

in a “run”. Azure ML services tracks these runs and the results

in a central place. By logging the appropriate attributes from

the ML pipeline, the Data Science team can collectively see

graphical logged information, like model performance

indicators and duration metrics. They can even see the version

of the data the model was trained with, so they can take

decisions based on that information.

To log a specific value, invoke the start_logging() method

on your experiment and then use the log(…) method to log

a metric:

exp = Experiment(workspace=ws, name=’test_
experiment’)
run = exp.start_logging()

run.log(“test-val”, 10)

By invoking the log() method during training you will get a

visualization of that metric in your Azure ML workspace.

In this example we will show the charts for two values we

are logging:

Registering a model
When you are happy with your model results, it’s time to

register it. By registering your model, you assign a certain

status to it. This can be anything from an Alpha/Beta labeling

scheme to a version number. Published models can then

(potentially) be deployed to production. The model to register

is the output of an experiment run. Registering a model from a

run is simple:

run.register_model(‘super cool model’)

More advanced scenarios include automated evaluation of the

model, and depending on the outcome of the evaluation, this

can be registered. For example: only register the model if it

performs better than our currently deployed model. The way

to quantify “performs better”, is up to you. It is then trivial to

include this step in your ML pipeline, further automating your

process.

Deployment using an Azure DevOps pipeline
When you have a versioned model that performs at the

required level, it is time to deploy it. A deployed model enables

an application to actually use the model to make predictions

with. There are a lot of options to deploy a model, like hosting

it in a webservice or a Docker container that can be deployed

anywhere you want. That choice depends on the application

that will use the model and the requirements you have.

The most common scenario will be to create a Docker

container and deploy, for example in Azure Kubernetes Service

(AKS) or Azure Container Instance(ACI), or even in an Azure

App Service!

In this scenario you’ll need a scoring script that is executed

against the model. The scoring script accepts inputs, feeds

them to the actual model, and presents the output back to the

user. An example of a scoring script is a simple webserver that

accepts a REST request with some input and sends the model

response back in JSON format. The scoring script is packaged

in a Docker container, together with the actual model.

There are various ways to deploy the model from Azure ML

Services, but the most flexible method is to use Azure DevOps.

This also opens up options for integrating with other parts of

your application and their deployment pipelines.

It also has additional benefits in terms of monitoring model

performance, as we’ll see later.

Deploying your models with Azure DevOps can be done in

multiple ways, depending on the preferences of the Data

Science team:

 From a Python script with the Azure ML Service and include

it in you Azure Pipeline.

from azureml.core.model import Model
model = Model.register(workspace=ws, model_path=
”model.pkl”, model_name=”model-test”)

 Using the Azure ML extension in the Azure CLI3.

3 https://aka.ms/aml-cli

041

XPRT. Magazine N°

9/2019

This also registers the deployment in Azure ML service and

annotates it with the version number and other metadata to

provide end-to-end traceability. Especially in an Enterprise

environment it is important to have logging on what was

changed and by whom.

Machine Learning extension in Azure DevOps
A very helpful Azure DevOps extension is the “Machine

Learning” extension4. This enables you to trigger a release

whenever a new model is registered. The new model is then

an artefact to trigger your release on. It also provides extra

tasks to deploy a model to Azure ML services and to set the

optimal values for CPU and memory options for the Docker

container to use, and which are retrieved from the metadata

in Azure ML services.

Telemetry
In any DevOps culture, monitoring the running software is a

key ingredient to a healthy process. This is also true for Data

Science: once your model is deployed, you want to know how

it performs. Without any monitoring you do not know anything

about the data that the model gets and generates, or when

the model needs tuning due to data drift. You might even be

influencing some results with the predictions from the model!

There are two levels of performance that are interesting:

model performance and technical data.

Model performance
Monitoring model performance over time means you need

to gather data on accuracy and data drift. Data drift occurs

when production inputs turn out to have different

characteristics than the data used to train the model. In order

to analyze model accuracy and the amount of data drift

occurring, it is necessary to collect model input and outputs

and analyzing them.

If you have your model deployed in AKS, it’s very easy to

gather the required data by just including a few lines of Python

in your scoring script5. Collected data is stored in blob storage.

From there you can retrieve it, and analyze it through e.g.

DataBricks or PowerBI.

from azureml.monitoring import ModelDataCollector

global inputs_dc, prediction_dc
inputs_dc = ModelDataCollector(“best_model”,
identifier=”inputs”, feature_names=[“feat1”, “feat2”,
“feat3”. “feat4”, “feat5”, “feat6”])
prediction_dc = ModelDataCollector(“best_model”, iden-
tifier=”predictions”, feature_names=[“prediction1”,
“prediction2”])

data = np.array(data)
result = model.predict(data)
inputs_dc.collect(data) #this call is saving our
input data into Azure Blob
prediction_dc.collect(result) #this call is saving our
prediction results into Azure Blob

Technical data
Just like any other application or service, it is vital to make

sure your model is always up and running like it should.

For this you’ll need to gather performance data, such as

response times, any exceptions that occurred, etc. In Azure

ML, this is implemented through Application Insights.

When deploying to AKS from Azure ML, technical data

collection is enabled by setting the appropriate parameter

in your deployment configuration:

aks_config = AksWebservice.deploy_configuration
(collect_model_data=True, enable_app_
insights=True)

Data is then automatically gathered in Application Insights,

from which you can analyze it, configure alerts, etc.

Conclusion
The best options for your Data Science process depend

heavily on what you’re trying to achieve and on the skills of

the team. We’ve shown a very simple setup to show the basics,

and much more is possible. We’ve also shown how flexible the

tooling has become to set up an Azure DevOps Pipeline using

Python, used by most Data Science teams.

4 https://marketplace.visualstudio.com/items?itemName=ms-air-aiagility.vss-services-azureml
5 https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-enable-data-collection#enable-data-collection

Rob Bos Kees Verhaar

“In any DevOps culture,
monitoring the running
software is a key ingredient
to a healthy process.
This is also true for Data
Science.”

042 DEVOPS

MONITORING2 is tooling or a technical

solution that allows teams to watch and

understand the state of their systems.

Monitoring is based on gathering a

predefined set of metrics or logs.

OBSERVABILITY3 is a measure of how

well internal states of a system can be

inferred from knowledge of its external

outputs”.

Looking at both definitions there is a

fundamental difference between them.

Freely stated, that difference comes

down to this. Monitoring and dash-

boards are often used to get alerts in

issues that have already occurred in the

past. Think of a disk-full message. It is

great to get a message but the issue

itself is not resolved. We can categorize

this as “Known-Unknowns”.

When we think of Observability, we

should think of complex software

systems that sometimes fall over.

Think of a distributed calculation across

multiple services that may provide a

result. But is the perceived result a result

that is a combination of all required

calculations? We can classify this as

“Unknown-Unknowns”. To be able

to answer these kinds of questions,

our complex systems need to gather

information that is queryable so we can

determine whether calculations are fine.

Gathering insights in this way is very

valuable.

If we are in the middle of a crisis, it is

likely that multiple issues are happening

at the same time. The root causes of a

failure often consist of multiple chained

events. Having extensive telemetry

available about your application(s) and

its architectural landscape allows you

to define metrics that will help you

determine the issues at hand. We need

smarter decision making.

Why aren’t our current monitoring
solutions sufficient?
The way we build software and infra-

structure is changing rapidly. Trends

like Cloud, Containers, Micro service

architectures, and serverless (Functions

as a Service) are fundamentally

changing the way we build and operate

applications. Almost all modern

applications are far more distributed

than their predecessors, and this

requires a different approach from an

operations perspective.

Traditional monitoring solutions are built

for an era in which applications were

less distributed and fewer things could

go wrong inside the application itself.

In the current distributed era, in which

components call each other over the

network instead of residing on the same

machine, chances of failures are a lot

higher. This is a paradigm shift we must

consider when building our application

by adding retry mechanisms and other

forms of resilience to our applications.

A failing service call does not mean our

application doesn’t work anymore.

It is something that we know will

happen because of the way we shape

our application.

Because of this we must make a shift

from measuring technical failures only

to start measuring the impact these

failures have on our end-users. It does

not mean that any of these technical

measurements are useless, they still

provide valuable information, but we

should not create alerts or dashboards

based on these measurements.

Observability:
Closing the
DevOps loop
When we coin the term observability people often think “ah, you are hype-wording what
we already do, but we call it monitoring”. In the DORA 2018 State of DevOps report1 this is
being reported as respondents not seeing a difference between Monitoring and Observability.
That is unfortunate, and we believe there are big differences. Let us start with comparing
the definitions.

Authors Geert van der Cruijsen & Jasper Gilhuis

1 DORA 2018 State of DevOps report https://devops-research.com/2018/08/announcing-accelerate-state-of-devops-2018/
2 Definition of Monitoring taken from the DORA Report
3 Definition of Observability from Control Theory (https://en.wikipedia.org/wiki/Observability)

XPRT. Magazine N°

9/2019

Observability vs Monitoring
Traditional monitoring is often done by

creating several dashboards that show

the current health of an application.

Experience tells us that this is no longer

sufficient. Have you ever had a

customer calling you that something

did not work, and when you took a look

at your dashboards, everything was still

green?

Observability takes a different approach

compared to monitoring. Observability

is about instrumenting your code to be

able to inspect what goes wrong with-

out having to change the application

itself. The term Observability comes

from control theory. The definition fits

modern software development

methodologies in which DevOps teams

build and run the applications instead

of having a team that is dedicated to

running and monitoring applications.

Because a single team is responsible,

they have far more insight in what an

application does internally and what

could go wrong. They are also

motivated to add instrumentation

because they will be the team that gets

called out of bed when something

goes wrong.

The three pillars of observability
Observability is gaining a lot of traction

lately and there are many vendors and

open source projects jumping into the

gap of building solutions to help with

observability. In this article we do not

want to focus on specific tools because

we believe there is no single best

solution for all companies, teams and

application architectures.

What almost all these tools have in

common is that they define observa-

bility based on three pillars: logging,

metrics and distributed tracing.

Depending on whether the tool can

cover all of these areas or only one or

two of them, the vendor will draw

different diagrams of how these pillars

relate. There are tools that cover all

three areas, and that will tell you all

pillars are closely related. And there

are tools that focus on only metrics.

Combining logging and distributed

tracing will tell you these pillars are so

different that you should approach

them separately with specific tools. As

always, the truth is: it depends. There

are several factors that influence this:

the complexity of your application and

your organization, or the number of

messages or daily users of your appli-

cation.

Figure 1 Pillars of observability

Each of the pillars has a specific usage

and the combination of them gives you

the observability to be able to query

applications when things go south.

Logging
Logging is something almost every

developer is familiar with. Logs capture

events happening in your application

and store them so you can query them

to get insights. A downside of plain logs

is that they are really hard to search,

especially in a distributed system in

which a complete log of what happened

to a user is divided over multiple

services. A solution is to use a

centralized logging solution. Popular

choices when building an application on

Azure are the ELK stack or Application

insights.

Normal logging:
Log.Information("Request by userA

took 35ms");

Structured logging (serilog)
Log.Information("Request by {User}

took {Duration}", user, duration);

In addition to centralized logging, you

will also need a way to store your logs

in such way that you can actually search

your logs easier than searching through

plain text files. Structured logging is a

way to turn your plain log files into

queryable log files. Serilog and log4net

are two libraries that can help you

create structured logs in the .Net eco-

system, and there are libraries available

for most development languages. Most

centralized logging systems are made

to store and query structured logging

and support logfiles created by these

libraries.

As you can see in the sample, the

method used in structured logging

is not that much harder than normal

logging. However, the benefit is that

the User and Duration object are now

queryable in central logging tools,

which means that it is a lot easier to see

all logs for a certain user for example.

Most of the infrastructure components

also have built in logging like web

servers, databases, firewalls etc. It can

be valuable to also send these logs to

your centralized logging system to get

a complete picture of what happened

in your application.

The main downside of logging is that

it can become expensive quickly.

It’s easy to add logs to your application

but what happens when you get

thousands or millions of users a day.

How long do you store logs, and do you

store all of them? Again, this question

can only be answered with “it depends”.

First of all, we have to make a distinction

between operational logging and

application logging. Operational logging

is logging that is used to track whether

an application is working as intended

while application logging can be

used to see what the application did

functionally. Application logging

provides data that you always want to

store for longer periods of time and you

want to store all of it. It does not even

have to be in your log system. It could

be stored together with the business

data itself, such as audit trails or logs of

all the statuses an order had.

Metrics

Metrics

Tracing

Tracing

Logging

Logging

044 DEVOPS

Don’t mix these types of logging

with operational logs which help you

track down bugs or problems in your

application. People tend to store these

operational logs for long periods of time

as well, but how useful is that? How

much information do they provide when

you regularly deploy new versions that

might have completely different code

paths? In general, these logs should not

be stored for long periods.

However, even if you store logs for

about a month or less, this could be

quite expensive to store if you have

large amounts of users in a complex

application. Because of that, most

logging systems have an option to

sample the data. This means that only a

percentage of the actual logs is stored

and the rest is thrown away. This has

some downsides to it because you

cannot trace back all the issues you had

because you do not have all the logs.

On the other hand, most logging tools

have the option to do dynamic

sampling which does not randomly

remove logs, but especially keeps all the

special events that behave differently

from all other operations.

Metrics
Metrics are a way to store aggregated

measurements as time series data.

This has a large advantage as it is a lot

cheaper to store the data, because

you aggregate the events together per

interval. Also, the growth of the storage

is constant because it writes records at

fixed intervals.

The way we use metrics is different from

logs because we lose some specifics

when storing metrics instead of logging

all the events separately. For example,

you could store the average request

duration in a metric and you will only

have the average number. When you

log the duration of each request you

can get more accurate numbers like

maximums, minimums and calculate

the average as well. Does this mean you

should log instead of using metrics?

No! Both have their strengths and they

should be used in combination. Pick the

right solution for the information you

want to store.

Averages are often named as examples

when talking about metrics. However,

averages can hide important indicators

when used in large amounts of data.

If you track the average request duration

and 90% of the requests are taking 0.01

second and 10% takes 2 seconds the

average request duration is 0.2 seconds.

When you only see a 0.2 seconds

average you might think everything is

quite okay but those users belonging

to the 10% that take 2 seconds per call

won’t agree with you. Instead of

averages you could therefore also look

into percentiles.

Distributed Tracing
The last pillar of observability is

distributed tracing. Distributed tracing

can give you insights in how the flow of

your application was. So, whereas

logging or metrics could help you

measure how long certain requests

took, distributed tracing can help you

investigate WHY a request needed that

response time and which components

were used in the flow of this request.

This kind of information is useful

especially in distributed systems.

Distributed tracing tools provide insights

that might look quite familiar when you

use the network tab in developer tool-

bars, that is included in most browsers.

Since tracing can span multiple systems,

components or services, it’s important

that it is possible to write tracing

information. Because of this the Open

Tracing project was started to create

a vendor neutral API for distributed

tracing. OpenCensus is another project

aiming for the same thing and the good

thing is that these two projects are

merging together (opentracing.io &

opencensus.io). Asp.Net Core also

supports this library from .Net Core

3 onwards out of the box, so services

created with this will automatically

work together with tools like Jaeger

or Zipkin.

What to measure
So now that we know how to measure

things using the three pillars of

observability, what are the things we

should measure? An easy way to

remember this is to “USE RED”. This is

an abbreviation that stands for: USE

(Utilization, Saturation & Error Rate)

which we measure at a resource scope,

and RED (Rate, Errors & Duration)

which we measure on a request-based

scope.

Resource scope

Measuring things at a resource scope

can be valuable to track down

performance problems in a system.

What do Utilization, Saturation and

Error Rate mean?

 Utilization: How much time was this

resource actually busy responding to

requests?

 Saturation: Is the resource able to

handle all requests or is work waiting

to be picked up / queued?

 Error Rate: How many errors does this

resource produce?

Request-based scope

Measuring on a request-based scope

can give you insight in how certain

functions are performing. We do this

using Rate, Errors & Duration

 Rate: Number of requests per second.

 Errors: Request error rate, what is the

percentage of failing requests?

 Duration: Response time, Latency.

How long did it take to handle the

requests?

Figure 2 Example of an open source tracing tool (Jaeger)

XPRT. Magazine N°

9/2019

045

How observability can change the way you build
systems
A very well-known picture in the industry is the infinite DevOps

loop. Many occurrences and spin-offs exist. In most of them

the term monitoring is present. Now that we understand the

differences and gaps, we believe the term monitoring in that

loop should also imply implementing observability patterns

and practices.

Changes are often made to systems without clearly knowing

whether the result will be better. Or if there are no unintended

side effects. You want to make decisions that are proven to be

working by observability. An often-heard answer is that it is too

costly to change your application. But there are some good

patterns that you can apply that will help you make the right

decisions.

Figure 3 Testing in Production4

The above picture4 shows us a very good overview of patterns

and practices that can help you implement an observable

system. Building an observable system starts at the beginning

of the DevOps loop.

There are numerous types of testing that are aimed at the

coding and testing phase, for instance unit tests, static code

analysis, mutation tests, UI/UX tests and so on. They can

be applied to the application in order to gain confidence in

whether is being built is the right thing! If your system is

lacking these practices, it becomes nearly impossible to obtain

confidence in releases of that software. Just having these

kinds of test is not enough.

During the deployment and releasing phase there are many

practices that can be applied. Applying Canary releases and

using Feature flags to safely release your software without

impacting users allow you to release more confidently and

use traffic routing to get a percentage of your users hit the

new system after switching a feature toggle. Monitoring and

observability then become key to be able to determine if your

system is in a correct state.

For feedback (i.e. bugs, issues, new features) to transition

smoothly there is a need to apply Site Reliability Engineering

(SRE) practices to the DevOps loop. Which means that your

engineers (Developers, Operations and your on-call support

people and all others) should be aligned on how to deal with

that feedback.

Conclusion
Many aspects of observability are of a technical nature, so

making it visible for the organization and your customers is a

challenge. We should apply all these practices and come up

with tools and visualizations that show that we are in control

of the system and will be able to meet our predefined goals.

Many of the professionals and subject matter experts use

best of breed tooling to fit their needs. This also implies

that there is no single tool to rule them all. In a true DevOps

nature we do not want to enforce these choices but we need

consolidation on it. Ultimately it is all about what the end-user

experiences.

4 Image from blogpost by Cindy Sridharan, Testing in Production
https://medium.com/@copyconstruct/testing-in-production-the-safe-way-18ca102d0ef1

Geert van der Cruijsen & Jasper Gilhuis

046 DEVOPS

Jesse Houwing & Sofie Wisse

“May the Source
be with you!”

XPRT. Magazine N°

9/2019

047

Over the last years there has been an

increase in reported supply chain

attacks. Attacks where the attacker

isn’t trying to get access to your source

control repositories, but that of one of

the many projects you depend on.

A bitcoin wallet was compromised and

sent wallet keys to a third-party domain1

through a nodejs package that changed

ownership. Credit card details for

thousands of users were intercepted

through the chat client embedded

in the same pages that handled

transactions2. And it’s not limited to

websites and JavaScript apps. Asus had

their laptop update tools compromised,

causing specific targets to download,

and install additional packages as part

of driver updates3.

The same dangers lurk for .NET

developers. You may be asking:

“how does it work, and how does it

affect me?”

A supply chain attacks occurs when

someone infiltrates your systems via

a third-party service or dependency

to exploit a vulnerability in a system.

Typically, attackers try to insert

malicious code into official downloads

and installers of trusted third-party

service providers or in dependencies

used by developers. Once organizations

start using these services, they are

automatically exposed to the embedded

malware too. Usually, the attackers are

after access to source code or sensitive

data, and they can access that by finding

the weakest link in the software supply

chain without ever having to go near

their target’s servers. One of the

advantages for the attackers is that

with one piece of malicious code in

a dependency, they can target many

organizations at once. On top of that

it is often difficult for organizations to

detect these attacks, since they depend

on many third-party services and

dependencies.

That is all interesting, but that won’t

happen to you, right? Well, as it turns

out, it might not be as difficult for

hackers to insert some malicious code

into your project as you think. Here’s a

small scenario: imagine you are a .NET

developer within an organization,

and your team is responsible for an

application handling sensitive

information. You want to focus on the

business logic of your application

instead of reinventing the wheel for

every bit of code you need, so you use

NuGet as a package manager. It helps

you re-use code from other developers

to solve some of your tasks, that way

you can spend your time on your

application’s specific logic.

While this is a common practice, using

somebody else’s code means that you

need to find a way to trust it. Do you

always know what is in the packages

you consume? What if one of the many

dependencies you use in your project

is infected with malicious code?

What would be the consequences?

And how would you detect this at all?

How can this happen?
It isn’t hard to be presented a different

package when restoring packages

across machines. This is the default

behavior for most package managers,

including NuGet. When you restore

packages, it will try to find the versions

you’re after and will do a best effort

attempt to resolve issues4.

!# Warning NU1603: Microsoft.
IdentityModel.Clients.Active-
Directory 3.13.5 depends on System.
Net.Http (!= 4.0.1) but System.Net.
Http 4.0.1 was not found. An
approximate best match of System.
Net.Http 4.1.0 was resolved.

An example from one of the open source

projects we maintain

99% of code
isn't yours
99% of your apps and sites are not your code. Your own 1% is under source control,
but are you keeping taps on all of the libraries you import each time you do a dotnet
restore or npm install?

Authors Jesse Houwing & Sofie Wisse

1 https://github.com/bitpay/copay/issues/9346
2 https://security.ticketmaster.ie/
3 https://securelist.com/operation-shadowhammer/89992/
4 https://docs.microsoft.com/en-us/nuget/concepts/dependency-resolution

048 DEVOPS

There are a few cases in which NuGet may not be able to get

the same package graph with every restore across machines.

Most of these cases happen when consumers or repositories

do not follow NuGet best practices5:

1. nuget.config mismatch: This may lead to an inconsistent

set of package repositories (or sources) across restores.

Based on the packages’ version availability on these

repositories, NuGet may end up resolving to different

 versions of the packages upon restore.

2. Intermediate versions: A missing version of the package,

matching PackageReference version requirements, is

published:

 Day 1: If you specified <Package Reference Include="My.

Sample.Lib" Version="4.0.0"!> but the versions available

on the NuGet repositories were 4.1.0, 4.2.0 and 4.3.0,

NuGet resolves to 4.1.0 because it is the nearest minimum

version.

 Day 2: Version 4.0.0 gets published. NuGet now restores

version 4.0.0 because it is an exact match.

3. Package deletion: Though nuget.org does not allow

package deletions, not all package repositories have this

constraint. Deletion of a package version results in NuGet

finding the best match when it cannot resolve to the

deleted version.

4. Floating versions: When you use floating versions like

<Package Reference Include="My.Sample.Lib" Version=

"4.*"!>, you might get different versions after new versions

are available. While the intention here is to float to the latest

version on every restore of packages, there are scenarios

where users require the graph to be locked to a certain

latest version and float to a later version, if available, only

upon an explicit gesture.

5. Package content mismatch: If the same package (id

and version) is present with different content across

repositories, then NuGet cannot ensure the same package

(with the same content hash) gets resolved every time.

It also does not warn or error out in these cases.

6. Cache poisoning: NuGet will check the local package

cache before checking configured package feeds (unless

!-no-cache is specified). These will be used in case of an

exact version match. If you are using a proxy feed (such as

Azure Artefacts), an attacker with access to the feed (or an

upstream feed) could publish a specific version to that feed

which will be used instead of the one you are expecting.

More and more re-use
If we would only depend on a few dependencies and if they

would only change once in a very long while, it wouldn’t be

hard to manually review the changes. If you had access to the

sources. And in that case, you could copy all your dependen-

cies to a manually curated feed.

But we don’t live in that world anymore.

As Snyk.io’s Liran Tal6 puts it: vulnerabilities can occur

anywhere, but you only have full control over a small piece.

When you create a new Visual Studio 2019 (16.2.2) React.js

Web Application project, you end up with 15214 Nodejs

packages (686 with known security issues) and 284 NuGet

packages (18 with known security issues). If any of them is

compromised, you may be adding them to your project the

next time you run npm install or dotnet restore.

Or worse, your local development machine may be fine, but

the build server may be fetching all the latest versions. This is

especially the case when you use the Azure Pipelines

Hosted Pool, since every build uses a fresh image with very

few packages pre-cached.What we need is a way to store all

our dependent packages in source control in an efficient

manner, preferably without having to store all the contents of

the packages in source control. Now, while that may sound

like a contradiction, it isn’t. Instead of storing all package

contents and that of all their dependencies, use what npm,

NuGet and yarn do. These tools all store the name, exact

version, and a hash of the package contents for all packages in

the dependency tree in a file. This file is called a lock file, and

by committing this lock file to your version control repository,

you ensure that:

1. Your build server (and your colleagues) will use exactly the

same packages you used on your development machine.

2. You keep an auditable log of all the changes to your

dependency tree.

3. You can inspect all changes to the dependencies prior to

committing, or as part of the pull-request review process.

Generate lock files for .NET solutions
Your .NET projects won’t generate lock files by default.

You must also upgrade your project to use the new

<Package Reference> format7. Then you can instruct the

build process to generate the lock file through a command

line parameter:

Generate the lock file through dotnet:

> dotnet restore !-use-lock-file

Generate the lock file through msbuild:

> msbuild /t:restore /p: RestorePackagesWithLock -
File=true

5 https://devblogs.microsoft.com/nuget/Enable-repeatable-package-restores-using-a-lock-file/
6 https://twitter.com/liran_tal/status/1067775376229834754
7 https://natemcmaster.com/blog/2017/03/09/vs2015-to-vs2017-upgrade/

XPRT. Magazine N°

9/2019

049

You can also add a Property to your project files to generate

lock files on every restore:

<Project>
 <PropertyGroup>
 <RestorePackagesWithLockFile>true

!/RestorePackagesWithLockFile>
 !/PropertyGroup>
!/Project>

Note: This behavior is different from npm and yarn, which

automatically generate the lock files each time you restore

your dependencies.

NuGet will now store a packages.lock.json alongside every

project. The file contains all the dependencies, their exact

versions, how the dependency was introduced, and a hash

of the package contents:

 "Microsoft.AspNetCore.WebSockets": {
 "type": "Direct",
 "requested": "[2.2.1,)",
 "resolved": "2.2.1",
 "contentHash": "Ilk4fQ0xdVpJk1a+

72thHv2LglUZPWL+vECOG3mw+gOesNx0/
p56HNJXZw8k1pj8ff1cVHn8KtfvyRZxdplNQA!=",

 "dependencies": {
 "Microsoft.AspNetCore.Http.Extensions":

"2.2.0",
 "Microsoft.Extensions.Logging.Abstractions":

"2.2.0",
 "Microsoft.Extensions.Options": "2.2.0",
 "System.Net.WebSockets.WebSocketProtocol":

"4.5.3"
 }
 },

Commit these files to your source control repository to store

the exact dependencies along your other source files.

Restore from the lock file in your CI solution
What we want NuGet to do, is to download the exact same

packages we used on our development system. Just storing

your dependencies in source control isn’t enough. One of

the first steps of your CI process is likely dotnet restore and

unless we do something about it, this will just download a new

set of dependencies and then overwrite the lock file.

Instead, we should tell NuGet to restore the exact packages

specified in the lock file. And again, this can be done through a

command line parameter or an msbuild property.

To restore in locked mode using dotnet:

> dotnet restore !-locked-mode

Restore in locked mode using msbuild:

> msbuild /t:restore /p:RestoreLockedMode=true

To ensure the Continuous Integration server uses locked mode

by default, you can also set this property in the project file:

<Project>
 <PropertyGroup>
 <RestorePackagesWithLockFile>true

!/RestorePackagesWithLockFile>
 <RestoreLockedMode

 condition="'$(RestoreLockedMode)' != ''
 !& ('$(TF_BUILD)' != 'true'
 !| '$(CONTINUOUS_INTEGRATION)' !=

'true')"
 >
 true
 !/RestoreLockedMode>
 !/PropertyGroup>
!/Project>

You’re all set, your .NET projects will now restore to a

predictable set of dependencies each time you build it,

or the build will fail.

Each time you restore locally, you’ll see exactly which

packages have been updated and you can inspect their

contents on your development machine:

Restoring against a different .NET Core version may cause

different package contents with the same version. This will

be detected and fails your build.

Impact on build times
You may be wondering what the impact on restore times will

be when turning this feature on. On the development machine

restores will take longer, because the lock file must be

generated and the hash for the package contents must be

calculated.

On the build server it’s less clear-cut. The time to resolve

package versions and calculate the dependency tree is

reduced to the time it takes to just load the lock file. This may

save a lot of time. On the other hand, verifying the package

contents will add some time. In our tests, the average times to

run the build on Azure Pipelines were faster with the locked

mode turned on.

Hands-on: Try the Global DevOps Bootcamp 2019
challenge
The Global DevOps Bootcamp 2019 featured a Supply Chain

Attack challenge8 that lets you experience the effects of a

supply chain attack. As part of the hands-on lab you get to

generate npm and NuGet package lock files, adapt the build

process to perform locked restores, and add a scanner to

your build process to detect known vulnerabilities in your

dependencies. By applying these techniques, you will be able

to take control over what you ship to your customers every

time you deploy your latest changes.

8 https://www.gdbc-challenges.com/Challenges/ChallengeDetails/VULNPACKAGE

050 DEVOPS

Quality assurance is an important part

of continuous delivery. Installing the

software on production is one thing.

Making sure it does what it is supposed

to do, is another. We prefer validating

that automatically, within a couple of

minutes. It is possible to create a release

pipeline that validates all functional

requirements of the software, fast, and

in a way that convinces non-IT stake-

holders.

The deployment checklist
At some point in time, somebody

decides to go live. The users of the

application can now start using new

features. Going live shouldn’t cause

any problems. Validating some of the

following will ensure that:

 All the domain’s business rules.

Have they been implemented

correctly?

 The integration of the software in the

IT landscape. Do all the applications

that depend on it, and all other

applications it depends on, still work?

 Infrastructure. Does the application

have sufficient permission to do what

it is supposed to do? Are all SSL certi-

ficates still valid? Has the application

been configured correctly?

 Non-functionals. Like security and

performance.

Validating that can’t take longer than a

couple of minutes. And that’s challen-

ging. Especially because there are a lot

of business rules to validate, and usually

validating business rules requires inte-

gration. Too much integration makes it

impossible to validate all business rules

in less than five minutes.

The target audience of a unit test
Depending on how the unit test has

been written, it gathers a different type

of information. It either manifests in a

meaningless green bulb, or it provides

information about what functionality

has proven to be implemented in the

software.

Unit tests test the if-statements of the

code. Some developers write them

before they write the code, others do so

afterwards.

There are different styles of unit testing.

Some developers say a “unit” is a single

class. Others say a “unit” may as well be

a combination of classes. The “smaller”

the unit, the more technical information

the tests provide. As a unit becomes

“bigger”, and the subject under test is a

combination of more components,

the unit tests tend to provide more

functional information. These two

schools of unit testing are known as

inside-out and outside-in, or London

and Chicago style.

A recipe for
high-quality

releases

“Unit tests are tests, written by
developers, for developers, and
they are fast.”

Bob Martin

Shipping applications to a production site, continuously, is becoming
more common every day. Deployment pipelines make automatic installation

of software onto a site possible. The next step? Releasing value increments
continuously and safely.

Author Albert Starreveld

XPRT. Magazine N°

9/2019

051

Depending on the type of information

the development team needs, a

different style of unit testing applies.

Unit tests only provide the developer

with very detailed information about

small parts of the system. They assist

the development team in judging the

fitness of low-level components of the

system.

Unit tests are not enough
Considering the target audience of unit

tests. The development team should

have (some of) the information they

require to support their decision to go

live. Unfortunately, usually, the develop-

ment team is only one of many stake-

holders in a project. What information

do other stakeholders need? And in

what format?

Installing the software in a test environ-

ment and having stakeholders validate

their requested changes there, slows

down the deployment process.

Such a scenario indicates manual work,

too. Manual work is expensive and

time-consuming. Also, this scenario

means regression needs to be tested

manually. That slows down the

deployment process even more!

A proper, manual regression test easily

takes days or weeks. All functional

requirements of the complete system

are validated in such a test. Depending

on the desired release frequency,

automating that process can save lots

of time and money.

Whether or not automating regression

tests does save time and money,

depends on the amount of effort spent

to create the automated regression

tests, the amount of maintenance they

require over time, and how fast they run.

Testability is a software-architectural

driver. If releasability is a requirement,

proper software architecture supports

easy regression testing.

Separate business rules from
infrastructure
A common misperception is that

integration should be tested at the API

level. Invoking a REST endpoint carries

out a command to the database and

back. This results in tedious, slow tests

that require a lot of maintenance.

They require databases to be in a given

state, configuration to be correct,

other systems to be up, and so forth.

Such a test has too many responsibi-

lities. It validates too many different

things, implicitly and explicitly, and as

a result, it is slow.

Invoking an endpoint to validate

whether the business rules have been

implemented correctly, proves more

than intended. It proves a correctly

configured API, for example.

Otherwise, the endpoint would not

have been available. And proving that

the API has been configured correctly

over and over again for every business

rule is redundant and time-consuming.

The Single Responsibility Principle also

applies to tests. It is the key to a fast

test suite. Make a test responsible for

validating only a single thing. Craft the

source code accordingly. Creating a

fast, functional test is particularly easy

when infrastructural concerns and

business rules haven’t been mixed.

Alistair Cockburn’s Ports and adapters

architecture (also known as Hexagonal

architecture) demonstrates one of

many ways to properly separate these

concerns.

Separate technical test code from
functional test cases
Continuous delivery and deployment

pipelines are words managers or clients

should not need to understand.

They probably care about the (strategic)

goals of their business and how the new

versions of their software help them

achieve those goals. Showing what the

development team has changed in the

software, and how they have mitigated

any risks associated with that, can help

to gain the stakeholders’ confidence.

It sounds like a lot of work, but that

should be fairly easy with the proper

integration tests in place.

Unit tests have proven to be tough to

explain to clients. A common practice

is to separate (important) test cases

from test code. Use Behavior Driven

Development (BDD) to do that. Write

down the specifications of the software

in the Gherkin format and discuss them

with the stakeholders. Use BDD frame-

works like SpecFlow to implement these

test cases and run them in the deploy-

ment pipeline during every release.

And use plugins like Pickles to generate

reports about the team’s test efforts,

automatically and without any effort.

Take chain testing to the next level

Loads of unit and integration tests

provide clarity on the quality of the

software. When these tests pass, they

indicate that the business rules have

been implemented correctly. But there’s

still the matter of integrating them into

an environment of other systems.

Most likely the system depends on

other systems and other systems

depend on it.

Chain tests are extremely time-

consuming and expensive. Opening a

front-end, going through a couple of

scenarios, and validating what appears

in other systems, proves that systems

integrate correctly. This requires the

entire application landscape to be up

and running, to be configured correctly,

and to be in a given state.

Conceptually, when a user clicks a

button, a command is carried out by

a system. This system creates other

commands and queries, in a given

format, which it sends to other systems.

Any system can produce a variety

of queries and commands to other

systems. They’re mocked and asserted

upon in the tests. Sharing these mocks

and assertions, allows other teams to

use them as input for their tests. They

can validate the ability to process them,

continuously, without having to install

any software in any environment. This

concept, Consumer-Driven Contracts,

allows delayed execution of chain tests

in a deployment pipeline and locally.

It provides fast feedback and reduces

the need for chain testing.

Does it run at all?
It’s good to know the business rules

have been implemented correctly and

that the application integrates into the

environment. But that’s rather useless

if the application doesn’t start.

052 DEVOPS

Epic fail.. All tests pass…

But production is broken…

Regardless of all validations mentioned

earlier, there’s still a chance the

application isn’t going to work.

Faulty configuration, permissions, and

dependencies can cause the application

to break.

That’s easily validated by invoking the

most important endpoints and by

asserting it doesn’t return any

unexpected errors.

Unfortunately, invoking some endpoints

will cause mutations in data. Everybody

knows mutating production data with

tests should be avoided. And running

these tests in any environment but the

production environment doesn’t make

sense either. It proves the test environ-

ments are fine, while we want to check

whether the production environment is

working properly.

Hence the need of a representational

test environment. An environment

that’s pretty much equal to the

production environment. Running

these tests there makes the test-results

conclusive enough.

Look for a sign of life
Having a production-like environment,

in which all critical parts of the

application seem to be operational,

makes it likely that the deployment on

the production environment will be

successful.

There shouldn’t be a big difference

between a production-like environment

and the production environment itself,

but there must be some difference…

After all, it’s production-like, and not

the production site itself.

Execute a simple smoke test after

installing the software onto the

production site. A trivial one, too.

Invoke some GET on an endpoint and

assert a 200 OK.

Choose carefully
Base the effort spent on testing on

the risk that is involved. Not all changes

are equally risky. Faults in the software

have a different impact. In some cases,

it makes a lot of sense to spend more

money on testing. In some cases, it

doesn’t. It depends. Use a probability

impact matrix to determine the effort

that applies:

A probability-impact matrix helps to estimate

the risk

Testing software takes time. And clients

want their features at some point

in time. Sometimes pushback is

appropriate, and clients should wait

just a little longer. Use the probability

impact matrix to decide when to push

back and when to take time for testing.

Estimate the probability first: How likely

is it that this change will cause issues?

Then estimate the impact: How much

money, reputation, or any other thing

that matters to the company, is lost if it

does? The more risk involved, the more

testing effort is appropriate.

Summary
Martin Fowler’s Practical Testing

pyramid shows a different type of

automated tests. The top level of the

pyramid refers to assertions made on

the entire application as a whole.

That’s the highest possible level of

integration. The bottom of the pyramid

refers to assertions made on parts of the

system in the highest possible level of

isolation: Unit tests.

Unit tests are tests written by

developers, for developers.

They provide developers the

information they need to determine

the health of the low-level components

of the system.

Usually, the other stakeholders can’t

judge the health of the system by

looking at the results of unit tests.

They need functional, readable test

cases to make that call. And they need

to make assertions on combinations of

components. Separate functional test

cases from technical test code, and

make the test cases available to the

stakeholders. Isolate the combinations

of components that implement business

rules from infrastructure to keep the

tests fast.

Nonetheless, configuration, permissions

and external dependencies can still

cause an application to break.

Run contract tests, end-to-end tests,

and smoke tests in the release pipeline

to make sure that it doesn’t happen.

Don’t get carried away. Base the test

effort, per story, on a probability impact

matrix to make sure the effort spent

is reasonable, compared to the risks

involved.

“Testing is an information,
intelligence or evidence gathering

activity performed on behalf
of stakeholders to support

decision-making.”

Paul Gerrard

Impact when it does...

Am
ou

nt
 o

f
th

ing
s

th
at

 c
an

 g
o

wr
on

g

Albert Starreveld

053

XPRT. Magazine N°

9/2019

To understand where this hospital IT

backlog comes from, you’ll need to take

a deeper look into the processes in

healthcare. Treatment of a patient

hardly ever originates from the hospital

itself. Typically, it starts from a general

practitioner (local doctor) who creates

an initial observation. This observation

leads to a referral to a more specialized

practitioner. This could either be in a

hospital or in a specialized clinic.

When this specialist practitioner tries to

perform diagnosis, additional studies

such as Imaging or Laboratory Studies

are necessary most of the time.

The specialist can't perform this study

himself, so, he’ll create another referral.

Once this study is completed, the

specialist receives details about the

study and determines a treatment plan.

Part of this plan is a referral to a more

specialized practitioner. And so the

journey continues... Each disease and

each human body is different, and thus

deserves its own, tailor made treatment.

All of the steps in these custom work-

flows collect and transfer information.

It gets more complex when you realize

that not all specialisms are working

inside the same hospital, building or

legal entity. Treatments are sometimes

even stretched across country borders.

Each specialized practitioner comes

in with his own processes, tooling and

jargon. In the IT industry we learned

the Conway Law,1 that communication

structures are reflected in the systems

you design. Hospital IT is no exception

to this.

Every specialism has its own system,

with its own technology and

characteristics. Many of these

specialisms aren't really part of the

hospital; they are associated with the

hospital as a separate legal entity,

while isolating patient data inside

their own systems.

During recent years, large regulatory

bodies such as the E.U. have started to

form opinions about data ownership.

With the intention of protecting

civilians against the influence large

companies can have on their lives,

new protection regulation has been

written. Most people have heard about

the GDPR, but don’t understand the

enormous impact on various industries.

Inside the healthcare industry a patient

already has the right to have a look

at his dossier with a summary of the

various treatments, but under the new

regulations, everyone has obtained the

right to change, correct, transfer or

erase all information about himself, at

no cost (within certain legal boundaries).

How API Thinking
revolutionizes
Healthcare
Have you visited a hospital recently? You probably noticed that
the hospital didn’t feel high tech. Nurses, doctors and supporting
staff often look like data-entry engineers. The user interfaces
they work with are old fashioned and their computers are slow.
Let’s face reality: our standard is the digital enterprise, while
many hospitals are still living in the stone age of digitalization.
Luckily there’s a movement which rapidly changes hospitals:
FHIR (pronounced: FIRE)!

Author Alex de Groot

1 https://en.wikipedia.org/wiki/Conway%27s_law

054 FUTURE

To simplify the handover in the workflows, hospitals have

already started automating using Hospital Information

Systems (HIS). These are large central systems collecting data

about patients. Typically, a HIS contains central appointment

management, patient dossiers and workflow registration.

Since these systems are responsible for the overview, they

only connect to more specialized systems via hyperlinks or

application launchers.

When your treatment is inside a single hospital, the HIS

typically does its job very well. But once we go beyond the

hospital, for example for a second opinion, you immediately

hit a wall. The need to share the entire (relevant) patient

history, including all of its specialized studies, is a complex

question. There’s a clear need for a smart way of inter-

operability between the two parties.

In the late 80s, the HL7 standard organization was founded.

This organization has a clear mission statement: A world in

which everyone can securely access and use the right health

data when and where they need it. As a result, several

standards were published. Unfortunately, the adoption of

these standards is relatively slow. In recent years, as the

business case started to increase, HL7 made a strategic move,

and brought together a group of very active community

members.2

FHIR stands for Fast Healthcare Interoperability Resources

and is basically a domain definition for a REST API. It has

abstracted all functionality in building blocks, which can

evolve independently. The domain objects use ISO-standards

for data formatting and can be queried in a traditional REST

way or using GraphQL. The standard contains the latest

generation security (OAuth), has an answer for object

extensibility, and allows for searching.

Probably the most powerful feature of FHIR R4 is the clear

way in which capabilities are structured and secured.

The API is transparent about which pieces of the specification

are implemented, and how they are made available.

Any implementer of the standard only needs to expose the

relevant parts. While a consumer can use the API to quickly

find out whether a capability is available at all.

Now let’s picture a use case in which an AI startup specializes

in analyzing complex bone fractures. For a hospital, this can

be an enormous cost saver as it enables quicker diagnoses.

Using their FHIR endpoint, all they have to do is expose an

Imaging Studies-capability to this startup. The startup can then

read the patient scans (Imaging Studies) from the endpoint.

Once the analysis is completed, an observation is POST-ed

back to the hospital. This observation can lead to a formal

diagnosis once a specialist in the hospital has approved it.

From an architectural perspective the FHIR standard also

opens doors. By having a clear way of showing how systems

should communicate with each other, the FHIR API decouples

all these systems from each other. It allows for applying

Sacrificial Architectural3 principles on the hospital enterprise

architecture. Think about migrating data from a legacy system

to a new one, consolidate two systems into one system, or

even seamlessly replace one system with another.

Several large cloud vendors - including Microsoft, Amazon

and Google – are creating support in their platforms for FHIR.4

Of course, healthcare is one of the largest industries in the

world, but besides the financial advantage, they also see

FHIR’s contribution to world health. The support of these

giants guarantees technical innovation in the long run.5 6

In addition to the adoption by the cloud vendors, you can

see an active community creating several innovations and

standards related to FHIR R4. Large, industry-wide hackathons

such as the FHIR DevDays7 are delivering great value and

new, unforeseen insights. A great example of this is the

development of SMART-on-FHIR, which allows applications

to start in the context of a specific user. How cool would it be

if the assistant can send the right context to the active mobile

device the doctor is currently carrying?

Other industries can learn from the steps the HL7 FHIR team

is taking. For example, the domain model wasn't built with

the purpose of justifying existing systems. Instead, it was

developed as part of the community process. The intention

of this technology push is clear: it enables a larger audience

to adopt FHIR quicker. Above all, the commitment of the

community is unprecedented. The delivery FHIR R5 has

already started and is expected to be ready in 2020 .

Back in 2013, Harvard Business Review published a clear

vision on the future of healthcare. The widely recognized

Harvard professor Porter stated that decentralized treatment

and patient-centered data management (among a few others)

could ‘fix’ healthcare. FHIR and its community are an enabler

for both. With the support of the tech giants and an emerging

need due to population growth, healthcare takes the next step.

It might be slower than other industries, but eventually we’ll all

benefit from this technical innovation.

2 https://www.hl7.org/fhir/
3 https://martinfowler.com/bliki/SacrificialArchitecture.html
4 https://www.geekwire.com/2019/microsoft-amazon-tech-giants-

forge-ahead-healthcare-data-sharing-pledge/
5 https://azure.microsoft.com/en-us/services/azure-api-for-fhir/
6 https://github.com/microsoft/fhir-server/
7 https://www.devdays.com/

Alex de Groot

XPRT. Magazine N°

9/2019

Skill up for full cycle
ownership
On your way to becoming a full cycle developer?
There isn’t just one route to full cycle ownership.
That’s why Xpirit proudly joins Xebia Academy, so you can
broaden your skill set from the best tools Microsoft has to
offer to design, testing, deployment, and operations.

For every training you need
training.xebia.com

www.xpirit.com

If you prefer the digital
version of this magazine,
please scan the qr-code.

Think ahead.
Act now.

